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Abstract: Sarcopenia is a well-known geriatric syndrome 
that has been endorsed over the years as a biomarker 
allowing for the discrimination, at a clinical level, of bio-
logical from chronological age. Multiple candidate mech-
anisms have been linked to muscle degeneration during 
sarcopenia. Among them, there is wide consensus on the 
central role played by the loss of mitochondrial integrity 
in myocytes, secondary to dysfunctional quality control 
mechanisms. Indeed, mitochondria establish direct or 
indirect contacts with other cellular components (e.g. 
endoplasmic reticulum, peroxisomes, lysosomes/vacu-
oles) as well as the extracellular environment through the 
release of several biomolecules. The functional implica-
tions of these interactions in the context of muscle physi-
ology and sarcopenia are not yet fully appreciated and 
represent a promising area of investigation. Here, we pre-
sent an overview of recent findings concerning the inter-
relation between mitochondrial quality control processes, 
inflammation and the metabolic regulation of muscle 
mass in the pathogenesis of sarcopenia highlighting those 

pathways that may be exploited for developing preventive 
and therapeutic interventions against muscle aging.

Keywords: inflammation; mitochondrial biogenesis; mito-
chondrial proteostasis; mitochondrial quality control; 
mitophagy; muscle wasting.

Introduction
Sarcopenia, the progressive loss of muscle mass and 
strength/function during aging, is increasingly recognized 
as a major factor responsible for the occurrence of negative 
health outcomes (Landi et al., 2017). As such, sarcopenia 
has been endorsed as a relevant biomarker allowing for 
the discrimination, at a clinical level, of biological from 
chronological age (Marzetti et al., 2017a). Although several 
biochemical pathways have been associated with the onset 
and progression of sarcopenia (Ziaaldini et  al., 2017), its 
pathophysiology has not yet been completely deciphered, 
making it difficult to identify biological targets that could 
be exploited for developing effective interventions.

From a histological point of view, sarcopenia is char-
acterized by atrophy and loss of muscle fibers (Lexell 
et al., 1986), which in turn are ascribed to multiple factors 
(reviewed by Marzetti et al., 2009). Among others, reduced 
satellite cell number/function, decreased motor unit 
number, changes in hormonal levels, altered proteostasis, 
increased levels of inflammatory cytokines and mitochon-
drial dysfunction are the most accredited mechanisms 
underlying muscle degeneration (Figure 1).

Being the hub for many cellular activities (e.g. fuel 
supply, regulation of intracellular calcium homeostasis, 
modulation of cell proliferation, integration of apoptotic 
signaling), the maintenance of a pool of well-functioning 
mitochondria is instrumental in preserving cellular 
homeostasis. The loss of mitochondrial integrity in myo-
cytes, secondary to dysfunctional quality control mecha-
nisms, is indeed indicated as a main factor in muscle 
degeneration (Calvani et al., 2013). Not surprisingly, the 
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last few years have witnessed a tremendous increase in 
the amount of data enlightening the intricate and tightly 
regulated nature of mitochondrial plasticity and quality 
control. Together with mitochondrial dysfunction, 
chronic inflammation is acknowledged as a distinctive 
trait of aging and as factor involved in the pathogenesis 
of sarcopenia (Picca et al., 2017a). Notably, alterations of 
mitochondrial quality control (MQC) and systemic inflam-
mation appear to be linked to one another, through recip-
rocal reinforcing mechanisms (Picca et al., 2017a). Here, 
we overview recent findings concerning the involvement 
of dysfunctional MQC and inflammation in the patho-
genesis of sarcopenia, highlighting the pathways that 
may be exploited for devising preventive and therapeutic 
interventions.

Mitochondria, aging, and 
sarcopenia: when old friends  
turn into enemies
Although it is still controversial whether mitochondrial 
dysfunction is a cause or a consequence of aging and 
its associated conditions, mitochondrial DNA (mtDNA) 
mutations induce phenotypes that resemble premature 
aging (Wallace and Fan, 2009). Evidence supporting 

a causal role for mtDNA mutations in aging has been 
obtained from the mtDNA-mutator mouse. This model 
harbors a proofreading-deficient version (D257A) of 
mtDNA polymerase γ (PolG) and undergoes premature 
aging characterized by alopecia, kyphosis, hearing loss, 
osteoporosis, sarcopenia and reduced lifespan (Trifu-
novic et  al., 2004; Kujoth et  al., 2006). PolG mice accu-
mulate somatic mtDNA mutations and show systemic 
mitochondrial dysfunction, including reduced respira-
tory chain function, accelerated apoptosis in post-mitotic 
tissues and impaired MQC (Trifunovic et al., 2004; Kujoth 
et al., 2006; Hiona et al., 2010; Joseph et al., 2013). In this 
model, mitochondrial dysfunction precedes the devel-
opment of the aging phenotype. Remarkably, PolG mice 
do not exhibit increased levels of oxidative stress (Hiona 
et al., 2010). Similarly, macromolecular oxidative damage 
does seem to accrue in aged human muscle (Hutter 
et al., 2007). These observations have ignited controver-
sies around the long-standing notion of reactive oxygen 
species (ROS) contributing to aging via mtDNA mutations 
(Lewis et  al., 2013). Indeed, long-lived naked mole-rats 
reach very old age in the face of oxidative stress through 
unknown cytoprotective mechanisms (Lewis et al., 2013). 
Collectively, these findings indicate that accumulation 
of mtDNA mutations during aging may compromise cell 
signaling pathways and promote apoptosis independent 
of oxidative stress.

Figure 1: Age-related fiber atrophy and loss characterizing sarcopenia have been attributed to a wide range of factors, including sedentary 
lifestyle, declines in anabolic hormone levels, decreased motor unit number, reduced satellite cell number/function, mitochondrial dysfunc-
tion, altered proteostasis and chronic inflammation.
Mitochondrial dysfunction (highlighted in red) is especially relevant to fiber atrophy due to reduced oxidative capacity and increased levels 
of oxidative stress and damage.
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Regardless of the actual role of mitochondrion-
generated ROS, mitochondrial dysfunction has been listed 
among the hallmarks of aging (Lopez-Otin et  al., 2013) 
and is indicated as a major causative factor in sarcopenia 
(Calvani et al., 2013).

Gene expression profiling studies have shown that 
the mitochondrial involvement in aging is tissue-specific 
and is particularly relevant in brain, heart and skeletal 
muscle that are heavily dependent on oxidative meta-
bolism (Anderson and Weindruch, 2010). Due to their 
post-mitotic nature, neurons and myocytes cannot clear 
damaged organelles through cell division, but rely on MQC 
efficiency to preserve mitochondrial homeostasis. MQC 
is accomplished through the coordination of mitochon-
drial proteostasis, biogenesis, dynamics and autophagy 
(Twig et al., 2008). Derangements at any level of the MQC 
axis can easily result in mitochondrial dysfunction, energy 
shortage and ultimately loss of cell viability.

A role for mitochondrial dysfunction and deranged 
MQC in fiber loss during sarcopenia is supported by sub-
stantial experimental evidence. Damaged mitochondria 
accumulate in myocytes of transgenic mice with abroga-
tion of autophagy, and induce oxidative stress, apoptosis 
and eventually muscle atrophy and weakness (Masiero 
et  al., 2009). Skeletal muscles from aged rats (Wanagat 
et al., 2001), monkeys (Lee et al., 1993) and humans (Bua 
et  al., 2006) show an increased number of fibers with 
electron transport chain (ETC) deficiencies as evidenced 
by the loss of cytochrome C oxidase activity (COX−) and 
succinate dehydrogenase hyperactivity (SDH++). ETC 
abnormalities can be distributed focally, thus involv-
ing single cells within the muscle, or occur within dis-
crete regions of an individual cell (Wanagat et al., 2001). 
These regions vary in length with longer abnormal seg-
ments being prone to atrophy and breakage (Bua et al., 
2004). Noticeably, mtDNA deletion mutations co-localize 
with ETC abnormalities (Lee et al., 1993; Wanagat et al., 
2001) and, above a certain threshold, lead to disruption 
of ETC activity (Bua et al., 2006; Herbst et al., 2007). As 
a whole, these data support the hypothesis that mtDNA 
deletion mutations accumulate in muscle fibers, compro-
mise mitochondrial bioenergetics and contribute to fiber 
atrophy and loss.

Contrasting findings indicating no changes in mito-
chondrial function and enzyme activities have been 
reported in aged human muscle (Rasmussen et al., 2003). 
Such discrepancies may be attributable to different exper-
imental conditions (e.g. mitochondrial purity, type of 
assays) as well as age ranges and physical activity levels 
of participants.

Mitochondria, oxidative stress and 
sarcopenia: a rusty relationship
The “mitochondrial theory of aging” postulates that 
mitochondria contribute to the aging process primarily 
through respiratory dysfunction and oxidant generation 
(Harman, 1983).

Mitochondria are autonomous and highly dynamic 
double-membrane organelles of eukaryotic cells contain-
ing multiple copies of their own DNA (mtDNA). The mam-
malian mitochondrial genome is composed of ~16.5 kb of 
circular, double-stranded DNA coding for two ribosomal 
RNAs, 22 transfer RNAs and 13 protein subunits of the 
ETC, all of which are essential for proper mitochondrial 
function (reviewed by Picca and Lezza, 2015). The major-
ity of mitochondrial proteins are encoded by the nuclear 
genome and imported into mitochondria.

MtDNA is organized into protein-DNA complexes, 
called nucleoids, within the mitochondrial matrix (Gilker-
son, 2009). Although mtDNA is packaged into nucleoids, 
which provide more protection to the genome than was 
originally thought, it still remains in close proximity to the 
ETC. This is the main cellular source of ROS that are gener-
ated as a byproduct of substrate oxidation and oxidative 
phosphorylation.

In moderate amounts, ROS function as intracellular 
signaling molecules that improve defense mechanisms by 
inducing an adaptive response, a phenomenon referred 
to as mitohormesis (Ristow and Schmeisser, 2014). In the 
case of skeletal muscle, moderate amounts of oxidants are 
necessary for optimal excitation-contraction coupling and 
force generation, stimulate mitochondrial biogenesis, and 
improve cellular antioxidant and repair capacity (Reid 
et al., 1985). This hormetic response is preserved in older 
individuals (Safdar et al., 2010). A hydrogen peroxide cell-
warning system for oxidative stress operates through the 
mitochondrial leakage of this compound and acts as a 
retrograde signal to nuclear-targeted cytosolic pathways 
(Mishra and Chan, 2016). When intracellular ROS concen-
trations overwhelm antioxidant defenses, the resulting 
oxidative stress can result in loss of ROS signal localiza-
tion and disruption of cell homeostasis (Wu et al., 2016).

The finding of decreased antioxidant activity with 
advancing age has placed oxidative stress among the 
contributors to the aging process (Lopez-Otin et  al., 
2013). However, if and how oxidative stress plays a role 
in the pathogenesis of sarcopenia remains to be estab-
lished. Several studies aimed at exploring this possibil-
ity. Ablation of the anti-oxidant genes coding for the two 
antioxidant enzymes superoxide dismutase (SOD) and 
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glutathione peroxidase 1 (GPX1) results in altered mito-
chondrial function, increased sensitivity to apoptosis, 
cancerogenesis, acceleration of age-associated muscle 
atrophy and neuromuscular junction degeneration (Wil-
liams et al., 1998; Esposito et al., 2000; Lee et al., 2006; 
Zhang et al., 2009; Jang et al., 2010).

In the context of oxidative stress, mitochondrial 
constituents are primary targets of oxidative damage. In 
particular, mtDNA can undergo qualitative and/or quan-
titative alterations (e.g. bases modifications, abasic sites, 
single- and double-strand breaks, point mutations, large-
sized deletions) that affect its structure and function. Age-
related changes in mtDNA content have been found in 
various mammalian tissues (Barazzoni et al., 2000; Short 
et  al., 2005; McInerny et  al., 2009; Picca et  al., 2013a,b, 
2014), especially those of post-mitotic nature, such as the 
muscle (Cortopassi et al., 1992; Pesce et al., 2001, 2005).

Among qualitative mtDNA alterations, large-size 
deletions have been actively investigated. These dele-
tions can result in the removal of more than one half 
of the mitochondrial genome and have been causally 
related to aging and age-related disorders (Cheema et al., 
2015). Studies combining microdissection of individual 
fiber sections with quantitative polymerase chain reac-
tions showed that ETC abnormalities always co-localize 
with accumulation of deletion mutations (Wanagat et al., 
2001; Gokey et al., 2004).

ROS-induced mtDNA modifications also include base 
modifications [i.e. 8-oxoguanine (8-oxoG), abasic sites, 
2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), 
4,6-diamino-5-formamidopyrimidine (FapyA) and thymine 
glycol]. The most frequent oxidative lesion within the cell 
is 8-oxoG (Bohr et  al., 2002) that can be removed from 
mtDNA through base excision repair (BER) by the mito-
chondrial targeted splice variant of oxoguanine DNA gly-
cosylase (OGG1) (de Souza-Pinto et  al., 2001). If 8-oxoG 
is not removed, an A can be inserted opposite to 8-oxoG 
during replication. This can result in a G:C→T:A trans-
version at the site of the adduct (Wallace, 2002). 8-oxoG 
accumulates with age to a greater extent in mtDNA than in 
nuclear DNA (nDNA) (Mecocci et al., 1993). An age-related 
increase in oxidative damage to nDNA and mtDNA has 
been found in the vastus lateralis muscle of older persons 
(Short et al., 2005). Conversely, attenuation of the aging 
phenotype in a progeroid mouse model following endur-
ance training was accompanied by reduced mtDNA deple-
tion/mutations and apoptosis, as well as amelioration of 
MQC activities (Safdar et al., 2011).

The potential implication of mtDNA oxidative 
lesions in aging, either through mutagenicity or disrup-
tion of normal replication and transcription of mtDNA, 

emphasizes the importance of mtDNA repair systems 
(Hebert et al., 2010). Among them, BER is acknowledged 
as the most relevant to mtDNA maintenance (Croteau 
et  al., 1997). As opposed to other tissues, both single-
nucleotide (SN)- and long-patch (LP)-BER activities 
decrease in murine muscle (Szczesny et  al., 2010). The 
resulting greater susceptibility to oxidative damage of 
skeletal myocytes may in turn play a role in sarcopenia 
(Szczesny et  al., 2010). However, several aspects need 
to be considered. For instance, larger fast-twitch gly-
colytic fibers (type II) with lower mitochondrial content 
are more susceptible to atrophy during aging than small 
slow-twitch oxidative fibers (type I) which are enriched 
with mitochondria (Lexell et  al., 1986). Whether mtDNA 
BER operates with different efficiency depending on fiber 
type is presently unknown. The existence of two distinct 
mitochondrial subpopulations in skeletal muscle display-
ing differential responses to aging further complicates the 
matter. Indeed, subsarcolemmal (SS) mitochondria show 
greater reduction in membrane potential, higher proton 
leak, enhanced ROS production and increased lipid per-
oxidation compared with intermyofibrillar mitochondria. 
Therefore, SS may be particularly relevant to sarcopenia 
(Crane et  al., 2010). The possibility that a variable effi-
ciency of mtDNA BER may contribute to explaining the 
differential involvement of the two mitochondrial subsets 
in muscle aging warrants further research.

Derangements in MQC systems: 
losing muscle resilience
To ensure the maintenance of well-functioning mitochon-
dria, a complex and tightly coordinated quality control 
axis is in place and involves a protein quality control 
system, mitochondrial biogenesis, dynamics and selective 
degradation (mitophagy). The following subsections sum-
marize recent evidence in support of MQC derangements 
as a factor in sarcopenia.

Mitochondrial proteostasis system

Mitochondrial proteostasis ensures protein turnover 
and degradation of misfolded or oxidized proteins. 
These tasks are achieved through the coordination of 
organelle-specific proteases (mitoproteases) and the 
ubiquitin-proteasome system (UPS) (Baker and Haynes, 
2011). Mitoproteases act as the first line of defense 
against mild mitochondrial damage (Quirós et al., 2015). 
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Within the mitochondrial matrix, protein turnover is 
controlled by 3 AAA proteases: the soluble Lon and ClpP 
and the membrane-bound m-AAA (Voos, 2013). In the 
inter-membrane space, mitochondrial protein quality 
is ensured by the membrane-bound i-AAA Yme1L1, the 
soluble HtrA2/Omi, the metallopeptidases OMA1 and 
the presenilins-associated rhomboid-like protein (PARL) 
(Quirós et al., 2015).

The level and activity of these mitoproteases change 
with aging. Indeed, the expression and function of LonP 
decrease with age (Ngo and Davies, 2007). In contrast, 
LonP upregulation is protective against several stressors 
(Ngo et  al., 2013). Loss of Htra2 in non-neuronal tissues 
induces premature aging in mice as a consequence of 
mtDNA deletion accrual (Kang et al., 2013). In addition to 
this, deletions of genes encoding mitoproteases, such as 
Afg3l2, Clpp and Parl, cause severe defects in mice (e.g. 
axonal degeneration, multisystem disorder, cachexia) 
which ultimately shorten their lifespan through mito-
chondrial dysfunction (Cipolat et  al., 2006; Maltecca 
et al., 2008; Gispert et al., 2013).

Mitochondrial protein turnover is also ensured by the 
cytosolic UPS (Jeon et al., 2007). However, the mechanism 
whereby cytosolic UPS degrades integral mitochondrial 
membrane proteins needs to be clarified.

Similar to the endoplasmic reticulum (ER), mitochon-
dria possess a stress responsive system for protein degra-
dation named mitochondrial unfolded protein response 
(UPRmt) (Zhao et  al., 2002). UPRmt shares with its ER 
analog some key components, including the AAA ATPase 
p97 and the cofactor Npl4 (Heo et al., 2010). In the pres-
ence of stressors, the expression of nuclear genes encod-
ing mitochondrial stress proteins (e.g. chaperonin 10 and 
60, mtDnaJ, ClpP, Yme1) is induced (Zhao et  al., 2002). 
Through these mediators, the UPRmt promotes mito-
chondrial proteostasis by improving protein folding and 
degrading irreversibly damaged proteins.

Mitochondrial biogenesis

Mitochondrial biogenesis is a multistage process that 
involves changes in the expression of more than 1000 
genes, the cooperation of two genomes, and the activation 
of several transcriptional coactivators. The output of this 
cascade is the generation of newly synthetized organelles. 
Several (patho)physiological conditions, such as exercise, 
fasting, oxidative stress and inflammation, promote mito-
chondrial biogenesis that, depending on the stimulus, is 
achieved through the activation of specific signaling path-
ways (reviewed by Hood et al., 2016).

At the nuclear level, the concerted regulation of a 
large number of genes is ensured by the interaction of the 
RNApol II complex with various target promoters. In addi-
tion to nuclear genes (which encode for more than 95% of 
mitochondrial proteins), mitochondriogenesis requires the 
participation of mtDNA, which codes for most hydropho-
bic proteins of the ETC as well as for mitochondrial tRNAs 
and rRNAs. A set of transcription factors and cofactors 
orchestrates the activation and regulation of mitochon-
drial biogenesis. Relevant transcriptional coactivators are 
those belonging to the peroxisome proliferator activated 
receptor gamma coactivator-1 (PGC-1) family (PGC-1α and 
PGC-1β), the nuclear respiratory factor 1 and 2 (NRF-1 and 
NRF-2), and the estrogen-related receptor alpha (ERRα), 
which regulate the expression of mitochondrial proteins 
encoded by nDNA (reviewed by Picca and Lezza, 2015). As 
a result, an increase in the expression of many mitochon-
drial proteins, including those binding the mtDNA occurs 
[e.g. mitochondrial transcription factor A (TFAM) and 
mitochondrial transcription factors B1 and B2 (TFB1M and 
TFB2M)] (Rebelo et  al., 2011). These mediators are trans-
ported into mitochondria via the protein import machinery 
and subsequently activate mtDNA transcription and repli-
cation through their binding to mtDNA (Rebelo et al., 2011).

Mammalian mtDNA contains two noncoding regions 
(NCRs): (1) the major NCR, namely the D-loop, which 
encompasses the transcription promoter of both heavy 
and light strands (HSP1 and HSP2, LSP) and the origin of 
replication of the heavy strand (OriH), and (2) the minor 
NCR which includes the origin of replication of the L 
strand (OriL). The D-loop region is the major site of tran-
scriptional regulation, as reflected by its interaction with 
multiple regulatory proteins.

TFAM is one of the prominent components of mito-
chondrial nucleoids which associates with the inner 
mitochondrial membrane (Bogenhagen, 2011). This tran-
scription factor is a member of the high-mobility-group 
(HMG) proteins, able to bind, unwind and bend mtDNA 
without sequence specificity, but with preferential inter-
action with some regions (Ohgaki et  al., 2007). Recent 
studies employing in vivo binding analysis of TFAM to 
specific mtDNA regions have suggested the modulation of 
TFAM-mtDNA interaction as one of the mechanisms regu-
lating mitochondrial biogenesis (Picca et al., 2013a; Picca 
and Lezza, 2015). Recent evidence shows that a differen-
tial binding of TFAM due to dysregulation of this interac-
tion, secondary to TFAM and/or mtDNA alterations, could 
contribute to impairing mitochondrial function during 
aging in several tissues, including skeletal muscle (Picca 
et al., 2014). However, the relevance of this mechanism to 
sarcopenia has not yet been established.
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There is compelling evidence, instead, linking PGC-
1α with muscle maintenance. Although lacking mtDNA 
binding activity, PGC-1α translocates from the cytosol to 
both the nucleus (Wright et al., 2007) and mitochondria 
(Safdar et  al., 2011). This relocalization may facilitate 
nuclear-mitochondrial crosstalk in the setting of mito-
chondrial biogenesis and mtDNA repair (Safdar et  al., 
2011).

Reduced levels of PGC-1α and its downstream targets 
in skeletal muscle have been reported in old people 
(Conley et  al., 2000; Short et  al., 2005; Safdar et  al., 
2010; Joseph et al., 2012). Moreover, a positive correlation 
among PGC-1α content, oxidative capacity and functional 
status has been found in young adults, patients with con-
gestive heart failure (Garnier et  al., 2005), and elderly 
persons (Joseph et  al., 2012). PGC-1α mRNA levels drop 
in different atrophying conditions such as denervation 
(Sandri et al., 2006), unloading (Cannavino et al., 2015), 
type II diabetes (Patti et al., 2003) and aging (Chabi et al., 
2008). Conversely, the maintenance of PGC-1α expression 
preserves muscle mass during sarcopenia, hind limb sus-
pension, cachexia, denervation and fasting, by promoting 
mitochondrial turnover and quality control (Sandri et al., 
2006; Cannavino et al., 2015).

Similar beneficial effects have recently been obtained 
by overexpressing PGC-1β, a homolog of PGC-1α (Brault 
et al., 2010). PGC-1β is necessary for the maintenance of 
mitochondrial function (Zechner et  al., 2010). Indeed, 
deletion of PGC-1α and PGC-1β induces severe mitochon-
drial dysfunction, rapid depletion of glycogen stores, and 
early fatigue (Zechner et  al., 2010). Interestingly, these 
factors share a subset of target genes and display partly 
overlapping functions.

Recently, a new splicing variant of the PGC-1α gene, 
PGC-1α4, has been identified and shown to be involved in 
the regulation of muscle mass (Ruas et al., 2012). PGC-1α4 
expression is induced during resistance exercise and its 
transgenic overexpression in murine muscles promotes 
hypertrophy (Ruas et al., 2012). Moreover, PGC-1α4 over-
expression counteracts muscle loss induced by hind 
limb suspension and cancer cachexia (Ruas et al., 2012). 
However, the relevance of PGC-1α4 to human muscle 
physiology is presently unclear. Indeed, PGC-1α4 seems to 
be regulated transiently during exercise in young persons 
(Ydfors et al., 2013; Lundberg et al., 2014). Furthermore, 
increases in muscle mass and strength do not correlate 
with changes in the expression of PGC-1α4 during either 
resistance exercise or a combination of aerobic and resist-
ance training (Lundberg et al., 2014).

The effects of transcriptional coactivators on muscle 
physiology are accomplished via multiple pathways. First 

of all, diet and exercise modulate PGC-1α levels through 
the activity of the NAD+-dependent deacetylases sirtuins 
(SIRTs). SIRT1 (cytosolic) and SIRT3 (mitochondrial) are 
the two isoforms mainly involved in muscle maintenance. 
The expression of SIRT3 is reduced in aged muscle, whilst 
is induced by oxidative stress following endurance train-
ing in young and older adults (Lanza et al., 2008). Data 
obtained in animal models indicate that SIRT3 is a down-
stream target of PGC-1α able to modulate the effects of this 
transcriptional coactivator on mitochondrial metabolism 
and ROS production (Kong et  al., 2010). Strategies that 
increase NAD+ levels (i.e. nicotinamide riboside admin-
istration or calorie restriction) improve muscle health in 
old mice by reducing hypoxia-inducible factor 1α (HIF-1α) 
levels (Gomes et al., 2013). Moreover, boosting NAD+ levels 
with poly (ADP-ribose) polymerase (PARP) inhibitors is 
protective against muscle dysfunction induced by mito-
chondrial dysfunction (Pirinen et al., 2014).

Another pathway regulating mitochondrial meta-
bolism during aging involves insulin-like growth factor 
1 (IGF-1). This signaling pathway has been proposed to 
operate through phosphorylation of ATP citrate lyase 
(ACL), an enzyme that catalyzes mitochondrion-derived 
citrate into oxaloacetate and acetyl CoA. ACL activity is 
reduced in skeletal muscle of old mice. Higher ACL levels 
stimulate ETC activity and improve oxygen consumption, 
which suggests that age-induced reductions in IGF-1 con-
centrations may impair mitochondrial ETC activity via 
ACL (Harris et al., 1997). This implies that the stimulation 
of the IGF-1/ACL pathway may serve as a possible interven-
tion to attenuate mitochondrial dysfunction and sarcope-
nia (Das et al., 2015).

The inhibition of the autophagic-lysosomal and the 
ubiquitin proteasome pathways is another relevant sign-
aling route involving PGC-1 transcriptional coactivators. 
PGC-1α and β reduce protein breakdown by inhibiting 
the transcriptional activity of forkhead box O3 (FoxO3) 
and nuclear factor κB (NF-κB) (Brault et al., 2010). These 
cofactors can therefore prevent overactivation of pro-
teolytic systems by reducing the activity of pro-atrophy 
transcription factors without affecting protein synthesis 
(Romanello and Sandri, 2016).

Mitochondrial dynamics

Mitochondrial fusion and fission processes are crucial for 
genetic complementation, organelle function, and proper 
distribution of newly synthesized mitochondria in divid-
ing cells. Mitochondrial fusion allows for the generation 
of interconnected organelles, thereby ensuring mtDNA 
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mixing within the network, preventing focal accumula-
tion of mutant mtDNA and preserving mtDNA integrity 
(Twig et  al., 2008). Mitochondrial fission, instead, seg-
regates unnecessary or defective organelles for their 
subsequent removal through mitochondrial autophagy 
(mitophagy) (Twig et al., 2008). The integration of mito-
chondrial dynamics and mitophagy ensures an efficient 
MQC and preserves metabolic cellular ‘fitness’.

Aberrant mitochondria are often found in aged tissues, 
including the muscle (Sebastián et  al., 2016), indicating 
that mitochondrial dynamics are altered in advanced 
age. Morphological abnormalities are accompanied and, 
perhaps underlain, by changes in the expression of fusion 
and fission proteins, including mitofusin (Mfn) 1 and 2, 
optic atrophy protein 1 (Opa1), dynamin-related protein 
1 (Drp1), and fission protein 1 (Fis1) (Crane et  al., 2010; 
Joseph et al., 2012; Marzetti et al., 2016; Picca et al., 2016, 
2017a,b). Yet, the mechanisms whereby altered mitochon-
drial dynamics intervene in the aging process are largely 
unexplored. The neurodegenerative disorders dominant 
optic atrophy (DOA) (Amati-Bonneau et  al., 2008) and 
Charcot-Marie-Tooth type 2A (CMT2A) (Zuchner et  al., 
2004) occur as consequence of mutations of Opa1 and 
Mfn2 genes, respectively. Patients with DOA and CMT2A 
develop myopathies. Mice with Opa1 mutations show neu-
romuscular defects related to axonal and myelin degener-
ation resembling those found in DOA patients (Alavi et al., 
2009). These mice also present aberrant and fragmented 
mitochondria in muscle characterized by disorganized 
cristae and lipid droplet accumulation. Recent results 
from a mouse model overexpressing Opa1 support a role 
for this fusion mediator in the maintenance of muscle 
homeostasis (Varanita et  al., 2015). Indeed, Opa1 trans-
genic mice seem to be protected from acute muscle loss 
induced by denervation (Varanita et  al., 2015). Finally, 
muscle-specific ablation of Opa1 in adult mice has been 
shown to affect whole-body metabolism (Tezze et  al., 
2017). Indeed, ER stress resulting from Opa1 ablation 
induces an UPR, stimulates FoxO signaling, and induces 
a catabolic muscle program. Inhibition of ER stress, either 
pharmacologically or via muscle-specific deletion of fibro-
blast growth factor 21 (FGF21), compensates for the loss of 
Opa1, restoring a normal metabolic state and preventing 
muscle atrophy and premature death (Tezze et al., 2017).

A role for Mfn signaling in muscle homeostasis has 
also been suggested. Mfn2 expression is reduced in muscle 
in several catabolic conditions (Bach et al., 2005; Hernan-
dez-Alvarez et  al., 2010; Marzetti et  al., 2017b). In addi-
tion, decreased protein levels of Mfn2 have been found in 
muscles from old hip-fractured patients with sarcopenia 
(Marzetti et  al., 2016). Notably, muscle-specific ablation 

of Mfn1 and Mfn2 in mice induces muscle atrophy, associ-
ated with mitochondrial dysfunction, compensatory mito-
chondrial proliferation, reduction of mtDNA abundance, 
and accumulation of mtDNA point mutations and dele-
tions (Chen et al., 2010).

Interestingly, muscle ablation of PGC-1α and 1β leads 
to substantial down-regulation of the gene expression of 
Mfn1, Mfn2, and Drp1 (Zechner et al., 2010). This finding 
suggests that mitochondrial dynamics are controlled, 
at least in part, by these transcriptional coactivators 
(Soriano et  al., 2006). From a mechanistic standpoint, 
Mfn deficiency may favor muscle atrophy by interfering 
with mitochondrial networking leading to organelle dys-
function, ROS production, and ultimately UPR (Sebastian 
et al., 2012).

Similar to mitochondrial fusion, alterations in fission 
signaling have been shown to induce muscle atrophy. 
Indeed, overexpression of the fission machinery disinte-
grates the mitochondrial network causing mitochondrial 
dysfunction, energy shortage and AMP-activated protein 
kinase (AMPK) activation (Romanello et  al., 2010). In 
turn, AMPK stimulates FoxO3 activity which induces 
muscle atrophy via the UPS and autophagy (Romanello 
et  al., 2010). Indeed, FoxO3 induces the expression 
of several autophagy mediators in muscle, including 
microtubule-associated protein 1 light chain 3 (LC3) and 
BCL2 Interacting Protein 3 (Bnip3), as well as the ubiq-
uitin ligases atrogin-1 and muscle RING finger-1 (MuRF-1) 
(Zhao et al., 2007). Conversely, fission inhibition or AMPK 
downregulation protects against muscle loss under atro-
phying conditions (Romanello et  al., 2010). Noticeably, 
fission gene expression was found to be up-regulated in 
muscles of gastric cancer patients with cachexia (Marzetti 
et al., 2017b).

Taken as a whole, these findings suggest a causal 
link between changes in mitochondria morphology and 
muscle atrophy, which may be harnessed as a therapeutic 
target for sarcopenia. Given the intricacy of the signaling 
pathways involved, further research is necessary on the 
subject, especially in humans.

Autophagy

Autophagy is a recycling process by which intracellular 
components are degraded within lysosomes as an adap-
tive response to various stresses (reviewed by Xie and 
Klionsky, 2007). Mitophagy, instead, involves the selective 
autophagic removal of mitochondria, a constitutive mech-
anism governing mitochondrial turnover. Mitophagy is 
triggered by the loss of mitochondrial membrane potential 
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(reviewed by Twig et  al., 2008) and is aimed at limiting 
ROS generation and preserving cell homeostasis through 
the clearance of dysfunctional organelles. However, 
mitophagy is an extreme attempt of maintaining cellular 
fitness as mitochondria can also dispose damaged com-
ponents through an alternative route before organelle 
degradation is triggered. Indeed, matrix components can 
be cleared within vesicles budding from dysfunctional 
but not yet depolarized mitochondria (Soubannier et al., 
2012). The signaling pathways activated by the release of 
mitochondria-derived vescicles (MDV) are illustrated later 
in the review.

The accumulation of damaged macromolecules and 
dysfunctional organelles in post-mitotic cells during aging 
is a major consequence of defective quality control mecha-
nisms, including autophagy.

An age-related decline in the expression of several 
autophagy and mitophagy regulators and sustained acti-
vation of the target of mammalian rapamycin complex 1 
(mTORC1) (White et al., 2016) have been found in labora-
tory rodents and humans (Russ et al., 2012; Joseph et al., 
2013; Sandri et al., 2013; Marzetti et al., 2016a; Sebastián 
et  al., 2016). However, increased or unvaried levels of 
autophagic factors have also been reported (Fry et  al., 
2013; O’Leary et al., 2013; Picca et al., 2017b).

Either activation or inhibition of autophagy through 
genetic manipulation is detrimental for myofiber home-
ostasis and leads to muscle atrophy (Mammucari et al., 
2007; Masiero et al., 2009; Romanello et al., 2010). While 
deficiency of basal autophagy results in the accumula-
tion of dysfunctional cellular components, its overacti-
vation causes cellular stress and protein catabolism. For 
instance, suppression of autophagy via muscle-specific 
ablation of autophagy regulatory protein (Atg) 5 and 7 in 
mice exacerbates the age-related deterioration of neu-
romuscular junctions (Carnio et  al., 2014) and aggra-
vates denervation-induced muscle wasting (Masiero 
et al., 2009). Similarly, ablation of PTEN-induced puta-
tive kinase 1 (PINK1) and Parkin, which are required for 
mitochondrial priming to mitophagy, induces mitochon-
drial dysfunction and muscle degeneration (Clark et al., 
2006).

Sustained activation of mTORC1 signaling in murine 
muscles leads to inhibition of autophagy and severe myo-
pathy characterized by the accumulation of p62-containing 
protein aggregates and dysfunctional mitochondria 
(Castets et al., 2013). Furthermore, muscle-specific deple-
tion of the autophagy inducer AMPK results in mitochon-
drial dysfunction and muscle weakness (Bujak et  al., 
2015). A similar phenotype has been reported in mice 
with muscle ablation of Mfn2, which leads to inhibition of 

mitophagy and accumulation of dysfunctional mitochon-
dria (Sebastián et al., 2016).

Dysregulated autophagic flux and alterations of lyso-
somal enzymes have been found in patients with Pompe 
disease, Vici syndrome (Sandri et  al., 2013; Nascim-
beni et  al., 2017), and congenital muscular dystrophies 
(Grumati et al., 2010; De Palma et al., 2012; Ramos et al., 
2012). Muscles from these patients show aberrant mito-
chondria and fiber degeneration. Conversely, increased 
autophagic flux in muscles has been documented during 
exercise (LoVerso et  al., 2014) and catabolic condi-
tions (Sandri et  al., 2013). On the other hand, balanced 
autophagy maintains quiescence and avoids the senes-
cence of satellite cells in mice, thereby preserving their 
regenerative capacity (García-Prat et al., 2016).

Well-functioning autophagy in myocytes has relevant 
implications also for whole-body metabolism. Mice with 
muscle-specific autophagy inhibition, besides develop-
ing muscle atrophy, show browning of white adipose 
tissue and lipodystrophy (Kim et al., 2013; Guridi et al., 
2015). These systemic effects are mediated by the chronic 
release of fibroblast growth factor 21 (FGF-21) from myo-
cytes secondary to mitochondrial dysfunction (Kim 
et  al., 2013; Guridi et  al., 2015). Elevations of circulat-
ing FGF-21 levels have also been documented following 
exercise. Under this circumstance FGF-21 is thought to 
regulate energy metabolism by stimulating glucose and 
lipid oxidation (Cuevas-Ramos et al., 2012). In addition to 
FGF-21, other molecules, collectively termed ‘exerkines’, 
are released from exercising muscles and mediate some 
of the beneficial effects of physical activity (Safdar 
et  al., 2016). Secretory autophagy, a recently described 
variant of macroautophagy through which the content of 
autophagosomes is extruded in the extracellular space 
(Ponpuak et  al., 2015), may be a mechanism whereby 
exerkines and myokines are released. Notably, the muscle 
secretory factor cathepsin B has recently been indicated 
as a possible mediator of the beneficial effects of exercise 
on cognition (Moon et al., 2016).

Given the wide spectrum of processes directly or indi-
rectly influenced by autophagy, its fine tuning is instru-
mental for maintaining muscle and organismal health into 
old age. However, several important aspects need to be 
further investigated in order to develop therapeutic strat-
egies that exploit the homeostatic function of autophagy 
without incurring the detrimental consequence of its 
defective or excessive activation. Furthermore, the sign-
aling pathways orchestrating muscle autophagy-induced 
systemic adaptations need to be dissected to unveil new 
potential targets for interventions against sarcopenia and 
organismal aging as a whole.
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Feeding inflamm-aging through 
mitochondrial dysfunction: the 
circulating mtDNA legacy
Together with mitochondrial dysfunction, chronic inflam-
mation is another hallmark of aging. The term ‘inflamm-
aging’ has been coined to specifically refer to the chronic 
systemic inflammatory state occurring at a subclinical 
level during aging (Pinti et al., 2014).

As discussed earlier, while mitochondria that 
are severely damaged are fissioned and targeted for 
mitophagy (Youle and Narendra, 2011), dysfunctional but 
not yet depolarized mitochondria are delivered within 
MDVs to lysosomes as an early response to oxidative stress 
(Soubannier et al., 2012). The MDV pathway is also used to 
release exerkines following exercise through a system of 
vesicles called exosomes (Safdar et al., 2016).

The accumulation of severely damaged mitochon-
dria in the context of defective mitophagy has been 
shown to induce the extrusion of several components 
able to stimulate inflammation (Caielli et al., 2016). This 
pathway operates through the accumulation and release 
of damage-associated molecular patterns (DAMPs) (i.e. 

cell-free mtDNA, N-formyl peptides and cardiolipin) by 
injured cells (Krysko et al., 2011) that activate caspase-1 
and induce the release of pro-inflammatory cytokines.

Circulating cell-free mtDNA has been indicated as 
one of the DAMPs that may establish a functional rela-
tionship between mitochondrial damage and systemic 
inflammation (reviewed by Picca et  al., 2017a). MtDNA 
contains hypomethylated CpG motifs resembling those 
of bacterial DNA and therefore able to induce an inflam-
matory response (Davies et al., 2013). These regions bind 
and activate membrane or cytoplasmic pattern recog-
nition receptors (PRRs), such as the Toll-like receptor 
(TLR), the nucleotide-binding oligomerization domain 
(NOD)-like receptor (NLR) (Collins et al., 2004), and the 
cytosolic cyclic GMP-AMP synthase (cGAS)-stimulator of 
interferon genes (STING) DNA sensing system-mediated 
pathways (Cai et  al., 2014). Notably, circulating levels 
of mtDNA molecules increase progressively with age 
and correlate with those of systemic pro-inflammatory 
cytokines, including interleukin (IL) 6, tumor necrosis 
factor alpha (TNF-α), regulated on activation normal T 
cell expressed and secreted (RANTES), and IL1 receptor 
antagonist (Pinti et  al., 2014). Some of these cytokines 
can also modulate the gene expression program of 
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Figure 2: Mitochondrial quality control relies on the coordinated activity of mitochondrial biogenesis, dynamics, proteostasis and 
mitophagy.
Mitochondrial biogenesis is triggered by several stimuli [e.g. AMP-activated protein kinase (AMPK) signaling] and converges on the expres-
sion of specific transcription factors (TFs) [e.g. peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1), nuclear respiratory 
factor 1 and 2 (NRF-1/2), mitochondrial transcription factor A (TFAM)]. TFAM is subsequently transported into mitochondria and, through 
its binding to mitochondrial DNA (mtDNA), modulates the replication of the mitochondrial genome which is crucial to mitochondriogen-
esis. Mitochondrial dynamics involves fusion and fission events through the recruitment of mitofusin (Mfn) 1 and 2, optic atrophy protein 1 
(OPA1), dynamin-related protein 1 (Drp1) and fission protein 1 (Fis1). Mitochondrial proteostasis regulates mitochondrial function through 
the activity of specific mitoproteases (e.g. Lon, ClpP, Oma1, Yme1L1, PARL). Finally, mitophagy ensures the selective degradation of dysfunc-
tional organelles through several mediators, including PTEN-induced putative kinase 1 (PINK1), Parkin, Beclin 1 and p62.
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satellite cells, thereby influencing muscle regeneration 
(Thorley et al., 2015).

Systemic inflammation is also a feature of several 
musculoskeletal disorders. Recently, a fracture-initiated 
systemic inflammatory response syndrome (SIRS), charac-
terized by increased circulating levels of cell-free mtDNA, 
has been documented in patients with hip fracture 
(Li et al., 2016). In this context, circulating mtDNA seems 
to promote the development of inflammation by recruiting 
leucocytes (Li et al., 2016). We recently described two can-
didate mechanisms (i.e. dysregulation of TFAM binding to 
mtDNA, and impairment of mitophagy) generating inflam-
matory mediators in sarcopenia and cachexia, two major 
muscles wasting disorders (Picca et  al., 2018). However, 
additional research is needed in order to provide better 
understanding of these conditions.

Taken together, these findings suggest the existence 
of a functional link between mitochondrial dysfunction in 

myocytes and systemic inflammation, possibly mediated 
by the release of mtDNA into the circulation. Conversely, 
anti-inflammatory interventions such as moderate 
aerobic exercise, decrease systemic cell-free mtDNA levels 
in healthy adults (Shockett et al., 2016).

Conclusions and future perspectives
Although we are still far from understanding the events 
that occur first and trigger muscle atrophy during aging, 
there is wide consensus on the central role played by mito-
chondrial dysfunction in this process. MQC mechanisms, 
although orchestrated as a single operating unit within 
the cell, result from the convergence of multiple signal-
ing routes (Figure 2). These pathways, either per se or in 
crosstalk with other cellular processes, contribute to the 
maintenance of muscle homeostasis (Figure 3).
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Figure 3: Insulin-like growing factor-1 (IGF-1) signaling, mitochondrial quality control (MQC) mechanisms and inflammatory pathway are 
among the most relevant routes generating mediators controlling muscle mass.
In particular, alterations at any level of the MQC axis perpetuate along the mitochondrial network and accumulate damaged organelles. As a 
consequence, the increase in the AMP/ATP ratio and the ROS burst arising from defective organelles activate a catabolic pathway that leads 
to muscle atrophy through the activation of forkhead box O (FoxO) family members via AMPK signaling. This route involves both autophagy-
related mediators [e.g. microtubule-associated protein 1 light chain 3 (LC3), BCL2 Interacting Protein 3 (Bnip3)] and muscle catabolism 
inducers [e.g. muscle RING finger-1 (MuRF-1), atrogin] leading to mitochondrial degradation and protein breakdown to provide alternative 
energy sources.
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Derangements at any level of the MQC machinery 
can impinge the whole system. Suffice is to say that the 
transcriptional coactivators PGC-1α and PGC-1β control 
the protein expression of mitochondrial Mfn1 and Mfn2 
(Soriano et  al., 2006) and fine tune autophagy during 
some forms of disuse atrophy (Vainshtein et al., 2015).

Over the last years, mitochondria have been rec-
ognized to establish direct or indirect contacts with 
other cellular components (e.g. ER, peroxisomes and 
lysosomes/vacuoles) as well as the extracellular envi-
ronment through MDV release. However, the functional 
consequences of these interactions to muscle physiology 
are not yet fully appreciated and represent a new fron-
tier in the research field. Indeed, mitochondria-derived 
metabolites can shuttle within cells and the whole organ-
ism. Exploring the interrelation between MQC pathways 
and the metabolic regulation of muscle mass as well as 
the muscle-interorgans crosstalk may provide additional 
insights to unveil new pathways that may be exploited for 
devising preventive and therapeutic interventions against 
muscle aging.
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