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1 Introduction

The celebrated Moser-Trudinger inequality [39] states that for Q ¢ R" with finite measure |Q| we have

1

sup ™™ gy < C1Ql,  ap = nw,", (1.1)

UeWy™(Q), IVullin)<1 o

where w,_1 is the volume of the unit sphere in R". The constant ay, is sharp in the sense that the supremum
in (1.1) becomes infinite if ay, is replaced by any a > ay,. In the case Q = R2, Ruf [46] proved a similar inequal-
ity, using the full W'-2-norm instead of the L?-norm of the gradient, which was then generalized to R", n > 2,
by Li and Ruf [31] by
sup J(e”‘"'”Iﬁ - 1)dx < co. (1.2)
UEW L (RY), gy HIV I gy <1 )
Higher-order versions of (1.1) were proven by Adams [2] on the space Wg’"/ k(Q) for n > k € IN. The proofs
of (1.1)and (1.2) in [39] and [31] rely on symmetrization arguments which cannot be applied when the Pélya-
Szegd inequality fails. A rearrangement-free approach was proposed by Lam and Lu to prove Adams-type
inequalities for high-order Sobolev spaces on R" (see [24]). This approach was also used to obtain inequalities
on the Heisenberg group with applications to sub-elliptic PDEs (see, e.g., [23, 25]).
In [21], the authors proved the following 1-dimensional fractional extension of the previous results (for
the definition of H/%2(R) and (—A)/4, see (A.4) in Appendix A).
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Theorem A. Set I := (-1, 1) ¢ Rand HY%2(I) := {u e HY>2(R) : u = 0 on R\ I}. Then we have

sup J(e““Z -1)dx=Cy <00 fora<m, (1.3)
ueH 22 (1), (=)t ull,2)<1 T
and
sup J’(e"‘”2 -1)dx=Dy <00 fora<m, (1.4)
ueHZ2(R), Jul 1, <IR
H2’"(R)
where

2 . L2 2
2y o= IR Rl gy + ol .

The constant 1t is sharp in (1.3) and (1.4).

More general results have recently appeared (see, e.g., [1, 16, 24, 38, 47, 50]) in which both the dimension
and the (fractional) order of differentiability have been generalized. For instance, (1.3) and (1.4) can be seen
as 1-dimensional cases of the more general results of [16, 24, 38] that hold in arbitrary dimension n.

The existence of extremals for this kind of inequalities is a challenging question. Existence of extremals
for (1.1) was originally proven by Carleson and Chang [5] in the case of the unit ball, a fundamental result
later extended by Struwe [49] and Flucher [15] to the case of general bounded domains in R?, and by
Lin [32] to the case of bounded domains in R". In the case of the Li-Ruf inequality (1.2), the existence of
extremals appears in [31] when n > 3, and was proven by Ishiwata [20] when n = 2. For the higher-order
Adams inequality the existence of extremals has been proven in various cases by, e.g., Li and Ndiaye [30] on
a 4-dimensional closed manifold, by Lu and Yang [33] (see also [40]) for a 4-dimensional bounded domain
and by DelaTorre and Mancini [9] for a bounded domain in R?>™, m > 1 arbitrary. In recent years, there
have been many other papers studying the existence of extremals for similar inequalities on R" (see, e.g.,
[12, 13, 34, 41, 42] and the references therein). Most of the results we mentioned are based on a blow-up
analysis approach, but a different method has been recently proposed in [27], where the authors exploit the
exact relation between critical and subcritical Moser-Trudinger suprema (see [6, 26]) to prove the existence of
extremals.

On the other hand, the existence of extremals for the fractional Moser-Trudinger inequality has remained
open until now, with the exception of Takahashi [50] considering a subcritical version of (1.4) of Adachi—
Tanaka type [1], and Li and Liu [29] treating the case of a fractional Moser-Trudinger on H'/22(0M) with M
being a compact Riemann surface with boundary. The idea of Li and Liu is that by working on the boundary
of a compact manifold one can localize the H'/22-norm.

Applying the same method for an interval I ¢ RR creates problems near dI, which require additional care
in the estimate, and the problem becomes even more challenging when working on the whole R. The main
purpose of this paper is to handle these two cases and prove that the suprema in (1.3) and (1.4) are attained.

Theorem 1.1. For any O < a < 7, the inequality (1.3) has an extremal, i.e. there exists u, € H/%2(I) such that

1A gl <1 and j(e““% “1)dx = C,.
I

Theorem 1.1 is rather simple to prove for a € (0, 1), while the case @ = m relies on a delicate blow-up analysis
for subcritical extremals.

A similar analysis can be carried out for the Ruf-type inequality (1.4). However, working on the whole real
line, we need to face additional difficulties due to the lack of compactness of the embedding of H = H/22(R)
into L?(R): vanishing at infinity might occur for maximizing sequences, even in the sub-critical case
a € (0, ). This issue is not merely technical. Indeed, Takahashi [50] proved that (1.4) has no extremal
when a is small enough. Here, in analogy with the results in dimension n > 2, we prove that the supremum
in (1.4) is attained if a is sufficiently close to 7.
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Theorem 1.2. There exists a* € (0, ) such that for a* < a < 7 inequality (1.4) has an extremal, namely there
exists it, € H/22(R) such that

ltall 30 <1 and J(e’“"ﬁ ~1)dx = Dq.
R
As for Theorem 1.1, the proof of Theorem 1.2 for @ = 7 is based on blow-up analysis. In fact, we need to
study the blow-up of a non-local equation on the whole real line (no boundary conditions), as is done in the
following theorem.

Theorem 1.3. Let (ux) ¢ H = HY22(R) be a sequence of non-negative solutions to
(—A)%uk + Uy = Akukea"ulzf inR, (1.5)

where ay — m and Ax — A = 0. Assume uy even and decreasing (ux(-x) = uy(x) < ug(y) for x >y = 0) for
every k and set uy := supy ux = ux(0). Assume also that

A = lim supllukll}; < co. (1.6)

k—00

Then, up to extracting a subsequence, we have that one of the following assertions holds:

() i < C, ux > Uoo in CE (R) for every £ > 0, where uq, € Cf, (R) N H solves

(—A)%uoo + Uoo = }(Oouooe”“go inR. (1.7)

0

Toc(R\ {0}) where u, is a solution to (1.7). Moreover,

(ii) px — 00, ux — Uy weakly in H and strongly in C,
setting ry such that

1
At e = — 1.8
kTkMj e "k % (1.8)

and
M) 1= 2aiuicUr(riex) = ui)y, Moo (%) = —log(1 + |x]?), (1.9)

4
loc

one has nx — Neo in Cy.(R) forevery € > 0, supInkllL,w) < coforanys > 0(cf.(A.2)),and A > ||u00||12q +1.

The proof of Theorem 1.3 is quite delicate because local elliptic estimates of a non-local equation depend
on global bounds as we shall prove in Lemma 3.6. This will be based on sharp commutator estimates
(Lemma 3.3), as developed in [35] for the case of a bounded domain in R", extending the approach of [37]
to the fractional case.

We expect similar existence results to hold for a perturbed version of inequalities (1.3)—(1.4), as in [36,
51] (see also the recent results in [19]), but we will not investigate this issue here.

2 Proof of Theorem 1.1

2.1 Strategy of the Proof

We will focus on the case a = 7 since the existence of extremals for (1.3) with a € (0, ) follows easily by
Vitali’s convergence theorem; see, e.g., the argument in [36, Proposition 6].

Let uy be an extremal of (1.3) fora = ay = m - % By replacing ujy with |ug|, we can assume that uy > 0.
Moreover, [|[(=A)Y4uy | 2r) = 1, and uy satisfies the Euler-Lagrange equation

(~B) 7 uy = Auge®™ U, (2.1)

with bounds on the Lagrange multipliers Ay (see (2.4)).
Using the monotone convergence theorem, we also get

Jlim J(e“k“i - 1)dx= lim Cq, = Cr, 2.2)
—00 I —00
where Cy, and C; are asin (1.3).
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If py := maxy ux = O(1) as k — oo, then up to a subsequence uy — U, locally uniformly, where by (2.2),
Ue maximizes (1.3) with a = 7. Therefore, we will work by contradiction, assuming

lim py = oco. (2.3)
k—o00

By studying the blow-up behavior of uj (see in particular Propositions 2.2 and 2.9), we will show that (2.3)
implies C, < 4m (Proposition 2.10), but with suitable test functions we will also prove that C, > 4 (Propo-
sition 2.11), hence contradicting (2.3) and completing the proof of Theorem 1.1.

2.2 The Blow-Up Analysis

The following proposition is well known in the local case, and its proof in the present setting is similar to the
local one. We give it for completeness.

Proposition 2.1. We have uy € C®°(I) n C>Y2(I), ux > 0inI, and uy is symmetric with respect to 0 and decreas-
ing with respect to |x|. Moreover,
0 < A < A1 (D). (2.4)

Up to a subsequence, we have Ay — Ao, and uy — u, weakly in H'/2:2(I) and strongly in L2(I), where u, solves
(~D)7 oo = Aoollooe™. (2.5)

Proof. For the first claim, see [35, Remark 1.4]. The positivity follows from the maximum principle, and the
symmetry and monotonicity follow from the moving point technique; see, e.g., [8, Theorem 11].

Now testing (2.1) with ¢1, the first eigenfunction of (-A)/2 in H'/22(I), positive and with eigenvalue
A1(I) > 0, we obtain

A (D) j Up@ dx = Ag J uke“k"i(pl dx > A J Ui, dx,
1 I 1

hence proving (2.4). By the theorem of Banach-Alaoglu and the compactness of the Sobolev embedding of
HY2:2(I) — L2(I), we obtain the claimed convergence of uj to us. Finally, to show that u, solves (2.5), test
with ¢ € C®(I):

I uoo(—A)%go dx = lim J uk(—A)%ga dx
k—00

I I

= lim J/\kuke“kuﬁ(p dx
k—o00 /

2
AcoUo€™® @ dx,

[ —

where the convergence of the last integral is justified by splitting I into
I i={xel:u(x) <L} and I:={xel:ux(x)>L}

applying the dominated convergence on I; and bounding

JAkUkeakui¢ dx < Sulel(pl J/l uZe™ M dx
I 1
_ sup]flfpl Juk(—A)%uk dx
1
supy || 19
- T"(_A)AuH'Lz(R)’

and letting L — oco. O
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Let i1, be the harmonic extension of uy to R? given by the Poisson integral; see (A.5) in Appendix A. Notice
that
2 1 ~
J/\kuie“k“k dx = II(—A)‘*ukIIiz(]R) = ||Vuk||iz(Ri) =1. (2.6)
I

Let
1

———— and () := 2arpr(ui(rex) — pi)
ak/\kyie“k”i

Ik =

be asin (1.8) and (1.9), and set

kX, y) = 2 i (@ (rix, rey) — Pi).

Note that 7 is the Poisson integral of ;.

14
loc

Proposition 2.2. We have ry — 0 and fjx — fleo in C (IR_E) for every ¢ > 0, where

floo(X, y) = —log((1 +y)* + x?)
is the Poisson integral (compare to (A.5)) of N = —log(1 + x?), and
(—A)2 foo = 2€", J e dx = . (2.7)
R

Proof. According to [35, Lemma 2.2, Theorem 1.5 and Proposition 2.7], we have ry — 0 and nx — oo
in Cfoc(lR) for every € > 0 and (17x) is uniformly bounded in L1/, (R) (see (A.2)).

To obtain the local convergence of fji, fix R > 0 and split the integral in the Poisson integral (A.5) of 7
into an integral over (-R, R) and an integral over R\ (-R, R), for R large. The former is bounded by the

convergence of 1y locally, the latter by the boundedness of ny in L1/, (R), provided
(x,y) € Bz n R2.

As a consequence, we get that 7}y is locally uniformly bounded in IR_Er Since 1}y is harmonic, we conclude by
elliptic estimates. O

Remark 2.3. As L — oo, we have

- L logL
2 = —
J [Vileol= dx dy = lmlog(z) + O( T ) (2.8)
]RiﬂBL
Moreover, the same estimate holds if By is replaced by B (0, —1).
Proof. As L — co, we have
ool )) = ~210g L+ OL™Y) and Ve, y) - ¥ = -2 4 o(12)
[(x, I L

for (x,y) € IRE N dB;. Then, integrating by parts and using (2.7), we get that

3 L
J [Vijool? dx dy = J ﬁooag—;’o do+2 J Nooe™™ dx
R3NB; R2N3B; -L
=4mlogL +2 j Neo€™ dx + O(IOLL).
R

The definition of the Poisson integral (see (A.5)) gives

rlOO ~

Neo = = = —

2 J Noo€1™ dx =2 J o2 dx = 270 (0, 1) 4mlog 2.
R
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This proves (2.8). Finally, observe that By \ B;(0, -1) and B (0, -1) \ B, are contained in A} := B;1 \ Br_1.
Since |Vjoo|? = O(L72)in R2 N Ar, we get

| | WicPaxdy- [ WiePdcdy]s | Vil dedy = 0w, 0

R2NB; R2NBL(0,-1) R2NA;L

Corollary 2.4. ForR >0andi=0,1, 2, we have

Rry 1 R
lim J /\ky;.(ui_ie“kuﬁ dx = = J e'l~ dx. (2.9
k—oc0 T

—Rry -R

Moreover, uq, = 0, i.e. up to a subsequence uy — 0 in L2(I), weakly in H/22(I), and a.e. in I.

Proof. With the change of variables ¢ = %, writing uy(rx-) = i + and using (1.8) and Proposition 2.2,

Zak)l
we see that
Rry R R
[ s e - et [ (1 2 g L [ e
~Rry Tl R 2ai TR

Xk

as k — oo, as claimed in (2.9).
In order to prove the last statement, recalling that ||(-A)Y*u ;> = 1, we write

Rry
1= J Al e dx + J Al e dx =: (D) + (ID).
—Rrg I\(=Rr,Rry)

By (2.7) and (2.9), we get

k—o00

R
lim (I = % J el dx =1+ o0(1),
-R

with 0(1) — 0 as R — oo. This in turn implies that

hm hm (I =

R—00 k—00

which is possible only if 1., = 0 or A, = 0 (by Fatou’s lemma). But on account of (2.5), also in the latter case
we have uq, = 0. O

Lemma 2.5. For A > 1, set uf := min{uy, %}. Then we have

. 1
lim supl|(-A) 7 uf "]ZJ(JR) =2
k—o00

Proof. We set ﬂf := min{ity, ‘%}. Since ﬂf is an extension (in general not harmonic) of uf, we have
- I < [ 93P dxdy. (2.10)
R}
Using integration by parts and the harmonicity of iy, we get
J [Vad|? dx dy = J Vit - Vil dx dy

R2 R2?

B J’ A( )auk(x O)

= j(—A)%uku‘,?dx. (2.11)
R
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Note that, even if R? is unbounded, the integration by parts above holds since |ii(x, y)| = O(|(x, y)|~!) and
IVit(x, y)| = O(|(x, y)|~?) for |(x, y)| large (see Lemma A.4). Proposition 2.2 implies that u (rix) = & for x| < R
and k > ko(R). Then, with (2.7) and (2.9), we obtain
Rry
J'(—A)%uku‘li1 dx > J )lkuke”‘k“iuf(1 dx
R —Rry

R
k—oo 1
—_ Neo d
A Je d

-R

R—oco 1
Koo 2
A
Setnow v¢ := (ux — B)* = ux — uf. With similar computations, we get
Rrk
J-(—A)% ukv‘,‘(1 dx > j /\kukv;‘}e""‘“i dx
R —Rr
1 1 f
k—o00
N S Moo
~(1-7) j el df
‘R
R—oo A-1

B e J—

A

Since

J(—A)%ukuf(1 dx + J(—A)%ukvf(1 dx = J(—A)%ukuk dx =1,

R R R
we get that

klirgo J'(—A)%uku‘li1 dx = %
R

Then we conclude using (2.10) and (2.11). O

Proposition 2.6. We have
Cr=lim —. (2.12)

Moreover,
lim piAx = 0. (2.13)
k—o00

Proof. Fix A > 1 and let uf be defined as in Lemma 2.5. We split

j(e“k“i ~1)dx = J (e _ 1) dx + j (e™¥i — 1) dx =: (I) + (I0).

I Infur<ky Infue> ey

Using Corollary 2.4 and Vitali’s theorem, we see that

< J(e"‘k(“f)Z -1)dx -0 ask — co
1
since %)’ is uniformly bounded in LA (I) by Lemma 2.5 together with Theorem A.
By (2.6) and Corollary 2.4, we now estimate

2 2

(1+0(1)),

A
(II)sA 5

J Akui(e""‘”i ~-1dx< A 5
kM A

198
Infui> "k} k

with 0(1) — 0 as k — co. Together with (2.2), and by letting A | 1, this gives

Cr < lim L
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The converse inequality follows from (2.9) as follows:

Rry R
J(eakui -1)dx > J ek dx + o(1) = ! 5 (l J el dx + o(l)) +0(1),
i ~Rry Akt ﬂ—R

with 0(1) — 0 as k — 0. Letting R — oo and recalling (2.7), we obtain (2.12).
Finally, (2.13) follows at once from (2.12) because otherwise we would have C, = 0, which is clearly
impossible. [

Proposition 2.7. Let us set fy := Akykuke”‘k”i. Then we have

Jfkfp dx — ¢(0)
I

as k — co for any @ € C(I). In particular, fy — 8 in the sense of Radon measures in I.

Proof. Take ¢ € C(I). For given R > 0 and A > 1, we split

Rrk
I¢fkdx= J Of dx + I Of dx + J ofidx = I + I, + I3.
1 ~Rri {u>EE N (=Rri, Rri) {ur<tly

On {uy < ’%} we have uy = uf, and Lemma 2.5 and Theorem A imply that u ke“k“i is uniformly bounded in L?
(depending on A). Thus using (2.13), we get I3 — 0.
With (2.6) and (2.9) we also get

LeAlplmg | Aageni dx
{ui> BN\ (~Rri,Rre)
Rry
SAll(pllLoo(I)(l - J Al ek dx)
i

R
1
= A||<P||Lo<>(1)(1 - J el dx + 0(1)),
‘R

with 0(1) — 0 as k — oo. Thanks to (2.7), we conclude that I, — 0 as k — oo and R — oo.
As for I, again with (2.9) we compute

I = (p(0) + o(l))(% f el dx + o(l)),
‘R

sothat I; — ¢(0)as k —» coand R — oo. O

Given x € I, let Gy : R\ {0} — R be the Green’s function of (-A)!/2 on I with singularity at x. We recall that
we have the explicit formula (see, e.g., [3])

1 (1—xy+m),

—lo el,
Guly) = {78 -yl Y (2.14)
o, yeR\L
In the following, we further denote
1
= — | 2.1
S, y) = Gx(y) - —log X7 (2.15)

Lemma 2.8. We have pjuy — G := Go in L.(T\ {0}) n L*(I) as k — +co.

loc
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Proof. Let us set
akui

Vi = urug -G and  fi = pAguge

Arguing as in Proposition 2.7, we show that ||fill.1 ) — 1 as k — oco. Moreover, since uy is decreasing with
respect to |x|, we get that uy — 0 and fx — 0 locally uniformly inT\{0}ask — oo. By Green’s representation
formula, we have

Vi)l = |j G ()fi(y) dy - G(x)
I

< J|Gx()/) - GOOlfi) dy + filleray - UGN, x el (2.16)
I

Fix o € (0, 1). If we assume |x| > g and |y| < %, then we have

1 |x|
1Gx(y) = GO0l < [log 1= + 150x, ) = S(x, 0]
1 b'e y
< —|log|— - =||+ su [V, SCe, W1y
aloel il S VS lly

< Clyl,

where C is a constant depending only on o. Then, for any € € (0, %), we can write

V(oI < IIGX()/) - GOlfi(y) dy +o(1)

1
= J|Gx()/) - GMlfk(y) dy + J |Gx(y) = GX)Ifi(y) dy + o(1)
& N(-¢,¢)

< Celfillpr-e,e) + (SUPH Gzl + 1GOOI fillLeo(n(-e,e)) + 0(1)
pASS
< Ce+o0(1), (2.17)
where 0(1) — 0 uniformly in I'\ (-0, 0) as k — co. Clearly, (2.17) implies

lim Sup"vk"LOO(I\(_o"g')) < Ce.

k—00

Since € and ¢ can be arbitrarily small, this shows that vy — 0 in Lﬁj’c(f\ {0}). With a similar argument, we

prove the L' convergence. Indeed, integrating (2.16), for € € (0, 1) we get

Wil < j jlcx(y) ~ GOIfcy) dy dx + Il - 1IGIL: )

I 1
< jfk(y) j|Gx(y) ~ Gl dxdy +o(1)
I I

<

fiy) JIGX()/) -G(X)ldxdy +2 SuP”Gz"Ll(I) Ifillzeo(1\(-e,e)) + 0(1)
zZE
I

|
J

- fk(y)jmx(y)— G| dxdy +o(1). (2.18)
I
Since
sup SupIS(X, )’) - S(X’ 0)| = 0(6)’
ye(-¢,e) xel
we get

| |
X
tiX d +‘() £).
|| y ( )

[ 2 [16,00 - Goonaxay =~ [ 7o) [ os

- I - I

|x
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Moreover, using the change of variables x = yz, we obtain

x|
I|log I
1

ﬁ
y||dx: vl J log lz'f'1||dz=o(|y|1og—).
1

Then we have

J e [16,60 - Gotoldxdy = [ fe»0(iyitog ) dy-+ 0(e) = O(slos 1 ). (2.19)
e Vi &

Clearly, (2.18) and (2.19) yield lim sup;_, .o, vk — Gllz1y = O(elog %). Since € can be arbitrarily small, we get
the conclusion. O

Proposition 2.9. We have uyiix — G in

2 (R2\ {(0, 0)}) n CL (R2),
where G is the Poisson extension of G.

Proof. As in the proof of Lemma 2.8, we denote vy := uxuix — G. Let us consider the Poisson extension
Vi = uxiix — G. For any fixed & > 0, we can split

nmwzlj YVi(d)

yvi(é)
e | gk

1
d§+E1 (x=&2+y?

By Lemma 2.8, we have

- ————dé| < = oo (\ (— 4
‘ J “pr eyt X< gvdiaeo | Gmgr a4
N\(-¢,¢) R
= [Villzeo\(=¢,6)) = O
as k — oo. Moreover, assuming (x, y) € R2 \ B.(0, 0), we get

&
1 yvi($) l J yIvi(&) y
T x—O2+v2 el B e < — 0.
|7T J x=-8&2+y2 dg 1(x, y) - (£, 0)2 a§ 62 Wilziay —

Hence ¥, — 0 in C° (lR2 \ B2¢(0, 0)). Finally, since can ¢ be arbitrarily small and ¥ is harmonic in 1R+, we

get vk — Oin

loc

loc(]R2 \ {(0, O)}) n Cloc(]Rz) O

2.3 The Two Main Estimates and Completion of the Proof

We shall now conclude our contradiction argument by showing the incompatibility of (2.3) with (2.2) and
the definition of C. In this final part of the proof, we will use the precise asymptotic of G near (0, 0). Since
log|(x, y)| is the Poisson integral of log|x| (see Proposition A.3), and since S(0, -) € C(R), equation (2.15)
guarantees the existence of the limit

So:= lim GO,y)+ = logI(X V) = hm G(x) + = log|x|

(x,y)—(0,0)
In fact, using (2.14), we get Sp = 10%2. More precisely, noting that S(0, -) € C*°(I), we can write
- 1 1
Gx,y) == +So + h(x,y), (2.20)
V= By Ty

with e e
h e C®(R2 N B1(0,0)) N C(R2) and h(0,0) =
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Proposition 2.10. If (2.3) holds, then C, < 2me™° = 41
Proof. For a fixed large L > 0 and a fixed and small 6 > 0, set

ay:= inf itg, by:= sup iy, Vi :=(UxAag)V bg.
0By, NRZ dBsNR?

Recalling that |Vit[|?, = 1, we have
J V72 dxdy <1 - J Vit dx dy — J IVitgl? dx dy.
(B5\Brr, )NR? R2\Bs RZNB,,

Clearly, the left-hand side bounds

; - = (ax - bi)?

inf J |Vit|? dx dy = J VO 2 dxdy = m———~—%
g2 oy, =Ak , Y , y log 6 — log(Lry)
ﬂlm%naals:bk (BB\Ber)nR+ (B5\BL,k)r1]RJr

where the function @ is the unique solution to
A, =0 inR2n(Bs\Br,),
@ =ar onR2nNoBL,,
®; = b on IR%r N oBs,

9Pk _ 0 ondR2n(Bs\Biy),
oy
given explicitly by
- bi - ax aylog 6 — by log Lry

Dy log|(x, y)| +

- log 6 — log(Lry) log 6 — log(Lry)

Using Proposition 2.2, we obtain
1 _
-ZlogL+O(L™Y) +0(1)

ayx = Uk + s
Hk

— 609

where for fixed L > 0 we have o(1) — 0 as k — co, and |O(L™1)| < % uniformly for L and k large. Moreover,

using Proposition 2.9 and (2.20), we obtain

) -Llogé+So + 0(8) +0(1)
k= ,
M

where for fixed 6§ > 0 we have 0(1) — 0 as k — oo, and |0(6)| < C6 uniformly for § small and k large.

Still with Proposition 2.2, we get

1 1 L logL
. 2 - 2 _ 5 12 — — 2
kILm My J |Vitg|© dx dy = e J [Vijool® dx dy = nlog 5t O( T )
R3NBL, RINB;

Similarly with Proposition 2.9 we get

lim nf 2 J \Viig |2 dx dy > j \VGP2 dx dy
—00

R3\Bj R}\Bs
- | Yeaor [ -2%Dgumax
or oy
]Riﬂng R\(-6,6)
1 1
_ j (% " 0(1))(—; log 6 + So + 0(6)) do
R2N0Bs

= —% log 6 + So + O(6log 6),
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where we used Lemma A.4, the expansion in (2.20) and the boundary conditions

G(x,0)=G(x) =0 forx e R\ 1,
9660 (-A)iG(x) =0 forx eI\ {0}.
oy
We then get
mag-bo? . ~710g8+ S0+ 0(8logh) + 1 log § + O(FF)
log 6 —log(Lry) ~ 11;2<
or
1 2 L+1 2
ni(ay - bi)? = mpg — 2log L + O(L™1) + 210g § - 21So + O(8) + o(1) + Odlog : og” 6)
Hi

< (log 6 —1og L +10g(Axp3) + axpi +1og ar)

2

~L1og6+So+0(610g ) + Llog & + O(IO%L)
><(1— 2 )

6 1 26
=log — +log(Akuy) + apy +log ay + ak(E log = - So)

g L
2 2
+ 0(810g8) + 0 8L , log 8 + Oog™ ) + 01)

L ”

k

Rearranging gives
Ak L 5 ar gL
o A - <1 ) ?) log 5" (@i = M + (271 = ) So + = log 2 +log ay + O(61og 6) + O(_L ) +o(1),

with 0o(1) — 0 as k — co. Then, recalling that ay T 7r and letting first k — oo and then L — coand § — 0, we
obtain

lim sup log 5 <7So + log(2m) = log(4m).

Using Proposition 2.6, we conclude. O

Proposition 2.11. There exists a function u € HY?2(I) with ||(-A)/*ul|2(r) < 1 such that

J(e"“2 —1)dx > 2me™° = 47.
I
Proof. For € > 0 choose L = L(¢) > 0 such that, as € — 0, we have L — oo and Le — 0. Fix

Te = {06, Y) € R : G(X,y) = yre :=_min G}
]R+naB1_£

and
Qre == {(x,y) e R2 : G(X, ) > yre}-
By the maximum principle, we have
R2 N Bre € Qpe.

Indeed, G is harmonic in R2, G > y;. on d(R2 n Br¢) \ {(0, 0)}, and G — +00 as (x, y) — (0, 0). Notice also

that (2.20) gives

Vie = _7_11 log(Le) + So + O(Le). (2.21)

For some constants B and c to be fixed, we set
. log(% +(1+%)?)+2B
271c
Ue(x,y) := % for (x,y) € Qre \ Bre(0, -¢),

for (x,y) € R2 n B1(0, —¢€),

G(x,y)

c for (x,y) € R2 \ Qfe.
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Observe that R2 N Br(0, —¢) < R2 N B¢ < Qp¢. To have continuity on R2 N 0B;(0, —&) we impose

-logL?-2B oo Ve
27C c

which, together with (2.21), gives the relation

B =nc? +loge - nSo + O(Le).
Moreover,
j VUL dx dy = J Vlogt + (1 4y dxdy = 128D+ OCED)
R2NBL:(0,~€) S ’ hmes R2NB.(0,-1) ’ ’ ¢
and

J IVUglzdxdyzc—l2 J |VG|? dx dy

R2\Qpc R2\Qe
1 oG - 1 oG -
_ 1 J CGdo- L J 95 ¢ ax
c2 ov c? oy
R2N0Q.. (Rx{ON\ Qe

-0
_ Llog(L) + So + O(Lelog(Le))
2

)

where the last equality follows from (2.20). We now impose ||V U,|| w2 =1 obtaining

—loge —log2 + Sy + O(Lelog(Le)) + O(lo%L) = n1c?,
which, together with (2.22), implies
logL
B=—log2 + O(Lelog(Le)) + O(T).

Let now

Il . =(-eVL2-1,eVL? - 1)

and fs be the disjoint sub-intervals of I obtained by intersecting I x {0} respectively with
Bre(0,~¢) and RF\Qpe.

Then, for u.(x) := Uc(x, 0), using a change of variables and (2.23)—(2.24), we get

L log(1 + x2) + 2B12
nug _ B og(l +x7) +
Je dx=¢ J exp(ﬂ(c — me ) )dx
I, —VIZ1
VT
> gelc’ 2B I ! dx
1+x2
VT
5 nSe+0(Le log(Le))+0(1%5L) 1
=2e"™° L n<1+O(L))
logL
— 277e™ + O(Le log(Le)) + 0(0%).

Moreover,
1
j(e”“g - 1)dx > I mu? dx = = J 7G? dx =: 2L

c2’

2 2 2
ILs IL& ILs

(2.22)

(2.23)

(2.24)
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with 1
Ve > V1 > 0 forLe< 5

Now observe that c2 = —1"% + 0(1) by (2.23), and choose L = log? ¢ to obtain

O(Lelog(Le)) + o(lofL) - o(l‘;(g);‘z’i‘g) - O(Clz)

so that v .
J(e”“g —1)dx > 2me™o + =2+ o(—z) > 27e™o
c c
1

for € small enough.
Finally, notice that

I8 e gy = jwﬂgP dxdy < JIVUEIZ dxdy <1

R? R2

since the Poisson extension i, minimizes the Dirichlet energy among extensions with finite energy. O

3 Proof of Theorem 1.3

Let ux € Hn C®(R) be a sequence of positive even and decreasing solutions to (1.5) satisfying the energy
bound (1.6) and with A; — Ay > 0 as k — oco.
First we show that case (i) holds when pj < C.

Lemma 3.1. If uy < C, then (i) holds.

Proof. By assumption, we know that uy and
fe := (=B) 7 ug = Aguge®™ % — uy

are uniformly bounded in L*®(RR). Then, by elliptic estimates and a bootstrap argument (see [11, Theorem 1.5]
and [22, Corollary 25]), we can find uy, € C*°(R) such that, up to a subsequence, uy — Uy, in Cfoc(lR) for
every £ > 0. To prove that u., satisfies (1.7), note that fy — f, := Aoouooe"“czm — Ugo locally uniformly on R
and set M = sup;(|IfillLe(r) + pi). For any ¢ € S(R) (the Schwarz space of rapidly decreasing functions) and

any R > 0, we have that

R

j|fk ~ Fool 101 dx < Ifi ~ Foolzoo(-rR) j o] + 2MI@lL (R Ry
R —-R

k—+o0
— M@l (-r,R))

R—+00
— 0.

Similarly, recalling that (—A)% ¢ has quadratic decay at infinity (see, e.g., [18, Proposition 2.1]), we get

[Ug(X) = Ueo (X)]

1 1
[ 1 = ool 1) 1 dx < 1=0)* @l -y e = eolscmmy + € | e
R (-R,R)¢
1 dx
< (=A)2 @lleo((=Rr,R) IUk — UcollL1((-R,R)) + 2CM = dx
(-R,R)*
k,R—+0c0
—_—

Hence u is a weak solution of (1.7). O
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From now on we will assume that yy — +oco and prove that Theorem 1.3 (ii) holds.

0,a
loc

Lemma 3.2. Let ny be defined as in Theorem 1.3. Then 1y is bounded in C;_ (R) for a € (0, 1).

Proof. Note that
1 1 2
TkMg = ;= 5 Juﬁe“"“k dx
A aplug e
1 a o
< Cﬁjuiezukdx
aglluxlge

c luicl?; VD,
2 %2
agllugllye=He

SCiHO.

a
akeTkl‘i

R

R

Moreover, we have that
2 Uk(rk)

U
(=8)2 i = 2- kka grsitn ekt 0y

— 613

is bounded in L. Since ny < 0 and nx(0) = O, this implies that 1 is bounded in L;3, (R) and then in C{"OC(]R)

forany a € (0, 1).

The bound of Lemma 3.2 implies that, up to a subsequence, ni — Ny in C?O’g

However, it does not provide a limit equation for 1,. In order to prove that ., solves

(=D)? R = 2€",

O

(R) for some function 1.

we will prove that nj is bounded in L (R) for any s > 0. This bound can be obtained thanks to the commutator
estimates proved in [35]. Part of the argument must be modified since the uy’s are not compactly supported.
We start by recalling the following technical lemma, which is a consequence of the estimates in [35].

Lemma 3.3. Forany s € (0, 1), there exists a constant C = C(s) such that, for any ¢, € CX(R") and p € R*,

we have

10CD) Tl 3 oy < CELP, ) + E2,20(0, 1),

where
E1(@, ) = [(=8) % @ll 2w (=) 5 Yl 2w

E2p(0. %) = 1-0) @zl (-8) 2l o1y

Proof. Let 6 € CX((-2, 2)) be a cut-off function such that 6 =1 on (-1,1) and 0 < 6 < 1. Let us denote

0, = 0(5). Let us also introduce the Riesz operators
Ii_su:=xg|-|5*u forse(0,1),
where the constant x; is defined by the identity
Ksl- 175 = - 1°7
With this definition, I;_; is the inverse of (—A)?. Then we can split

O(-0)3 1 = @I _s(-A)7
= @I 5(03p(-0)2 1) + I1_s((1 - B3p)(-D) 2 )

= @I _s(02p(~D) 1) + [, I1_s)(1 = B2p)(-A) T ) + 15 ((1 — O2)p(~D) 1)

=J1+]2+]3,
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where we use the commutator notation [u, I1_s](v) = ul;_sv — I1_s(uv) forany u, v € C(R). Applying respec-
tively [35, Proposition 3.2, Proposition 3.4 and Proposition A.3], we get that

= |1 (D) @) 1-s(02p (D) )|

il o g,y L&) (=p,p)
< OB Pl l-BT Pl v o
= CE22(0, ¥),
that
2l oy py = 11905 T1=s)(1 = B2) (=) E (=BY ) |t oy,
< Cl-0)7 @ll2ll(-8)* Pl
= CE1(p, ),
and that
3l o cppy < Ms@D) TP 1 oy
< Clo(-0) 2 Yl
= CI-D)* @(-0)F Pllps )
< CE1(p, ¥),
as desired. O

As a consequence of Lemma 3.3, we obtain the following crucial estimate.

Lemma 3.4. For any s € (0, 1) there exists a constant C = C(s) such that

j lu(-0) ¥ ul dx < Cp S (E1 (1, u) + Ez,2p (i, )
(=p,p)

forany p > 0and u € Hn C*®(R). Here E1 and E, ;, are defined as in Lemma 3.3.

Proof. By the Holder inequality for Lorentz spaces (see, e.g., [43, Theorem 3.5]), we have

lu(-B) 2 ulls p.p) < X0 p U A2l

s LG3)(—p,p)

< Cp'*llu(- A)Zull 3.1

LG(=p,p)°

We shall bound the right-hand side of (3.1) by approximating u with compactly supported functions and
applying Lemma 3.3. To this purpose, we take a sequence of cut-off functions (7j)jen < C(R) such that
Tj(x) = 1 for |x] < j, Tj(x) =Ofor [x| 2 j+ 1,0 <7; <1, and |T]’-| < 2. We define u; := tju. We claim that

uj - u in HP2(R) N LY(R), g € (2, o0), (3.2)
and
(-M)2uj — (-A)2u in L2 (R), (3.3)

The first claim is proved in [14, Lemma 12]. We shall prove the second claim. Set v; = u; — u. Then, for any
fixed Rp > 0 and x € (—Ro, Ro), if j > 2Rp, we have

5 lv; I 1 lu(y)l Cllullr2 ()
[(-A)Zvj| < K J mdl’ﬁz K I |1+ dy < jivs

R\(=j,)) R\(-j,j)
with C depending only on s. As j — oo, we get (3.3).
Now, By Lemma 3.3, we know that, for any j,

lui(=A) 2 ujl s < C(E1(uj, uj) + E2,2p(uj, uj)), (3.4)

LGE)(—p,p) =
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where C depends only on s. Clearly, (3.2) yields
E1(uj, uj) — E1(u, u.
Moreover,
E 2p(uj, uj) = Ez pp(u, u) forj=2p.
Finally, (3.2) and (3.3) imply that u;(-A)*?u; — u(-A)*/?u in L{_(R) for every g € [1, 00), and therefore in
L1/5:2)(_p, p). Then, passing to the limit in (3.4), we get

lu(-2)2 u C(E1(u, u) + Ez 2p(u, u)),

LE)(p,p) =

and together with (3.1) we conclude. O
We can now apply Lemma 3.4 to uy. After scaling, we get the following bound on 7.

Lemma 3.5. For any s € (0, 1), there exists a constant C = C(s) > O such that
R

J (=A)i el dx < CRY™S  forany R > 0 and k > ko(R).

-R
Proof. First we observe that

fic i= (=) uye = Aguge®™ e — uy
is bounded in L log% Lioc(R). Indeed, we have
1og? (2 + Ifil) < C(L +up),

so that
Ificllog? (2 + Ificl) < CIfil(1 + wx) = O(lfclu + 1)
Since |fy|uy is bounded in L1 (R) by (1.5) and (1.6), we get that f; is bounded in L log% Lioc(R).
Then Lemma 3.4 and (1.6) imply the existence of C = C(s) such that

p

J’Iuk(—A)%ukl dx < Cp', pe(0,1).

-p
For any R > 0, we can apply this with p = Rry and rewrite it in terms of 1. Then we obtain

R
[ (1 )10 nuddx < RIS,
& M
Since, by Lemma 3.2, ny is locally bounded, if k is sufficiently large, we get
1+ n—;( > 1
M 2
and the proof is complete. O

Lemma 3.6. The sequence (i) is bounded in Ls(R) for any s > 0.

Proof. It is sufficient to prove the statement for s € (0, 3). Since Nk < 0, Lemma 3.5 gives
1
12y ax

-1

1

S

C>

=

Nk(x) - Nk(y) d dxl
|X _ y|1+25

[\ \%4
e TN —
NN D —

1 1
k() = Nx(y) dde+J j Uk(X)dde+J’ J -nk(y) dy dx

|X_y|1+2$ |X_y|1+2$ |X_y|1+25
a2 -1 (-2,2)¢ -1(-2,2)¢

=1 =1 =1
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Take 2s < a < 1. Since nx is bounded in Cj (R) by Lemma 3.2, we have that

12 3
dy dx dz
1] < CJ J |X_y|1+25—a < CI |Z|1+25—a =C.
-1-2 3
Similarly,
1
21 < [ Ineol e dydr<C.
-1 (x—1,x+1)¢

Therefore, we obtain that

1
k()
I3 = J J m dy dX < C.
-1(-2,2)¢

But for x € (-1,1) and y ¢ (-2, 2) we have

Ix =yl < Iyl + x| < 2yl < 2(1 + [y| 1) 7.

Hence
1
k)l 1 k)l
13 = J J |X_y|1+25 ddeZ ﬁ J 1+|y|1+25
-1 (-2,2)¢ (=2,2)¢
This and Lemma 3.2 imply that 17y is bounded in Ls(R). O

Proof of Theorem 1.3 (completed). By Lemma 3.2, up to a subsequence, we can assume that 1y — 1 in
Cloo(R) for any a € (0, 1), with ne, € Cj.(R). Let us set
2

fei= (—A)%ﬂk _ 2(1 + Nk )eﬂkhmqkikui B Zrkakyz(l L )
2aip; AT 2l
As observed in the proof of Lemma 3.2, we have ry y,z( — 0as k — oo, and thus fi — 2e> locally uniformly

on RR. Moreover, fi is bounded in L (R). Then, for any Schwarz function ¢ € $(R), we have

[ific-2em=11g1dx<0t) | lpldx+ Uflima + 12¢™hima) | Ipldx -0

R (-R,R) (-R,R)¢
as k, R — +oco. On the other hand, we know by Lemma 3.6 that ny is bounded in Ls(R) and, consequently,
Noo € Ls(R), s > 0. In particular, for s € (0, 1), letting first k — co and then R — co, we get

Mx(X) = Moo ()]

FE dx

1 1
J|T’lk ~Nool I(=B)2 | dx < [|(=D)Z pllreo-r,R) Mk = NoollL1(-R,R) + C
R (-R,R)¢
< Clnic = Noollzr=r,R) + CRZ X (IMicllyw) + IMoollLyw)) — O-
Then 1, is a weak solution (—A)% Noo = 2€™= and 1, € Ls(R) for any s. Moreover, repeating the argument of
Corollary 2.4 and using (1.6), we get

1 R Rrk
. 2 .
— J e~ d¢ = lim J Akuie"‘k”k dx < lim supllukllﬁ =A,
7T k—o00 k—oo
-R —Rrk

which implies e~ € L'(RR). Then 1, (x) = —log(1 + x?); see, e.g., [7, Theorem 1.8].
To complete the proof, we shall study the properties of the weak limit uo, of ux in H. First, we show
that u, is a weak solution of (1.7). Let us denote

2 2
Sk = Akupe™e, gy 1= Aol .

Take any function ¢ € S(R). On the one hand, since (—A)% @ € L>(R) and uy — Uy, weakly in L?>(R), we have

j(uk o) (D) dx + j(uk ~ Ueo)p dx — 0
R R
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as k — oo. On the other hand, for any large t > 0 we get

lplre _
J|gk_gw||¢|dX§ J ng—goo||<p|dX+WJuk(gwgoo)dx:ouHO(t H—o

R {urst} R
ask, t — 0o, where we used that g, € L?>(IR) by Theorem A (see, e.g., [21, Lemma 2.3]) together with the dom-
inated convergence theorem and the bounds [uigillL1(r) < A and [uillz2ry < A. Then uy, is a weak solution
of (1.7).

Now, observe that

Rrk
lukll? = Jgkuk dx = J gicuk dx + J giuk dx
R ~Rri R\(-Rre,Rre)
with
Rrk 1 R
lim I Urgr dx = = J el dx — 1
k—o00 n
—Rrk -R

as R — oo, and

k—00
R\(=Rr,Rry)

for any R > 1, by Fatou’s lemma. Thus we conclude that

lim inf J grug dx = Igmum dx = llucol
R

2 2
lurllg = lucollyy + 1.

Finally, to prove that ux — uy, in Cfoc(]R \ {0}) for every € > 0, we use the monotonicity of ux, which implies

that uy is locally bounded away from 0. Hence we can conclude by elliptic estimates, as in Lemma 3.1. [

4 Proof of Theorem 1.2

Let us set
Eq(u) = J(e“”z -1)dx, Dg:= sup Eq(u).
R ueH:|lullg<1
The proof of Theorem 1.2 is organized as follows. First, we prove that D, is attained for a € (0, m) suffi-
ciently close to 1. Then we fix a sequence (ax)ken such that ay .~  as k — +co, and for any large k we take
a positive extremal uy € H for Dy, . With a contradiction argument similar to the one of Section 2, we show

that py := supg ux < C. Finally, we show that ux — ue, in Lij (R) N L2(R), where u,, is a maximizer for Dy.

4.1 Subcritical Extremals: Ruling out Vanishing

The following lemma describes the effect of the lack of compactness of the embedding H < L?(R) on E, and
holds uniformly for a € [0, m].

Lemma 4.1. Let (ay) < [0, ] and (uy) < H be two sequences such that the following conditions hold:
(i) ax — ay € [0, 1] as k — oo.
(ii) Nluglg < 1, ux — ue weakly in H, ux — uy, a.e. in R, and ek %oz i Llloc(]R) as k — oo.
(iii) The uy’s are even and monotone decreasing, i.e. uy(—x) = ug(x) > ux(y) for0 < x < y.
Then we have

Eq, (k) = Eag, (Uoo) + Qoo (k72 gy — Ntcollf2gy) + 0(1)

as k — oo.
Proof. Since uy is even and decreasing, we know that

[ 1
2 < ﬂ < _ .1
ur(x)” < xS 2 (4.1)
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for any x € R\ {0}. In particular, there exists a constant C > 0, such that
e _ 1~ g (x) < Clx|™
for |x| > 1. Applying the dominated convergence theorem for |x| > 1, using the assumption that

2 2
agu Ao Us, 5 1
ek — el inL.

R),

and recalling that (uy) is precompact in Llloc(lR), we find that

I(e“k“f - 1-agui) dx — J(ea"""‘%" -1 - agoud,) dx,
R R

and the lemma follows. O

Lemma 4.2. Take a € (0, ). If D4 > a, then D, is attained by an even and decreasing function, i.e. there exists
Uy € H even and decreasing such that |uy|lg = 1 and E4(uy) = Dg.

Proof. Let (ux) c Hbe amaximizing sequence for E,. Without loss of generality, we can assume ux — Uy, € H
weakly in H and a.e. on R. Moreover, up to replacing uj with its symmetric decreasing rearrangement, we can
assume that uy is even and decreasing (see [44]). Since a € (0, ), the sequence e — 1isbhoundedin L# (R),
with g > 1. Then, by Vitali’s theorem, we get e%k 5 e in Llloc(]R), and Lemma 4.1 yields

Eq(uk) = Ea(Ueo) + a(lurlf> gy = ool gy) + 0(1). (4.2)

This implies that uy, # 0 since otherwise we have E,(uy) = alluklliz(m +0(1) < a + o(1), which contradicts
the assumption D, > a. Let us denote

_ , lool2, gy
L:= hmsuplluklle(]R), T := —I
k—o00

Observe that L, T € (0, 1]. Let us consider the sequence vi(x) = uy(tx). Clearly, we have vy — v, weaklyin H,
where v, (X) := Uy (TX). Moreover, since IIVOOIIf2 =Land

I(=8)7 veoll?, < liminfl(~A)#vilZ, = liminfl (-8) T ull?, < 1- L,
k—00 k—o00
we get |[Veollg < 1. By (4.2), we have
Dy < Eq(Ueo) + aL(1 = T) = TEq(Voo) + @aL(1 = T) < TDy + aL(1 - 7). (4.3)

If T < 1, this implies D, < aL < a, contradicting the assumptions. Hence 7 = 1 and (4.3) gives Dy = Eq(Uoo).
Finally, we have ||us|lg = 1 since otherwise

u
Ea(;”) > Eq(tiey) = Dg. ]
lucollg

Lemma 4.3. There exists a* € (0, i) such that Dy > « for any a € (a*, m]. In particular, D, is attained by an
even and decreasing function u, for any a € (a*, ) by Lemma 4.2.

Proof. This follows from Proposition 4.14 by continuity. Indeed Proposition 4.14 gives D, > 2me™ > . [

4.2 The Critical Case

Next, we take a sequence ay such that ay / mas k — oo. For any large k, Lemma 4.3 yields the existence of

uy € H even and decreasing such that Dy, = Eq, (ux). Each uy satisfies
(=A) 2y + ug = Aguge™ie

and |lux|g = 1. Note that uy € C*°(R) by elliptic estimates (see [28, Theorem 13], [11, Theorem 1.5] and
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[22, Corollary 25]). Multiplying the equation by uy and using the basic inequality tef > ef — 1 for t > 0, we
infer 1 1 1
e juie“k“i dx > a—kEak(uk) = a_kDak'
R
Since Dy, — Dy > 0, we get that A is uniformly bounded.

Then the sequence uy satisfies the alternative of Theorem 1.3. If case (i) holds, then we can argue as in
Lemma 4.2 and Lemma 4.3 and prove that D is attained. Therefore, we shall assume by contradiction that
case (ii) occurs.

Let i and ny be as in Theorem 1.3. Let 77 denote the Poisson integral of ny.

4
loc

Proposition 4.4. We have i — M in C (]R_ﬁ) for every ¢ > 0, where

floo(X, y) = —log((1 +y)? +x?)

is the Poisson integral (compare to (A.5)) of N = —log(1 + x2).

Proof. By Theorem 1.3, we know that nx — 1 in Cfo -(R) and that ny is bounded in L1 ,>. Then we can repeat

the argument of the proof of Proposition 2.2. O

Remark 4.5. Asin (2.9), the convergence ny — 1 in L5 (R) implies

kR n
. il > 1
lim J Aplud e = — J el dx
k—o0 n
—NR -

fori =0,1,2and forany R > 0.
Lemma 4.6. We have uy — 0in L?(R).

Proof. Indeed, otherwise up to a subsequence we would have
1 1
_A 4 < —
1-0)% well <
for some A > 1. Consider the function vy = (uy — ug(1))*. Then
. 1
vice H22(1) and  [(-8) Vil < -
The Moser-Trudinger inequality (1.3) gives that ek is bounded in LA(R). Since
1
up < (1+&)vy + —(uk - vi)?
€

and |vi — ug| < ur(1) — 0 as k — oo, we get that e ig uniformly bounded in LP(RR) for every 1 < p < A.
Therefore, we have
J (e‘)‘k“ﬁ -1)dx—0
(-1,1)
as k — co. But then, by Lemma 4.1, we find D, < 1, which contradicts Lemma 4.3. O

Lemma 4.7. For A > 1, set u} := min{uy, 4t} Then we have

| =

. 1
lim sup||(~A) s ug 7, g, <

k—00
Proof. The proof is similar to the one of Lemma 2.5. We set

ufl = min{ak, %}

Note that af = i for |(x, y)| — co by (4.1) and Lemma A.6. Then, since (-A)'/2uy € L?(R), we get (see (A.9))

. _ 2 Ol . _ Ol
Rhm J ufa— do = Rhm J uka— =0.
—+00 v —+00 1%
aBRﬂlRi aBRﬂlRi
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Since ﬂ’,j is an extension of u‘,f, using integration by parts and the harmonicity of i1y, we get

18 U1 g < Jwa;‘ﬁ dxdy = J Vil - Vi dx dy
R2 R2
oity(x, 0)
= — J uf(x)a—y dx
R
= j(—A)%ukufdx. (4.4)
R

Proposition 4.4 implies that uf(rkx) = % for |x] < Rand k > ko(R). Noting that uf < uy and using Lemma 4.6
and Remark 4.5, we get

RTk
J-(—A)%uku‘,:1 dx > I /lkuke"‘k“iu‘,zl dx - J uku‘,‘<1 dx
R 7Rrk R
1 Rrk
2
-5 | Amaner g dxs 00w )
—Rrk
. R
k—o0
- erloo d
A I §
“R
R—oo 1
RN
A

Set now v‘,‘(l = (U - %)* . With similar computations, we get
Rry
1 2
I(—A)z uvi dx > J vyt % dx + O(luxl 7 )
R —Rrk

R
oo, %(1-%) J el 4E
R
Rooo A-1

_—

A
Since
J(—A)%ukuﬁ dx + j(—A)%ukv;j dx = J(—A)%ukuk dx =1 - url? gy — 1
R R R
as k — oo, we get that
lim J(—A)%uku‘,i1 dx = %

n—oo
R
Then we conclude using (4.4). O
Proposition 4.8. We have
1
Dy = lim ——. (4.5)
k—o0 Akyk
Moreover,
lim pyAx = 0. (4.6)
k—o00

Proof. Fix A > 1 and write
J(e"k“i ~1)dx = (I) + (ID) + (IID),
R
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where (I), (IT) and (IIT) denote respectively the integrals over the regions

{ur < ’%} N1, fus %} N1 {ues %}

Using Lemmas 4.11 and 4.7 together with Theorem A, we see that
1
M < J’(e”"‘(uf)2 -1)—>0 ask— oo
-1

since e’ _ 1 ig uniformly bounded in L? forany 1 < p < A. By (4.1) and Lemma 4.6, we find

s | i-naxsc|udcs0 ask-co.
(-1,1)¢ R

We now estimate

2 2

(1) < J A e dx <

{u> K}

S(1+0(1),

kﬂi kMj

with o(1) — 0 as k — oo, where we used that

2
j Auge®™ i dx < |lugly = 1.
Infui> 2k}

Letting A | 1 gives

supE; < lim .
Hp n k—00 Akui

The converse inequality follows from Remark 4.5:

Rrk R
J(e"‘k”i -1)dx > j ek dx + o(1) = Lz( J el dx + 0(1)) +o(1).
Akepic
R —Rry -R

with o(1) — 0 as k — oo. Letting R — oo, we obtain (4.5).
Finally, (4.6) follows at once from (4.5), because otherwise we would have D, = 0, which is clearly
impossible. O

Lemma 4.9. We have
fi = /\k}lkukeakui — 89

as k — oo, in the sense of Radon measures in R.

Proof. The proof follows step by step the proof of Proposition 2.7, with (1.4), Proposition 4.4, Remark 4.5
Lemma 4.6 and Lemma 4.7 used in place of (1.3), Proposition 2.2, equality (2.9), Lemma 2.4, and Lemma 2.5.
We omit the details. O

For x € R, let Gy be the Green function of (—A)% +Id on R with singularity at x. In the following, we set
G := Go. By translation invariance, we get Gx(y) = G(y — x) for any x, y € R, x # y. Moreover, the inversion
formula for the Fourier transform implies that

1 1 1
G(x) = = sin|x| — — sin(|x|)Si(|x]) = — cos(|x|)Ci(|x]), (4.7)
2 T T
where
[ sint " cost
Si(x) = J % dt and Ci() = - j L,
0 X
We recall that the identity
X
Ci(X):logx+y+J$dt (4.8)

0
holds for any x € R\ {0}, where y denotes the Euler-Mascheroni constant; see, e.g., [17, Chapter 12.2].
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Proposition 4.10. The function G satisfies the following properties:
(i) Wehave G € C®°(R\ {0}) and

G = —~loghxl - L+ 0(xl), G0 =-—+0(1) asx— o.
Vis Vis X

(ii) We have G(x) = O(|x|2), G'(x) = O(|x|™3) and G" (x) = O(|x|™*) as |x| — oo.
(iii) Let G be the Poisson extension of G. There exists a function

f e Cl(R2)
such that f(0, 0) = 0 and

G _ 1 Yy X xX_ Y 2,2 in R2
Gx,y) = nlnl(x,y)l ﬂ+ﬂarctany 2ﬂlog(x +y9)+fix,y) inR:.

Proof. Property (i) follows directly by formula (4.7) and the identity in (4.8). Similarly, since

. m  cost sint 3 . sint cost _3
Sl(t)=§—T—t—2+O(t ), Cl(t)=T—t—2+O(t )

ast — +00, we get (ii).
Given R > 0, let 1 € C°(R) be a cut-off function with ¢ = 1 on (-R, R). Let us set go := —% log|-| - %,
g1:= 3|-I and g, := G - go - g1. By Proposition A.3, we have

5 1
golx, y) =~ logl(x, )| - % (X, y) € R2.

Let us set O(x, y) := arctan %, the angle between the y-axis and the segment connecting the origin to (x, y).
A direct computation shows that

2 1
MO0 Y) = 5775 = 580/ 1og0e” +y))

Then the function 1 1
h(x,y) = 816, y) = —x0(x, y) + Eylog(x2 +y?)
is harmonic in ]Ri, continuous on ﬁi, and identically O on (-R, R) x {0}. By [45, Theorem C], we get that
h € C®(R2 N Bg(0, 0)).

Finally, note that formula (4.7) implies g,(0) = O and g, € CM%(R) forany a € (0, 1). Hence, standard elliptic
regularity yields e
82 € CH*(R2 n Bg(0, 0))

for any a € (0, 1). In particular, g,(0, 0) = g2(0) = 0. O
Lemma 4.11. We have pxuyx — G in L>(R) N L®(R \ (~¢, €)) for any € > 0.

Proof. Let us set vy := uxuy — G and fi = yk)lkuke”‘k”i. By Lemma 4.9, we have |fillL1qy — 1 as k — +oo,
I = (-1, 1). Then, arguing as in Lemma 2.9, we get

V(o = U G(y - 0fi(y) dy - G(x)

R
< 16(x = y) = GOOIfi(y) dy + |Ifidller oy — LIGOO] + J G(x - y)fi(y) dy. (4.9)
I =o(1) R\
=1 wi(x)

Using (4.1), Lemma 4.6 and (4.6), we get that fy — 0 in L?>(RR \ I). In particular,

Wk (Ol < Ifillz pIGllz2wy — O.
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Fix 0 € (0, 1) and assume |x| > o. If we further take |y| < , then Proposition 4.10 implies
[G(x - y) - G(x)| < Clyl,
where C is a constant depending only on ¢. Thus, for any € € (0, ), setting I. = R\ (-¢, £), we can write

V(I < IIG(X =y) = GOIfi(y) dy + oD Gl (w\(-0,0)) + 0(1)
i

<C j WIfi(y) dy + j|G(x “WIfey) dy + G0 jfk(y) dy +o(1)
—£ I, I

< Cellfillray + Wiy (IGlL2 ) + IGllzeo(r\(=0,0))) + 0(1)
< Ce+o0(1), (4.10)
where 0(1) — 0 as k — co (depending on € and o). Here, we used that fy — 0 in L®(R\ (-¢, €)) by (4.1)

and (4.6). Since ¢ is arbitrarily small, (4.10) shows that vy — 0in L®(R \ (-0, 0)).
Next, we prove the L? convergence. First, Holder’s inequality and Fubini’s theorem give

2
Wil = [ (| G0c-1fetv)dy)” dox < 16, g el = ©
R R\I

as k — oco. With a similar argument, after integrating (4.9) and using the triangular inequality in L2, we find

2 1
Wil < ( J ( le(x - )= GOl dy ) dx)” +Wfidsscn — NGl + Iwalzzqe

R I
< (Jfk(w dy)% (jfkm j|G(x _)) - G dx dy)% +o(1).
1 I R
—1+o(1)

Since G € L?(R), the function ¥(y) := IIRlG(x —y) - G(x)|? dx is continuous on R and (0) = 0. Let ¢ € C(R)
be a compactly supported function such that ¢ = i on I. Then Lemma 4.9 implies

Jfk(y) JIG(X -y) - G(x)|* dxdy = Jfk(Y)(P()’) dy +0(1) -0
1 R R

as k — oo, and the conclusion follows. O
Repeating the argument of Proposition 2.9, we get the following lemma.
Lemma 4.12. We have il — G in
Co(R2\ {(0,00}) N CL (R?),
where G is the Poisson extension of G.
With Proposition 4.4 and Lemma 4.12, we can give an upper bound on D.
Proposition 4.13. Under the assumption that uy — oo as k — oo, we have D < 2me™ .

Proof. For a fixed and small § > 0, set

ax:= inf g, br:= sup i, Vi :=(lxAag)V byg.
aBern]Ri aBMﬂRE
Recalling that
~ 1
IViF, ey = 100 il o gy = 1= il 2 »
we have

J IVVRl® dx dy < 1 - Jlugl?, - J |Vilg|? dx — J Vil |? dx.

(B5\BLr, )NR: R2\Bs R2NBy,,



624 —— G.Mancini and L. Martinazzi, Extremals for Fractional Moser-Trudinger Inequalities

Clearly, the left-hand side bounds

(ax - bi)?

. ~12 _
inf I |Vit|“ dx dy = n—logd “Tog(Lr)

ﬂ| 2 =dj
R2N0BY,
+ Tk (B 2
~ — §\Brr )NRY
U2 nop, =k k

Using Proposition 4.4, Proposition 4.10 and Lemma 4.12, we obtain

-LlogL+ 0™ +0(1)

ax = Uk + ’
Hi
. . 21088~ %+ 0(Bllog b)) + o(1)
Hik

DE GRUYTER

(4.11)

where 0(1) — Oask — ocoforfixedL > 0,8 > 0,and |O(L™1)| < CL™1,|0(6|log 6])| < Cé|log 6|, uniformly for &

small and L, k large. Still by Proposition 4.4, we get

,}LIEOVIZC J |Vity|? dx dy = 4% JIVf]OOI2 dxdy = %log% + O(
B B;
Similarly Lemma 4.12 and Proposition 4.10 yield
lim inf .2 j Vitel? dx dy > J VG2 dx dy
R}\Bs R}\Bs
with

- oG - oG(x, 0)
2 = —_——— f—
J VG|~ dx dy = J aera+ J oy G(x) dx

R2\Bs R2N0Bs R\(-6,6)

- J (% 4 O(|log5|))(—% log 6 - % +0(8llog 8)) do -

R2N0B;s
= Liogs- Y 1612 + 0(810g2 6)
P b L2(R) ’

where we used Lemma A.5 and
0G(x, 0)
oy
From Lemma 4.11 we get that uuy — G in L?(R), and hence

= (A2 G(x) = —-G(x) forx € R\ {O}.

161, g, + 0(1)

logL

||uk||i2(]R) = y}z(
as k — +co. We then get
n(ay - by)? _ Alog % - X+ 0(81og’ 8 + 0(1%L) 1+ o(1)
log 6 —log(Lry) ~ Vi ’

Using (4.11) and rearranging as in the proof of Proposition 2.10, we find

G(x)? dx

log Akyﬁ < (1 - %)log% + (ax - n)yi + (% - Z)y + % log 2 +log ay
+0(6log? 6) + O(lo%L> +0(1),
with 0o(1) — 0 as k — co. Then, recalling that ay T 7 and letting first k — co and then L — coand § — 0, we
obtain )
lim sup log 5> < -y +log(2nm).
k—00 Ak k

Using Proposition 4.8 we conclude.
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Proposition 4.14. There exists a function u € H'/22(R) such that |u|lg < 1 and E(u) > 2me™".

Proof. For € > 0 choose L = L(¢) > 0 such that, as € —» 0, we have L — oo and Le — 0. Fix

Tre:={(x,y) e R2: G(x,y) = y1c := min G}
]RianLs

and
Qre :={(x,y) e R2 : G(x,y) > Yie}-

By the maximum principle, we have ]R?r N Bre € Q1. Notice also that Proposition 4.10 gives
1 )4
Yie=- log(Le) - =t O(Lellog(Le)l)

and Qp, ¢ 1R§r N By, . For suitable constants B, ¢ € R to be fixed, we set

log(% + (1+%)?)+2B
c- 8 ) for (x,y) € B1:(0, &) N RZ,

27c
Ue(x, y) := %f for (x,y) € Q¢ \ B (0, —¢),
@ for (x,y) € R2 \ Q.

Observe that R2 N Br,(0, —&) < R? N Bre < Q1. We choose B in order to have continuity on R? N 0Br.(0, —€),
i.e. we impose
—-logL?-2B Lo Ve
2nc c
which gives the relation
B =nc? +loge +y + O(Le[log(Le)|). (4.12)
This choice of B also implies that the function cU, does not depend on the value of c. Then we can choose ¢
by imposing
"VU}:"%Z(]RE) + "uE”%Z(]R) =1, (4.13)
where we set u.(x) = Ug(x, 0). Since the harmonic extension it minimizes the Dirichlet energy among exten-
sions with finite energy, we have

"(_A)%ué‘"iZ(]R) = J |Vite|* dx dy < J [VU,|* dx dy,
R? R?
and (4.13) implies

2
luell®,, <
H2"(R)

In order to obtain a more precise expansion of B and ¢, we compute

1
J IVU|? dx dy = et j IV1log(x? + (1 +y)?)|?> dx dy
B1:(0,-€)NR?2 B1(0,-1)nRR?
_ zlog§) + (%)

= (4.14)

and

J |VU£|2dxdy:C—12 j IVGP2 dx dy

]RE\QLs ]RE\QLS
1 oG - 1 oG -
S —Gdo-— I —Gdo
c2 J ov c? oy
R2N0Qy, (Rx{ON\Qe

=D+ (1D).



626 —— G.Mancini and L. Martinazzi, Extremals for Fractional Moser-Trudinger Inequalities

By the divergence theorem, for 7 < Le and letting T — 0, we have

(I):—% J aGda—& I a—Gda

o c? ov
(Rx{ONN(QL\Br) R2N0B;
= y—L;( I Gdo + 1)
c
(Rx{ODNNQ e
- %(1 + O(Lelog(Le)))
_ Llog(L) - L + O(Lelog?(Le))
c? ’

where in the third identity we used that Q. ¢ By for Le small enough. Observe also that

O(Lelog®(Le O(Lelog®(Le
el ) = J G2 dx + % -+ #.
(Rx{OP\ Qe
Together with (4.13)-(4.15) this gives
logL
“loge -log2 -y + O(Lelog?(Le)) + o(%) - n¢?,
which, together with (4.12), implies
B=—log2 + O(Lelog?(Le)) + 0(10%).

Now, observe that

Brs(0, —€) N (R x {0}) = (e VL2 -1, VL2 - 1)

and that
eVL2-1 VL2-1 1 1 ) 2B 2
0 X
J e dx = £ J exp(n(c - %) )dx
VD1 1
Nzt
> ge’ 2B J’ ! dx
1+ x2
B ey
_ 5 ,—y+0(Lelog?(Le))+0( 1%L ) 1
=2e L n<1+O(L))
logL
=2me™ + O(Lelog?(Le)) + O(i)
L
Moreover,
1
J (e™: —1)dx > J mu? dx = = J nG? dx =: %,
(Rx{OD\ Qe (Rx{ON\Qre (Rx{ON\ Qe
with

1
Ve > V1 >0 forLle< 5

Now choose L = log? ¢ to obtain

O(Lelog?(Le)) + o(lofL) - o(l(;(g);‘;ig) - o(c—lz)

so that
2 V1 1
Ex(ue) = J(e’”‘s - 1)dx >2me™ + —; + 0(_2) > 2me™
c c
R

for £ small enough.

DE GRUYTER

(4.15)
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Proof of Theorem 1.2 (completed). By Propositions 2.11 and 4.14, we know that yy < C. By the dominated

2 2 . .
convergence theorem, we have e®¥ — e™ in Llloc(IR). Then, by Lemma 4.2, we infer

Eo (k) = En(Uoo) + Ttk gy — IthoolZ2 ) + 0(1). (4.16)
This implies that uy, # 0; otherwise we would have
Eq, (ur) < Uil fz gy + 0(1) < 71 + 0(1),

which contradicts the strict inequality D; > 2me™ > m since Eg, (ux) = Dg, — Dy as k — co.
Let us set

lucollZ,
L :=limsupllux|3} and 7= —PL®
k—o00 L

and observe that L, T € (0, 1]. Let us consider the sequence vi(x) = ux(tx). Clearly, we have vy — v, in H,
Where Voo (X) 1= Uoo(TX). Since [Veol?, = L and

I(-8)7 Vool < liminfl(~A)7 v, = liminf)(-8)FuxlZ, <1 - L,
k—o00 k—o00
we get |[Veollgi22 < 1. By (4.16), we have
D;=E;(us) +mL(1 - 7) = TE;(Veo) + L(1 - T) < TD; + nL(1 — 7).

If T < 1, this implies D, < nL, which is not possible. Hence, we must have 7 = 1 and E;(uq,) = Dy. O

A Appendix: The Half-Laplacian on R

For u € 8 (the Schwarz space of rapidly decaying functions), we set

D)y u(?) = 18%u8), (&) := Jf(x)e—ixf dx.

R
One can prove that it holds (see, e.g., [10, Section 3])

u(x) —u(y)

N u(x) - u(y) d

(-A)’u(x) = KsP.V. j W

dy := K; lim J Y, (A.1)
£—
R\[-¢,¢]

from which it follows that

sup|(1 + x12%)(=A)p(x)| < 0o for every ¢ € 8.

xeR
Then one can set

Ls(R) := {u eLL (R : fully, := j [u(x)]

W dx < OO}, (A.Z)
R

and for every u € Lg(R) one defines the tempered distribution (-A)Su by

((-D)°u, @) := j u(-A>Spdx = j uF (18 ¢p(&)) dx forevery ¢ € 8. (A.3)
R R

Moreover, for p > 1 and s € (0, 1) we will define
HSP(R) := {u € LP(R) : (-A)Zu € LP(R)}. (A.4)

In the case s = %, we have K/, = % in (A.1) and a simple alternative definition of (—A)% can be given via the
Poisson integral. For u € L1,,(R), define the Poisson integral
_ 1 yu(é)
V) i= — | ——2——d¢, 0, A.5
u(x,y) nJ(y2+(x—£)2) & oy> (A.5)

R

which is harmonic in R? = R x (0, co) and satisfies the boundary condition it|rx{0y= u in the following sense.
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Proposition A.1. If u € L'2(R), then u(-,y) € L} (R) for y € (0,00) and u(-,y) — u in the sense of dis-
tributions as y — 0*. If u € LY2(R) n C((a, b)) for some interval (a, b) < R, then it extends continuously to

(a, b) x {0} and ii(x, 0) = u(x) for any x € (a, b). Ifu € HY/2(R), then it € H'(IR2), the identity
IVitll 22y = I(-B)F ull2r)

holds, and it|rxjoy= u in the sense of traces.

Then we have (see, e.g., [4])
1 ol
(-0)ziu=-—

5 ‘y=o’ (A.6)

1,a

loc (R)), and has to be read in the sense

where the identity is pointwise if u is regular enough (for instance C
of tempered distributions in general, with

ol 0P S
< - a_y|y=0’ <p> = <u, —a—y y:0>, @ €8, pasin(A.5). (A.7)

More precisely, we obtain the following proposition.

Proposition A.2. Ifu € L1;2(R) n Cllo’g((a, b)) for some interval (a, b) ¢ R and some « € (0, 1), then the tem-
pered distribution (-A)Y?u defined in (A.3) coincides on the interval (a, b) with the functions given by (A.1)
and (A.6). For general u € L1/2(R), the definitions (A.3) and (A.6) are equivalent, where the right-hand side
of (A.6) is defined by (A.7).

It is known that the Poisson integral of a function u € L1,2(R) is the unique harmonic extension of u under
some growth constraints at infinity. In fact, combining [48, Theorem 2.1 and Corollary 3.1] and [45, Theo-
rem C], we get the following proposition.

Proposition A.3. For any u € L1,,(R), the Poisson extension i1 satisfies
a(x,y) = oy (x* +y%) asl(x,y)l — co.
Moreover, if U is a harmonic function in R2 which satisfies U(x, y) = o(y 1 (x*> + y?)) as |(x,y)| — co and
U(-,y) — uasy — 0" in the sense of distributions, then U = i1 in R2.
Assume that u € H/22(R) solves (-A)Y2y = f in R with f € LZ(R). The identity
IVitll 2 gey = 1(-0)F ull 2wy = j uf dx (A.8)
R

of Proposition A.1 can be seen as an integration-by-parts formula on R? for i, since

ol

a_y|y:0— _f

in the sense of distributions. On the other hand, the standard integration-by-parts formula for it on R? n Bg
implies

R
) _ou
IVitll L2 (2 nBg) = J uf dx + J v do,
-R 0BrNR?
where il (x,y)
u - X’y
—(x,y) =Vulx,y)-
oy %) = Vb6 y) - 15

is the normal derivative of &t on 0Bg. Then the validity of the integration-by-parts formula (A.8) is equivalent
to

. .ol
]RETOO J ua do = 0. (A.9)
0BRrNR2



DE GRUYTER G. Mancini and L. Martinazzi, Extremals for Fractional Moser-Trudinger Inequalities —— 629

We shall prove that (A.9) holds even when u ¢ H'/2:2(R), provided u has a good decay at infinity. This provides
integration by parts formulas for the Poisson extension of Green’s functions, which are not in H/22(R). In
the following, we set

1y
P(x,y) := ;m

Lemma A.4. Assume thatu € LY(R) and u = 0in R\ I. Then 3R > O such that

06 Y) € ———  and  [Va(x,y)| < (A.10)

Nl

for any (x,y) € R2 with |(x, y)| = Ro. In particular, (A.9) holds.

X2 +y?

Proof. Note that we have P(x — &, y) < niy and |[VP(x - &, y)| < }l,P(x —¢&,y) for any (x, y) € R2. In particular,
we have

1 1
w(x,y) < — d d Vi, y)l<— dé.
i pls o (@l and waeo )< s [u@lag

R
Moreover, for |x| > 2 we have |x — ¢] > "2‘—' for any ¢ € I, and hence
_ Allullz
i Yl < Ml < ———=.
5ty X2 +y

Similarly, using again that [VP(x — &)| < %P(x, y), we get
Allullrr ry

x2+y?
LemmaA.5. Let u € L'(R) n C%(R\ (-R, R)) for some R > 0. If |[u"' (x)| = O(|x|™*) as |x| — oo, then (A.10)
and (A.9) hold.

IVa(x, y)l < [

Proof. Itis sufficient to prove the lemma for u € C*>(R). Indeed, we can write u = u; + u,, with u; = up and
u; = u(l - @), where g € C°(R) is a cut-off function which equals 1 in (-R, R). Note that i1, € C%(R) and that
it coincides with u when |x| is large. By lemma A.4, inequalities (A.10) hold for i1;. Hence, (A.10) holds for
il = i1 + U, if it holds for 5.

Thus, we assume that u € C?(RR). Let us consider the complex map f(z) = ’j:ll , z € C, which defines a bi-
holomorphic map between the half plane and the complex disk. In Euclidean coordinates, f and its inverse
correspond respectively to the conformal diffeomorphisms @ : R2 — B; ¢ R?, ¥ : B; — R?2 given by

2x x2+y2—1)

Pk, y) = (x2 +(y+1)2 x2+(y+1)?

2x 1-x2-y?
Y(x,y) := S .
2l <x2+(y—1)2 x2+(y—1)2)
Note that @ and ¥ extend continuously to diffeomorphisms
®:R2 - B\ {0, 1)}, ¥:Bi\{(0, 1)} R
In fact, we have ¥|yp, (z) = n(2z) and ®(x, 0) = rr,‘vl(x), where y : 0B1 — R, 11(z1, 22) = 1{—122, is the stereo-
graphic projection from the north pole. Let us consider the function
u(nn(z)), ze€oB1\(0,1),
v(x) :=
O’ zZ= (0, 1).
Near the point (0, 1), in local coordinates given by the stereographic projection
2t 1-t2
1+127 1+ ¢t2
we get that v(ngl(t)) = u(t™1) for any t # 0. The decay assumption on u'’ implies that I;—tkku(t‘t)l = O(t2+*) for
k=0,1,2ast — 0.In particular, we get

5t = ( ), teR,

d
: -1y _ : -1y _ M1y _
}gl(l)u(t )=0, }anl)—dtu(t )=0, u'(t)=0(1)ast— 0.
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This implies that v is of class C*1(0B1). Let then V be the unique harmonic extension of v to B;, which can
be defined by the Poisson formula for B;. The regularity of v implies that V € C%(B;) for any a € (0, 1). In
particular, V and the elements of its Jacobian matrix DV are bounded on B;. Since @ is a conformal map
and V is bounded, Proposition A.3 implies that ii(x, y) = V(®(x, y)). Moreover, we have |V(z)| < C|z - (0, 1)|
for any z € B;. Then we get

2 1
lu(x, y)| < C|D(x,y) - (0,1)] = =0 .
g g wanr )
Similarly, since |[DV| = O(1), we find
- oD 2C 1
IVM&yNSQB;uJﬂ=XLM1+wZ:O(ﬂ+y),
as desired. O

With no regularity assumptions, one can still prove that @ decays at infinity if u does.
Lemma A.6. Assume that u € LP(R) for some p > 1. If lim|y o u(x) = 0, then lim(y,y)—o t(x, y) = O.

Proof. By Holder’s inequality, we have

. 1 o = C
ey < ([ Poc- )77 dg) T o < 5~ 0
R
asy — +oo. Then it is sufficient to prove that lim|y—,+coli(x, ¥)| = O, uniformly with respect to y € (0, co). To
see this, we write the integral in the definition of & as the sum of integrals on I(x) := (- %, %) andon R \ I(x).
For ¢ € I(x), we have |[x — ¢| > % and

=

1-1
4y|x1 7 lullpr wy - 2ullzrw
EEyE T

[u()ldé <

4
| Poc-gym@as < "
I(x) _

[ —

™

Instead, for [£] > '%', we have

Ix|

| Por- g @ de < sup @ [ Poc- &y dé = sup @l - 0
R

T R R
2
as |x| — +oo. This gives the conclusion. O
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