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ABSTRACT: Ternary blends comprising an ‘energy-cascade for-

mer’ in addition to the donor and the acceptor materials increasingly 

attract attention in the organic solar cell area as they seem to provide a 

tool to positively manipulate the open-circuit voltage of bulk-hetero-

junction devices. By comparing two additives that have similar 

HOMO/LUMO levels and that can be expected to lead to an energy 

cascade in ternaries with the prototypical P3HT:PC60BM system, we 

demonstrate here that the compatibility of the additive with, in this spe-

cific case, the fullerene can be tailored by peripheral chemical function-

alization and plays a critical role. A compromise needs to be found be-

tween good mixing (favoring energy cascade formation) and phase 

separation (supporting charge extraction) that affect the open-circuit 

voltage in as important fashion as their electronic features, providing 

critical insights for future materials design activities. 

The active layer of bulk-heterojunction (BHJ) solar cells is gen-

erally based on a blend of two organic semiconductors (small mol-

ecules or polymers) with different electron affinities and forming a 

bi-continuous interpenetrating network, often with a highly com-

plex phase morphology.1 One component acts as the electron-do-

nating material (donor) and the other as the electron-accepting ma-

terial (acceptor). While efficiencies of more than 12 % have now 

been reported,2 key issues that remain challenging to solve are: i) 

the often demanding synthesis of the donor and/or acceptor render-

ing scale up difficult;3 ii) the limited, intrinsic light absorption of 

many current donor:acceptor systems, as well as iii) the non-opti-

mal positioning of the frontier energy levels of the donor and the 

acceptor. Indeed, a large energetic offset between the lowest unoc-

cupied molecular orbitals (LUMO) of many donors compared to 

those of the acceptors can lead to a significant energy loss in the 

photoinduced electron transfer from the donor to the acceptor ma-

terial, reducing the output power of the solar cells. Vice versa, too 

small differences in energy levels often limit the driving force for 

exciton dissociation. Many of these issues, as well as non-radiative 

recombination losses, directly influence the open-circuit voltage, 

VOC.4 As a consequence, the design of donor and acceptor materials 

can be intricate. 

One promising strategy to address these challenges is to employ ter-

nary BHJ blends.5 Ternary solar cells offer the advantage of maintaining 

straightforward processing conditions, being based on a single active 

layer, with respect to more complex device architectures. Conversely, 

they pose the challenge to control much more complex three compo-

nents electronic and morphological interactions. In the case of the pro-

totypical BHJ blend of poly(3-hexylthiophene) (P3HT) and the fuller-

ene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PC60BM), low 

bandgap polymers,6 small conjugated molecules7 and nanoparticles8 

have already been used -with varying success-as ternary component to 

enhance light harvesting and/or generate an energy level cascade, tack-

ling point ii) ad iii). However, clear structure/processing/property inter-

relations and insights on how the additives need to be structurally inte-

grated in the complex BHJ architecture remain elusive.  

In order to establish the much needed structural picture and how 

it relates to the electronic landscape of such donor:acceptor blends, 

we employed here two molecular additives featuring the same con-

jugated framework. One of them possesses thioacyl peripheral 

chemical functionalization. This allows us to tailor its miscibility 

with the fullerene component of the ternary blend. The two molec-

ular additives display a donor-acceptor-donor (D-A-D) architecture 

comprising an electron-poor benzo[c][1,2,5]thiadiazole-central 

unit, symmetrically coupled in its 4,7-positions with two electron-

rich bis-thiophene segments (Fig. 1a), i.e. 4,7-bis(5'-hexyl-2,2'-bi-

thiophen-5-yl)benzo[c][1,2,5]thiadiazole (4T1B)9-13 and S,S'-6,6'-

[5',5''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(2,2'-bithiophene-

5',5-diyl)]bis(hexane-6,1-diyl)diethanethioate (4T1BSAc). The 

synthesis of these ternary components is simple and straightfor-

ward (see the SI for details). In addition, these two additives 

seemed ideal for our purpose as our past studies14 have indicated 

that: (i) 4T1B and 4T1BSAc display nearly identical energy levels 

(estimated from electrochemical and optical measurements: see SI, 

Figs. S11-14; data are summarized in Table 1), that are in between 

those of P3HT and PC60BM and, thus, should lead to an energy-

level cascade that can lead to efficient charge separation (Fig. 

1b/inset); (ii) they display meagre attitude for resonant energy 

transfer in the ternary blend, due to the poor overlap between the 

solid state emission from P3HT and additives absorption profile  
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Table 1. Comparison of optical, electronics and thermal data obtained for 4T1B and 4T1BSAc. 

Compound max,abs 

[nm]a 

max,PL 

[nm]a 

Eg,opt 

[eV]b 

EHOMO 

[eV]c 

ELUMO 

[eV]c 

Eg,ec 

[eV]d 
 

[cm2V-1s-1]e 

Transition tem-

peratures [°C]f 

4T1BSAc 364, 518 658 2.05 -5.46 -3.38 2.08 2.5·10-5 121, 143, 172, 179 

4T1B 363, 518 652 2.05 -5.50 -3.42 2.08 4.6·10-5 120, 173, 200, 208 

*(a) Measured in 10-4 M CHCl3 solution. (b) Optical band gap estimated as Eg = 1240/onset. (c) HOMO and LUMO levels were estimated with the 

empirical equations: HOMO = -e(Eox + 5.1) V and LUMO = -e(Ered + 5.1) V.19 (d) Electrochemical band gap. (e) Hole mobility in bottom gate-

bottom contact OFETs measured in the saturation regime; (f) Thermal transitions deduced from DSC. 

 

Figure 1. a) Chemical structure of 4T1BSAc and 4T1B. b) Current 

density of best performing devices versus applied bias for different 

loading percentages under illumination: 0%, 5%, 10%, 20% wt of 

4T1BSAc and 4T1B. The inset shows the energy levels of 4T1B, 

4T1BSAc, P3HT and PC60BM. HOMO and LUMO levels of 4T1B 

and 4T1BSAc were estimated from cyclic voltammograms recorded 

on a 1.0 mM solution on a Pt working electrode in 0.1M n-Bu4NPF6 in 

anhydrous CH2Cl2 at 0.2Vs-1 and room temperature (see Fig. S11). 

and between additives solid state emission and P3HT aggrega-

tion bands absorption (see SI, Figure S13); (iii) they feature very 

similar, albeit modest charge transport properties, as measured in 

non-optimized bottom-gate/bottom-contact solution-processed 

field-effect transistors (Table 1 and SI, Fig. S16), with hole mobil-

ities of 4.6·10-5 and 2.5·10-5 cm2(Vs)-1 in the saturation regime for 

4T1B and 4T1BSAc, respectively; (iv)  they follow a comparable, 

complex thermal phase behavior in the neat form, as judged from dif-

ferential scanning calorimetry (DSC) measurements, with a liquid 

crystalline behavior observed in both cases, resulting in distinct, 

multiple endotherms at 120, 173, 200, 208 °C for 4T1B and at 121, 

143, 172, 179 °C for 4T1BSAc (Table 1; more details provided in 

SI, Fig. S15) and melting enthalpies of 22.104 mJ mg-1 at 173°C 

for 4T1B and 20.602 mJ mg-1 at 143°C for 4T1BSAc; and (v) they 

are expected to display a different solid-state structure formation in 

BHJ blends due to the thiol functionalization in 4T1BSAc which 

likely leads to a different phase behavior with the OPV blend com-

pared to the unsubstituted 4T1B. Thiol esters are stable functional 

groups15 and are structurally related to alkylthiols, that are select-

give solvents for PC60BM, the positive effect of which on the phase 

morphology and performances of P3HT: PC60BM blends has been 

demonstrated.16 Therefore, here the chemical functionalization of 

the ternary molecule with a functional group able to modulate the 

miscibility property of a small donor material is proposed as new 

strategy to finely control a ternary blend morphology. This chemi-

cal approach has the potentiality to be of general use, and alterna-

tive to other case-specific examples such as the use of materials 

with complex molecular structure and demanding synthesis17,18 as 

driving force for generation of an ideal cascade morphology in 

which the third component has to be located at the P3HT/PCBM 

heterojunction. 

In order to elucidate the effect of the two potential energy-cas-

cade formers in ternary BHJ devices, we prepared P3HT:PC60BM 

solar cells containing different fractions of 4T1BSAc or 4T1B (5, 

10, 20 wt% with respect to P3HT), using a standard device geom-

etry (ITO/PEDOT:PSS/P3HT: PC60BM/ Li/Al). Reference devices 

without ‘additives’ were prepared for comparison. The correspond-

ing J-V characteristics are shown in the Fig. 1b, while their device 

parameters are summarized in the Table 2. Reassuringly, and as 

expected from the energy levels of 4T1BSAc and 4T1B, we ob-

serve an increase in VOC to the maximum value of 0.56V for the 

majority of the ternary blend devices, in agreement with the ex-

pected picture that the Voc is driven by a ternary cascaded mecha-

nism5c,20 and pinned by the electronic structure of the two additives 

(featuring the same HOMO and LUMO levels as previously 

demonstrated), rather than by other mechanisms like an intimate 

mixture of the donor polymer with the additive, acting as an organic 

alloy of donors, that would rather induce Voc linear variations with 

the additive:P3HT weight ratio.21 Given the expected ternary cas-

cade effect, for the compositions analyzed blends with 4T1B dis-

play an increase of the VOC from 0.47 V to 0.56 V, while Jsc re-

mained essentially identical compared to the reference device com-

prising no additive. A notably different behavior is found for sys-

tems comprising 4T1BSAc. An increase in VOC is recorded only for 

ternaries comprising a relatively small fraction of this additive (5 

and 10 wt% with respect to the P3HT content). At higher content 

both VOC and JSC drastically decrease. However, compared to the 

ternaries comprising 4T1B, it is striking to observe that small 

amounts of 4T1BSAc seem to not only increase VOC but also  

Table 2. Device parameters measured for P3HT:PC60BM (1:0.8 

w/w) solar cells comprising different weight fractions of 4T1BSAc 

and 4T1B. Statistical variations of Jsc, Voc, FF and PCE are listed in 

the SI, Figs. S17-18. 

Additive  Jsc 

[mA·cm-2] 

Voc 

[V] 

FF PCEmax/av 

(%) 

No additive 7.85 0.47 0.57 2.11/2.05 

4T1BSAc 5% wt 8.60 0.56 0.61 2.92/2.86 

4T1BSAc 10% wt 6.48 0.56 0.60 2.18/1.96 

4T1BSAc 20% wt 5.34 0.48 0.54 1.39/1.28 

4T1B 5%wt 7.97 0.53 0.60 2.54/2.27 

4T1B 10% wt 7.98 0.56 0.58 2.59/2.44 

4T1B 20% wt 7.88 0.56 0.53 2.37/2.22 

20 %

10 %
5 %

20 %

10 %
5 %

(a)

(b)



 

Figure 2. First heating thermograms of a) P3HT:4T1B- (left) and 

P3HT:4T1BSAc binary blends (right), and b) for 4T1B: PC60BM- 

(left) and 4T1BSAc:PC60BM binary blends (right). The melting point 

depression of, respectively, P3HT and PC60BM upon mixing with ad-

ditives is indicated with dotted lines. 

slightly improve Jsc (Fig. 1b; Table 2). 

The question arises why we observe different device perfor-

mances in ternaries using the two energy-cascade formers despite 

they feature very similar energy levels. One possibility is that this 

is caused by a different phase behavior of the two ternary systems, 

caused, as expected, by the thiol-functionalization of 4T1BSAc. 

We thus conducted DSC measurements focusing on the respective 

binaries (i.e. P3HT:4T1B, P3HT:4T1BSAc; 4T1B:PC60BM and 

4T1BSAc:PC60BM) rather than the more complex ternaries. This 

allowed us to assess in a relatively straightforward manner whether 

one of the additives displays a preferential affinity with the donor 

or the acceptor material (or both). Thermograms of additive:donor 

and additive:acceptor binaries are shown in the Fig. 2. We observe 

a similar depression of the melting point of P3HT upon addition of 

either 4T1B or 4T1BSAc, indicating a similar compatibility of 

P3HT with the two additives. This picture is supported by the rela-

tive crystallinity of P3HT, extracted from the DSC data (see SI, 

Figure S20), that is fairly preserved upon mixing with 4T1B or 

4T1BSAc at the investigated concentrations. Furthermore, at the 

highest additive concentration (20% by weight), P3HT shows 

higher relative crystallinity upon mixing with 4T1BSAc, suggest-

ing lower miscibility with the thiolated additive. Conversely, the 

melting point of the fullerene seems notably more depressed when 

it is blended with 4T1BSAc, suggesting stronger interactions be-

tween this additive and PC60BM. In fact, in blends with 4T1B at 

20% content, the presence of a distinct melting endotherm (at 

272°C) is characteristic for the presence of residual crystalline 

PCBM domains. On the contrary, in blends with 4T1BSAc at 20% 

content, the endotherm transition originally attributed to PCBM 

melting transition is shifted of 36°C (from 281 to 245°C), indicat-

ing quite probably the formation of a predominant co-crystallized 

intermixed phase. This view is supported by the fact that we find 

the additive emission to be stronger quenched in the 4T1BSAc: 

PC60BM blends compared to the 4T1B: PC60BM binaries (see SI, 

Fig. S14). The presence of the peripheral thioacetyl groups on 

4T1BSAc, structurally related to the aliphatic thiols,16 justifies the 

higher miscibility of this small molecule with PC60BM. 

This higher compatibility seems to be maintained in the ternaries 

prepared with 4T1BSAc. In atomic force microscopy (AFM) meas-

urements, we observe – as expected – less aggregates (additive-

rich, fullerene-rich, or both) forming in the blends comprising the 

thiol-functionalised additive, although the surface roughness at 

higher content of this additive increases compared to systems com-

prising 4T1B (Fig. 3). Indeed, the blends with 4T1B additive, dis-

play Rq values of 3.1 ±0.3 nm, 4.2 ±0.8 nm, 3.9 ±0.4 nm for an 

additive content of 5, 10 and 20 % wt (Fig. 3b, 3c and 3d, respec-

tively), while those comprising 4T1BSAc feature Rq values of 1.9 

±0.3 nm, 4.4 ±0.8 nm, 5.9 ±0.8 nm for the same additive content 

(Fig. 3e-g). The intimate mixing produced in 4T1BSAc additivated 

blends becomes more evident comparing the 1x1 m2 AFM topog-

raphies (see SI, Figure S19) of the reference blend and of the same 

blends with 5% content of additive: while the P3HT:PC60BM ref-

erence shows a clear self-segregation attitude, giving origin to reg-

ular nanometric aggregates, the blend with 4T1BSAc shows bigger 

and regular aggregates suggesting the formation of subnanophases 

of optimized dimension. In the case of the blend with 4T1B, the 

aggregates appear even bigger, probably because of the concurrent 

lower miscibility of 4T1B with PC60BM (deduced from the lower 

depression of the fullerene’s melting point observed in DSC upon 

blending with this additive) and higher compatibility with P3HT 

(desumed by the higher depression of P3HT’s relative crystallinity 

upon melting with 4T1B), that enhances phase segregation, pro-

moting formation of polymer-rich bigger domains.  

 

Figure 3. Tapping-mode 5x5 m2 AFM topographies of films of 

P3HT: PC60BM 60:40. a) Without and b-g) with additives (additive 

contents are indicated in figure). 

The formation of bigger aggregates is beneficial for all solar 

cells, but considering the better performance obtained using 

4T1BSAc additive at 5% content, we must conclude that this blend 

represents the morphology with the best compromise between 
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nanophases dimension, intermixed portions and ternary cascade 

mechanism activation. In other words, when the formation of seg-

regated subnanophases is modulated by the thiolated additive, this 

allows the formation of small intermixed 4T1BSAc:PC60BM do-

mains that enhance the ternary cascade activation.  

The higher compatibility of 4T1BSAc with the fullerene deriva-

tive seems to be detrimental at higher additive contents. While it 

may be favorable for creating a close energy cascade, in the case 

that the additive is too well mixed with the acceptor, electron ex-

traction may be hindered because of insufficient charge transport 

pathways via fullerene-rich domains. This is further demonstrated 

by the drop in PCBM relative crystallinity in the binary blend with 

20% content of 4T1BSAc (see Figure 2 and SI, Figure S20). The 

limited formation of fullerene-rich aggregates is also undesirable 

for charge generation; aggregates have been shown to be beneficial 

for exciton dissociation.22 

Based on our observations, we conclude that when using our addi-

tives we can create an energy cascade. To achieve this, their effec-

tive miscibility and phase behavior with the donor and acceptor ma-

terials play a crucial role and, more specifically, it seems that in the 

case-in-point, the phase behavior of the additive and fullerene is 

critical. Clearly further studies are required to elucidate this in de-

tail. What is unambiguous from our data is that both electronic and 

structural features are important to make ternary systems work 

providing some information on design criteria for energy cascade 

additives. Thereby manipulation of the additive’s compatibility 

with either the donor or acceptor material via side chain function-

alization appears to be a powerful approach to tune final BHJ struc-

ture and finally device performances. 
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