
the forecasts delivered on the IcySea application (between

3.5 and 3.8 millions of individual datasets depending on

the lead time), only 80% of these datasets have been taken

into account for training the models used for evaluating

the performances of the algorithms. The remaining 20%

of the datasets were used to evaluate the performances of

the statistical models. The selection of the datasets used

for training and testing the models is a random process

(according to the forecast start date), and has been

repeated 50 times in order to test the influence of this

selection on the performances of the calibrated forecasts.

The performances of the calibrated forecasts for the

area shown in Figure 3.5.2(a) are presented in Figure

3.5.3. Overall, there is a larger improvement for the

speed than for the direction of sea-ice drift. Nevertheless,

the calibrated forecasts outperform the TOPAZ4 fore-

casts for all the lead times for the direction and the

speed of sea-ice drift (lower mean absolute errors). Fur-

thermore, most of the calibrated forecasts have lower

errors than the TOPAZ4 forecasts (Figure 3.5.3(c,d)).

On average, about 53% of the forecasts are improved

by the calibration for the drift direction and 57% for

the drift speed. The calibrated forecasts delivered on

the IcySea application are therefore more accurate than

the forecasts produced by the TOPAZ4 system.

3.5.2. Conclusion

Maritime traffic around the Svalbard archipelago has

shown changing patterns during the last decade, with

expanding seasons and operational areas (Stocker et al.

2020). In this challenging operational environment, sea-

ice remains one of the major sources of uncertainty for

navigating in this area, and there is a need for sea-ice

information that can be easily downloaded and visualised

by end-users. The IcySea application addresses this need

by delivering satellite images and sea-ice drift forecasts in

a user-friendly interface. The calibration method devel-

oped for the IcySea application improves the accuracy

of sea-ice drift forecasts compared to the forecasts from

TOPAZ4. Furthermore, it is designed to work offline

and the data can be downloaded under low-bandwidth

connections, which is a common limitation in the Arctic.

This application should therefore contribute to improv-

ing operational planning and safety in the Svalbard area.

Section 3.6. Developing spatial distribution

models for demersal species by the

integration of trawl surveys data and

relevant ocean variables

Authors: Panzeri D., Bitetto I., Carlucci R., Cipriano G.,

Cossarini G., D’Andrea L., Masnadi F., Querin S., Reale

M., Russo T., Scarcella G., Spedicato M.T., Teruzzi A.,

Vrgoč N., Zupa W., Libralato S.*

Statement of main outcome: Demersal species play a

fundamental role in fisheries, thus understanding their

distribution and abundance through bottom trawl sur-

veys is crucial for stock and fisheries management.

Oceanographic (e.g. biogeochemical, physical) and

fishing covariates might be considered, in addition to

spatio-temporal variables (latitute, longitude, depth,

year and month), to better explain trawl survey data.

Here, we analyse biomass indices (kg/km2) for European

hake, common sole, mantis shrimp, red mullet and com-

mon cuttlefish from scientific trawl surveys carried out in

the Adriatic Sea and the Western Ionian Sea. We used

three different Generalised Additive Model (GAM)

approaches (Gaussian, Tweedie and Delta) to fit and pre-

dict species biomass distribution. In order to evaluate

trade-offs in using different covariates, we compared

the results obtained from GAM approaches based only

on spatiotemporal variables and GAMs including also

oceanographic and fishing effort covariates.

The Delta-GAM approach performed better for Euro-

pean hake, mantis shrimp and common cuttlefish, while

GAMs based on Gaussian and Tweedie were performing

better for the red mullet and common sole, respectively.

The results highlighted that adding specific oceano-

graphic and effort covariates to spatiotemporal variables

improved the performances of spatial distribution

models especially for European hake, mantis shrimp

and red mullet. Significant additional explanatory vari-

ables were bottom temperature, bottom dissolved oxy-

gen, salinity, particulate organic carbon, and fishing

effort for European hake; the same variables and pH

for mantis shrimp; chlorophyll-a, pH, sea surface temp-

erature, bottom dissolved oxygen, nitrate and effort for

the red mullet; phosphate and salinity for common

sole; bottom temperature, bottom dissolved oxygen,

and phosphate for the common cuttlefish.

The findings highlight that more accurate estimates

of spatial distribution of demersal species biomass

from trawl survey data can generally be obtained by

integrating oceanographic variables and effort in

GAMs approaches with potential impacts on stock

assessment and essential fish habitats identification.

Products used

Ref.
No. Product name and type Documentation

3.6.1 MEDSEA_REANALYSIS_PHYS_006_004 PUM: http://marine.
copernicus.eu/
documents/PUM/
CMEMS-MED-PUM-

(Continued )
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Continued.

Ref.
No. Product name and type Documentation

006-004.pdf
QUID: http://marine.
copernicus.eu/
documents/QUID/
CMEMS-MED-QUID-
006-004.pdf

3.6.2 MEDSEA_REANALYSIS_BIO_006_008 PUM: http://marine.
copernicus.eu/
documents/PUM/
CMEMS-MED-PUM-
006-008.pdf

QUID: http://marine.
copernicus.eu/
documents/QUID/
CMEMS-MED-QUID-
006-008.pdf

3.6.3 MEDITS: Mediterranean International Trawl
Survey; bottom trawl survey up to 800 m
depth. From 1994 to 2018 on average
326 sampling sites (hauls) per year were
conducted in the Adriatic and Northern
Ionian Sea.

Bertrand et al. (2002),
Spedicato, Massutí,
et al. (2019),
MEDITS-Handbook
(2017)

3.6.4 SOLEMON: Sole Monitoring, modified
beam trawl surveys conducted in the
Northern Adriatic Sea up to a depth of
100 m; on average 70 sampling (hauls)
per year from 2005 to 2018.

Scarcella et al. (2011),
SoleMon Handbook
2019 (http://dcf-
italia.cnr.it/assets/
lineeguida/lin1/
2019/SOLEMON-
Handbook_2019_
Ver_4.pdf)

3.6.1. Introduction

Marine fish and invertebrates that live and feed close

to the marine seabed, i.e. the demersal species, play

a fundamental role in fisheries. In the Mediterranean

and Black Sea, these species constitute approximately

20% of the total landed weight (more than 230,000

tons/year) and 50% of the total landed value (FAO

2018). In order to ensure the sustainability of exploita-

tion, a set of fisheries management measures and

restrictions are adopted also considering scientific

information on the status of resources. Clearly, man-

agement actions are particularly relevant and impact-

ing in large areas of the Mediterranean Sea where

demersal resources play a central role in local fishing

communities and economies, such as the Adriatic

and Ionian seas. Therefore, it is of paramount impor-

tance to increase accuracy of scientific information

used to inform management.

Scientific bottom trawl surveys provide quantifi-

cation of abundance and biomass (hereafter termed

indices) by species, i.e. fishery-independent data, that

are used for manifold purposes related to manage-

ment: stock assessment (e.g. Cotter et al. 2009), evalu-

ation of spatio-temporal distribution of demersal

resources (e.g. Carlucci et al. 2009), estimates of popu-

lation and community densities (e.g. Spedicato, Zupa,

et al. 2019), and the development of ecosystem models

(e.g. Grüss et al. 2018; Moullec et al. 2019). Sampling

protocols of multiannual surveys are usually standar-

dised for sampling design, gear geometry, sampling

season, sampling locations to allow comparability of

the trawl survey data across space and time. However,

unavoidable small deviances (e.g. sampling period) or

changes (e.g. vessel) during sampling may affect the

abundance and biomass indices obtained from trawl

surveys.

In order to test the potential benefits on using

oceanographic and effort variables in addition to spatio-

temporal covariates (latitute, longitude, depth, year and

month) to improve species distribution models based

on trawl survey data, Generalised Additive Models

(GAMs) were chosen for their wide application and

suitability with trawl survey data (Grüss et al. 2014;

Lauria et al. 2017; Tserpes et al. 2019). GAMs allow to

predict species abundance and biomass over the domain

(Maunder and Punt 2004; Rubec et al. 2016; Potts and

Rose 2018) and provide estimates useful for tuning

stock assessment models (Cao et al. 2017; Orio et al.

2017). Furthermore, GAMs are deemed appropriate

for mapping species distribution that is useful in ecosys-

tem models (Fulton et al. 2011; Grüss et al. 2014), or for

identifying Essential Fish Habitats (e.g. Colloca et al.

2015; Druon et al. 2015).

In addition to monitoring deviances, environmental

changes and anthropogenic stressors may cause life-his-

tory responses, and their impacts on survey estimates

are difficult to disentangle. Satellite data are successfully

used to provide environmental variables (e.g. sea surface

temperature; sea surface chlorophyll concentration) to

be included in models to describe the spatial distri-

bution of some pelagic species (Giannoulaki et al.

2008; Schismenou et al. 2017). However, these variables

might be insufficient to model the distribution of

demersal species, which may require additional oceano-

graphic variables close to seabed such as those provided

by the Copernicus Marine Environment Monitoring

Service (CMEMS). The relative high number and the

quality of the CMEMS products, as well as their high

temporal coverage and spatial resolution, provide bio-

geochemical and physical oceanographic variables that

can be useful to improve the analysis of abundance

and biomass indices derived from trawl surveys (e.g.

Sion et al. 2019; Tserpes et al. 2019).

In addition, the displacement of fishing fleets

derived from satellite-based tracking devices, such as

Vessel Monitoring System (VMS) and/or Automatic

Identification System (AIS), is a valuable source of

information on the distribution and spatial aggrega-

tion of marine resources (Bastardie et al. 2014; Russo

et al. 2018). The yearly distribution of fisheries, in
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fact, represents a good track of the distribution of the

targeted resource rather than a measure of the direct

impact on it (which is a much longer term effect).

Thus increasing accuracy of distribution of the species

might be gained embedding fishing effort among the

explanatory variables.

In this work, therefore, we propose an integrated

approach useful to fisheries management by combining

trawl survey data, oceanographic variables and fishing

effort estimates. Biomass indices of demersal fish from

scientific trawl surveys carried out in the Adriatic Sea

and in the Western Ionian Sea (Adriatic-Ionian

macro-region, EUSAIR 2014) are analysed with a set

of GAM approaches using as explanatory variables the

relevant biogeochemical and physical variables from

CMEMS products and the distribution of fishing effort

from VMS/AIS data. The objective of the study is to

contrast models with spatiotemporal variables only

and with different sets of additional explanatory vari-

ables in order to explore the improvement on estimates

of demersal species distribution when environmental

variables and effort are included into species distri-

bution models.

3.6.2. Material and methods

We used data from the bottom trawl surveys conducted

in the Adriatic Sea and North Western Ionian Sea, i.e. in

the geographical sub-areas (GSAs) 17, 18 and 19 as

defined by the FAO-GFCM (General Fisheries Commis-

sion for the Mediterranean Sea). We used MEDITS

(Mediterranean International Trawl Survey; Spedicato,

Massutí, et al. 2019) data from 1994 to 2018 that consists

on average 326 sampling sites (bathymetrical range 10–

800 m) per year in the three GSAs (Product Ref. 3.6.3)

and SOLEMON (Sole Monitoring; Scarcella et al.

2011; Grati et al. 2013) from 2005 to 2018, that consists

on average 70 sampling sites per year in GSA 17 (bath-

ymetrical range 10–100 m) (Product Ref. 3.6.4). Indices

of demersal species biomass (kg/km2) were retrieved

from the MEDITS dataset for European hake (Merluc-

cius merluccius) and red mullet (Mullus barbatus) and

from the SOLEMON dataset for common sole (Solea

solea), mantis shrimp (Squilla mantis) and common

cuttlefish (Sepia officinalis).

For each species, GAMs were applied to fit biomass

indices by sampling site, set as a response variable,

while spatiotemporal variables, oceanographic variables

and fishing effort were tested as covariates. Among the

spatiotemporal variables we used geographic coordinates

(latitude, longitude expressed in UTM coordinates),

depth (m), month and year of the observations. Among

all the variables available from the 3D monthly

CMEMS Mediterranean reanalysis fields (Product Ref.

3.6.1 and 3.6.2) relevant oceanographic variables were

considered on the basis of known ecological importance

for chosen demersal species (Carlucci et al. 2018; Bitetto

et al. 2019) as well as proxies for productivity and favour-

able environments. The relevant oceanographic variables

considered were the water temperature (°C) and dis-

solved oxygen (mmol/m3) at the sea bottom, water col-

umn averages of nitrate and phosphate concentration

(mmol/m3), chlorophyll-a (mg/m3), particulate organic

carbon (mg/m3), pH and salinity. These variables were

derived from the CMEMS dataset that covers the period

1999–2018, has a spatial horizontal resolution of 1/16°

and 72 unevenly vertical levels (Simoncelli et al. 2019;

Teruzzi et al. 2019). Furthermore, commercial trawling

effort expressed as trawling time (in hours) per year at

spatial resolution of 1/16° was estimated from VMS/

AIS data for the period 2008–2018 (Russo et al. 2014)

and was tested as explanatory variable on the basis of

the evidence that fishing effort is a good track of species

density. Although different time frames were initially

adopted (depeding on the available explanatory vari-

ables), here we report the analysis performed on the

time frame 2008–2018 that allowed the complete overlap

between trawl survey, CMEMS and effort datasets. The

explanatory variables were preliminarily selected using

the VIF approach (Variance Inflation Factor; Sheather

2009) with a threshold of VIF<5 to avoid collinearity

(see also Orio et al. 2017; Sion et al. 2019).

The results of the VIF analysis identified for all the

species the spatiotemporal variables, i.e. year, month,

depth, latitude, longitude, to be included as explanatory

variables. Furthermore, the VIF analysis by species

allowed to include additional explanatory variables

without collinearity extracted from CMEMS reanalysis

and fishing effort: the VIF results showed to be

species-specific. Thus the complete model for European

hake included the spatiotemporal variables and the bot-

tom temperature, bottom dissolved oxygen, nitrate con-

centration, salinity, bottom particulate organic carbon,

and fishing effort. For the red mullet the following

explanatory variables were retained after VIF analysis

in the most complete model: month, latitude, longitude,

year, depth, pH, chlorophyll-a, sea surface temperature,

bottom dissolved oxygen, nitrate, salinity and effort. For

the common cuttlefish, the complete set of variables

after VIF included month, latitude, longitude, year,

depth, bottom temperature, bottom dissolved oxygen,

nitrate, phosphate and effort. For common sole the

complete set of variables included month, latitude,

year, depth, average phosphate, bottom temperature,

bottom dissolved oxygen, salinity, average phosphate,

pH and effort. For mantis shrimp the set of variables
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are month, latitude, year, depth, bottom temperature,

bottom dissolved oxygen, salinity, particulate organic

carbon, pH and fishing effort (more details in Supple-

metary Material).

Different GAM distribution families were applied in

order to demonstrate the potential benefits of using

additional variables disregarding the model structure.

GAMs were developed using Gaussian probability distri-

butions with identity link on trawl survey biomass data

log-transformed for all species, except common cut-

tlefish, for which better results were obtained by using

square root transformation. GAMs were also applied

using Tweedie probability distributions with lognormal

link on untransformed biomass indices. Furthermore,

the Delta-GAM approach was implemented in two

steps: (i) a binomial occurrence model was used to fit

presence/absence data (binomial family error distri-

bution logit link function), (ii) a Gaussian distribution

model with identity link function on transformed bio-

mass for presence-only data (Grüss et al. 2014; Lauria

et al. 2017). A grid of regular points with the same resol-

ution of the selected CMEMS product (1/16°) and cover-

ing the study area was created to predict species biomass

distribution by the selected models (Tserpes et al. 2019;

Spedicato, Zupa, et al. 2019). For Delta-GAM the final

spatial distribution of species biomass as kg/km2 is

obtained by multiplication of Gaussian and Binomial

models’ predictions to the grid of the model’s domain

(Grüss et al. 2014; Lauria et al. 2017).

For each species and all GAMs distribution families

(Delta, Gaussian and Tweedie), a back-stepwise

approach was used. This started from the most com-

plete integrated approach, given by the spatiotemporal

variables (geographical coordinates, depth, year,

month) combined with all the most meaningful

additional biogeochemical, physical and fishing effort

variables identified by VIF analysis (model 0). Then

the back-stepwise approach consisted in decreasing

the number of explanatory variables by successively

removing those with lower F statistics till to obtain

the model with spatiotemporal variables only. Thus,

the back-stepwise approach resulted in a set of models

having different explanatory variables to obtain the

response variable (R = log kg/km2 or presence/

absence) (see Supplementary Material). Each model

was subjected to a calibration-validation process,

thus it was fitted on a training dataset made by ran-

domly choosing 70% of the data (calibration) and test-

ing it on the remaining 30% of records (validation).

The training and testing were repeated using 50 runs

on datasets randomly selected and without replace-

ment. The best model was selected on the basis of

measures of model’s performance evaluated through

explained deviance (%ED) and prediction errors

(AIC, Akaike Information Criterion) on the training

datasets as well as correlation coefficient (R2) of the

model predictions on the testing dataset.

For each model with decreasing number of explana-

tory variables (model 0, model 1, model 2, etc.), the

mean of each measure of model’s performance (%ED,

AIC, R2) was calculated from the 50 runs and compared

using the Tukey’s test (Tukey 1949). This comparison

allows to assess the improvement of performances

when different sets of additional variables were used

in the models. The best model was chosen based on

AIC, but other measures of performance were reported

for showing their general consistency.

The chosen model for each species is used to obtain

maps of the biomass distribution (kg/km2) on the

most relevant month (July and November, for MEDITS

and SOLEMON species, respectively). The maps

allowed identifying areas of high biomass density

(hot-spots) in the GSAs 17, 18 and 19. Furthermore, a

set of spatial indicators (Woillez et al. 2009) permitted

to compare models’ performances in describing the

spatial distribution of demersal species when including

or not additional explanatory variables. The set of indi-

cators are the Spreading area (SA), i.e. a measure of the

area occupied by the population weighted by the bio-

mass; the latitude of the centroid or centre of gravity

of data (CGY), which represents the mean geographic

location of the population; the longitude of the centroid

(CGX); the distance (D) between the centroid estimated

on observations and the centroid estimated on predic-

tions (Woillez et al. 2009; Rufino et al. 2018). Distri-

bution statistics (first and third quartile, median) and

performance indicators (mean absolute error MAE

and R2) were also estimated. Comparing such indicators

calculated on raw trawl survey data, on models based

only on spatiotemporal variables and on the chosen

best models using the complete set of significant vari-

ables, allow to quantify the improvement of adopting

the integrated approach, i.e. embedding biogeochem-

ical, physical and fishing effort, in species distribution

models.

3.6.3. Results and discussion

For European hake, mantis shrimp and common cut-

tlefish the Delta-GAM models were performing better

while for the red mullet and common sole the best

results were obtained using the Gaussian model and

Tweedie, respectively (details are reported in Sup-

plementary material). Figure 3.6.1 shows measures of

performance (%ED, AIC, R2) resulting from the

back-stepwise approach applied to the most
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appropriate family of GAM models for each species

(only Delta-Gaussian is reported in the figure for

European hake, mantis shrimp and common cut-

tlefish; the full Delta-GAM results for these species

are reported in Supplementary material). Results for

the 50 trials of training/testing demonstrate the

model improvements when using CMEMS and effort

variables in GAMs (Tukey’s tests are reported in Sup-

plementary material).

For European hake, the average AIC for Delta-

Gaussian increased from 5600 for the model including

the complete set of variables (model 0, panel I) to 5700

for the minimal model with spatiotemporal variables

only (model 6, panel I). Coherently, the average %

ED decreased from 0.32–0.29, and R2 decreased

from 0.24–0.23 from model with complete set of vari-

ables to model with spatiotemporal variables (Figure

3.6.1, panel I). For red mullet AIC increased from

6950 to 7340, %ED decreased from 0.57–0.47 and R2

decreased from 0.12–0.09 from the complete to the

minimal model (Figure 3.6.1, panel II). For mantis

shrimp AIC increased from 350 to 420, %ED

decreased from 0.55–0.37, and R2 decreased from

0.44–0.38 from the complete to the minimal model

(Figure 3.6.1, panel V). For common cuttlefish and

common sole (panels III and IV) the differences in

AIC and R2 are less marked when moving from the

complete model (0) to the model with spatiotemporal

variables (model 5 and 6) but yet the improvement is

appreciable in terms of %ED. For all species analysed,

Figure 3.6.1. Performances of the best GAMs in describing the distribution of demersal species for models using a decreasing number
of explanatory variables. The best model was Delta-GAM for European hake, common cuttlefish and mantis shrimp (shown the Delta-
Gaussian in panels I, III and V, respectively), Gaussian for red mullet (panel II) and Tweedie for common sole (panel IV). For all species
the starting model represents the one (model 0) including all the covariates resulting from VIF analysis and including spatiotemporal
variables, environmental CMEMS variables and fishing effort (Product Ref. 3.6.1 and 3.6.2, respectively). Successively one variable at
each step is removed to reach the minimal model (model 6 for European hake, common sole and mantis shrimp; model 7 for red
mullet; model 5 for common cuttlefish) with spatiotemporal variables only. Box-plots synthesise results of the 50 runs of the train-
ing/testing procedure in terms of Akaike Information Criterion (AIC), explained deviance (dev-expl) on the 70% training dataset and
correlation coefficient (R2) for the remaining testing dataset.
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Figure 3.6.2. Yearly maps of estimated biomass (kg/km2) of European hake (left) and red mullet (right) in the Adriatic and Western
Ionian Sea (GSA 17-18-19) obtained with the best GAM model applied on MEDITS trawl survey data for years 2008–2018 (Product Ref.
3.6.3) and with all the additional environmental and effort variables (model 0).
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the training/testing approach highlighted that best

performances in terms of capabilities to represent

trawl survey biomass data (ED% and R2) and per-

formance indicators such as AIC were obtained

when the integrated approach was used, i.e. when

the spatial model for species distribution included

biogeochemical, physical (Product ref. 3.6.1) and

fishing effort (Product ref. 3.6.2) as additional expla-

natory variables (model 0).

For each demersal species the best model has specific

significant covariates in addition to spatiotemporal vari-

ables. Bottom temperature, bottom dissolved oxygen, sal-

inity, particulate organic carbon, and fishing effort

resulted significant variables for European hake. The

Figure 3.6.3. Yearly maps of estimated biomass (kg/km2) of common cuttlefish (left), common sole (centre) and mantis shrimp (right)
in the Adriatic Sea (GSA 17-18) obtained with the best GAM model applied on SOLEMON trawl survey data for years 2008–2018 (Pro-
duct Ref. 3.6.4) and with all the additional environmental and effort variables (model 0).
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same variables and pH resulted sigificant for mantis

shrimp. Chlorophyll-a, pH, sea surface temperature, bot-

tom dissolved oxygen, nitrate and effort were significant

for the redmullet. Bottom temperature, bottom dissolved

oxygen, and phosphate for the common cuttlefish. Aver-

age phosphate and salinity were significant for common

sole (more details in the Supplementary materials).

Figure 3.6.2 shows distribution maps for the years

2008–2018 as obtained by the best complete model for

European hake and red mullet based on MEDITS

trawl survey data. For European hake (Figure 3.6.2,

left panel) the maps highlight higher biomass in 2008

and 2018, hot spots of biomass (as high as 100 kg/

km2) in the central-eastern part of the Adriatic Sea in

recent years (particularly in 2018), low biomass of this

species, especially in the northern part of the basin,

and a prevalence of a north–south gradient. For the

red mullet (Figure 3.6.2, right panel) results show that

high biomass (up to 200 kg/km2, particularly in years

2017/2018) is associated to coastal strip in the western

part of the basin, while in the eastern part biomass is

more widely distributed with a prevalence of south–

north gradients. The application of the best complete

GAM model for common cuttlefish, common sole and

mantis shrimp based on SOLEMON trawl surveys result

in distribution maps reported in Figure 3.6.3. The hot

spot for common cuttlefish is consistently identified in

the North-East Adriatic, in front of Istra peninsula,

with highest biomass (peaks of 2000 kg/km2) especially

in 2008 and 2014 (Figure 3.6.3, left panels). Common

sole is showing higher densities along the North-wes-

tern coast of the Adriatic, but high biomass are obtained

also in the central part of the Northern Adriatic in

recent years (2016–2018; central panels). The mantis

shrimp resulted to be mainly distributed along the

North-western coast in the area interested by the Po

Table 3.6.1. Comparison among indicators calculated on observations, i.e. the original trawl survey data (Product Ref. 3.6.3, 3.6.4), on
the results of the GAMmodel with spatiotemporal variables and on results of the best GAM model including additional oceanographic
variables (Product Ref. 3.6.1, 3.6.2) and effort (model 0). Distribution indicators (first and third quartile, median), performance
indicators (MAE, R2) and spatial indicators such as Spreading area (SA), latitudinal centroid (CGY) longitudinal centroid (CGX) and
distance (D) of the centroid of model to that of data are reported for the five demersal species analysed. The column
‘improvement’ reports the improvement on the indicator value when using model with environmental variables with respect to
indicator calculated on results of the model without additional variables (observations-model0/observations-model 6 or 7).

Red mullet (Mullus barbatus), GSA 17, 18, 19, 2008–2018 Common cuttlefish (Sepia officinalis), GSA 17, 2008–2018

Observations Model 7 Model 0 Improvement Observations Model 6 Model 0 Improvement

1st.Qu 0 3.11 2.38 23% 0 9.2 6.13 33%
Median 1.95 8.48 7.91 18% 133.48 116.22 125.45 53%
3rd.Qu 23.55 20.36 23.88 19% 558.44 474.37 465.51 −10%
R2 – 0.08 0.15 – 0.56 0.61
MAE – 39.97 36.89 – 240.96 227.83 5.44%
SA 701.6 1142.5 1094 11% 235.8 273.21 272.51 1.87%
CGX 15.52 15.98 15.73 55% 13.3 13.29 12.28
CGY 42.59 42.52 42.8 – 44.66 44.74 44.75 −12.50%
D 0 38.68 29.53 24% 9.43 10.2 −8.16%

European hake (Merluccius merluccius), GSA 17, 18, 19, 2008–2018 Mantis shrimp (Squilla mantis), GSA 17, 2008–2018

Observations Model 6 Model 0 improvement Observations Model 6 Model 0 improvement

1st.Qu 2.99 3.75 3.67 11% 0 2.65 1.22 54%
Median 15.75 13.68 14.82 55% 36.91 25.23 24.5 −6%
3rd.Qu 34.68 25.96 26.33 4% 326.95 90.19 115.48 10%
R2 – 0.32 0.32 – 0.3 0.46
MAE – 16.13 15.94 – 202.69 169.76
SA 1552.02 2272.55 2263.34 1.30% 192.95 352.34 267.37 53%
CGX 16.18 16.18 16.16 – 13.01 13.15 13.01 100%
CGY 42.09 42.18 42.19 −11% 44.26 44.15 44.23 72%
D 0 10.89 11.83 −8.63% 16.99 2.93 82%

Common sole (Solea solea), GSA 17, 2008–2018

Observations Model 6 Model 0 improvement

1st.Qu 127.07 103.43 92.21 −47%
Median 439.64 296.35 302.75 4.46%
3rd.Qu 1155.34 717.12 728.82 2.66%
R2 – 0.35 0.44
MAE – 538.92 491.55
SA 311.66 447.79 403.05 32%
CGX 12.98 13.01 12.97 133%
CGY 44.57 44.6 44.6 0
D 16.99 2.83 83%
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river plume with biomasses as high as 1500 kg/km2

especially in the years 2011, 2012, 2018 (Figure 3.6.3,

right panels).

The spatial and temporal distributions shown are

coherent with previous results (Sartor et al. 2017). For

example, results from Sion et al. (2019) on European

hake show for 2011 and 2013 higher biomass values in

the eastern-central Adriatic sea, while in 2015 a general

lower biomass of this species was estimated, with similar

outcomes to the ones we found in this paper (Figure

3.6.2). Tserpes et al. (2019) also highlights a biomass

increasing trend for red mullet after 2008, which is in

line with the recent stock assessment outcomes

(GFCM 2019; STECF 2019). Similarly, Figure 3.6.2

highlights that this biomass increase corresponds to a

spreading of the population in the study area.

The set of indicators for evaluating performances of

the complete (model 0) or spatiotemporal (model 6 or

7) models contrasted with observations show that the

integrated approach embedding biogeochemical, phys-

ical and fishing effort variables has improved perform-

ances (Table 3.6.1). In particular, indicators in Table

3.6.1 suggest that models’ distribution statistics (quar-

tiles and median) are closer to observed data when the

integrated approach is used (i.e. the model 0). Excep-

tions are the first quartile for common sole, the third

quartile for common cuttlefish, and the median for

mantis shrimp. It is worth to note the relevant improve-

ment of median values for hake and cuttlefish (+55%

and +53%, respectively) when the spatial model of

species distribution includes additional biogeochemical,

physical and fishing effort data (Table 3.6.1). MAE and

R2 showed that consistency of model to the data

improves for all species (except R2 for European hake)

when additional variables are included (Table 3.6.1).

The spatial indicators used to evaluate the modelling

results in terms of variations of the area occupied by

the populations and their mean geolocation (e.g. Woil-

lez et al. 2009) show improvements for red mullet, com-

mon sole, and mantis shrimp when the models include

additional biogeochemical, physical and effort variables.

For all these species the centroids of spatial distribution

and the spreading area of the best model (model 0) are

closer to those estimated on the observed data than to

models with no additional explanatory variables

(model 6 or 7; Table 3.6.1). For European hake and

common cuttlefish, the spreading area improved when

additional explanatory variables are included, but not

the centroid position. This result and some low

improvements of model 0 with respect to the model

with spatiotemporal variables only is possibly related

to complex influences of other environmental factors

such as seabed type and habitats on the spatial

distribution of species (in particular for European

hake and common cuttlefish). Overall, the approach

quantified the relevance of biogeochemical and physical

variables derived from CMEMS and fishing effort from

VMS/AIS in improving the spatial distribution of

demersal species based on trawl survey data. Results

highlight species-specific improvements that should be

considered also in relation to the use of spatial distri-

bution model (Brodie et al. 2020).

Key objectives of the Common Fisheries Policy (EU

2013) are the achievement of MSY in the short term

and the implementation of an ecosystem approach to

fisheries management which is often based on fishery

indepedent data. Thus we consider that the integrated

approach proposed here represents an important step

for incorporating anthropogenic (fishing effort) and

other environmental stressors (biogeochemical and

physical variables) into the advice for fisheries

management.

The improved models including enviromental and

effort variables, in fact, can be used for a year by

year evaluations of species distribution, for explaining

and understanding species displacement. This is of

paramount importance for a spatially based manage-

ment of the resources that relies upon the identifi-

cation of best fishing grounds, spawning or nursery

areas, and generally aiming at defining fisheries man-

aged areas (Lauria et al. 2017). The improved accuracy

of species distributions based on enviromental and

effort variables as obtained inthis study can potentially

support co-management initiatives involving fisheries

organisations and other stakeholders (e.g. those car-

ried out by the Mediterranean Advisory Council,

MEDAC). In particular, sharing such outcomes with

the bottom trawl industry could lead to an increase

in the awareness of the sector and consequently to

the reduction of the alarming footprint of the fisheries

in the Adriatic and Western Ionian Seas (Amoroso

et al. 2018).

Furthermore, it is largely acknowledged that most of

the presently used stock assessment models are too sim-

plistic since they often consider species populations

without integrating the role of key environmental dri-

vers, which is a challenging but crucial frontier in the

time of global changes. Taking into consideration

environmental factors is also pivotal for the MSY objec-

tive, as climate change impacts on the fish community

would require moving below fishing mortality at

FMSY to ensure sustainable exploitation of marine

stocks (Travers-Trolet et al., 2020). An optimised

approach for the analysis of trawl survey data is relevant

for the stock assessments and advices carried out by

Scientific Advisory Committee of the General Fisheries
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Commission for the Mediterranean Sea (SAC-GFCM)

and the Scientific, Technical and Economic Committee

for Fisheries (STECF) of the European Commission, as

fisheries-independent data are essential for fishery man-

agement. The prediction of biomass indices on the

whole domain over time with the integrated models

proposed here takes into account the influence of rel-

evant oceanographic variables and could be appropri-

ately used for tuning stock assessment models such as,

for example, surplus production models that need the

catch time series and the survey abundance aggregated

indices.

Since most analytical stock assessment models use

survey indices by age or length as tuning indices, a

further step for future insights is represented by themod-

elling in similar way also demographic indices, as length

and/or age.Moreover,modelling of demographic indices

can be useful also for progressing on the geolocation of

sensitive life stages of the species, thus addressing further

key questions of spatial fishery management.

These spatial distribution models for demersal species

were developed for the best extension of trawl survey data

to the whole study area from 2008 to 2018. The approach

developed here highlights the relevance of integrating

oceanographic variables in the analysis of trawl survey

data before their use as inputs in stock assessment (Cao

et al. 2017) and ecosystem modelling (see for example,

Melaku Canu et al. 2010; Grüss et al. 2014; Grüss et al.

2018). This approach sets the basis for providing projec-

tions of the potential effects on species distribution and

biomass of future environmental changes.

Applying the identified best GAMs models for making

future predictions of species distribution is facilitated by

the availability of oceanographic variables under future

scenarios of climatic changes and appears strongly con-

ditioned to assumptions on the future distribution of

fishing effort that are also dependent from policies and

regulations. Therefore, using the models developed here

for making future scenarios might be considered with cau-

tion, needing further specific investigations of model val-

idity to changed conditions. Yet the models can still

provide a first order approximation of potential large

scale effects, such as displacements of biomass centre of

gravity and spreading area due, for example, to climate

change. Although the relative distribution pattern might

be well predicted by the model, many factors, such as

recruitment success and species interactions for example

are not included, thus efforts should be addressed in the

future for testing additional modelling approaches and for

improving the accuracy of these species distributionmodels.

In conclusion, the present study aims at investigating

the influence of environmental variables on the biomass

distribution of the most important commercial fishery

species in the Adriatic andWestern Ionian basin by mod-

elling the data obtained from trawl surveys using differ-

ent GAM approaches. GAMs are commonly used

because they have the advantage of accounting for spatial

and temporal autocorrelation of the data. The approach

used here robustly demonstrates in which cases oceano-

graphic variables extracted from CMEMS products and

effort from VMS/AIS, result in improving species distri-

bution models. Although there is still room for improve-

ments, the work presented here is a remarkable starting

point for better understanding species-environment

relationships and for understanding the benefits of inte-

grating the CMEMS variables into the modelling of

fishery independent data for predicting the species distri-

bution in the Adriatic and Ionian basins.
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