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a b s t r a c t 

We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker 

identification and disease classification. The generative component of our model uses a dictionary learning frame- 

work to project the imaging and genetic data into a shared low dimensional space. We have coupled both the 

data modalities by tying the linear projection coefficients to the same latent space. The discriminative component 

of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implic- 

itly guides our framework to find interpretable biomarkers that are substantially different between a healthy 

and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph 

regularization penalty into the joint objective function. We also use a group sparsity penalty to find a represen- 

tative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between 

patients and controls. We have evaluated our model on a population study of schizophrenia that includes two 

task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we com- 

pare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics 

data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classi- 

fication, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and 

genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies 

robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented 

deficits in schizophrenia. 
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. Introduction 

Neuropsychiatric disorders such as autism and schizophrenia are

inked to a range of deficits that span multiple neural and cognitive path-

ays ( Belger et al., 2011; Cannon, 2015 ). At the same time these disor-

ers exhibit high heritability, meaning that deficits may have a genetic

nderpinning ( Vereczkei et al., 2011 ). Identifying the biological basis

etween the genetic variants and the heritable phenotypes remains an

pen challenge ( Chong et al., 2015 ). The inherited phenotype may also

e associated with multiple genetic variants and biological pathways

 Erk et al., 2017 ), which make it difficult to isolate both neural and ge-
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etic biomarkers that can act as therapeutic targets ( Gutschner et al.,

018 ). For these reasons, there is a growing interest to combine genetic

nformation with neuroimaging data with modalities that directly probe

nto brain functionality during cognition. This multimodal approach has

he potential to reveal heritable phenotypes across diverse patient co-

orts. 

.1. Background on fMRI and Genetic Biomarker Discovery 

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive

odality that indirectly assesses neural activity and has been used

o map the brain’s engagement during specific cognitive processes
ay 2021 
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 Callicott et al., 2003; Gore, 2003; Rasetti et al., 2014 ). Statistical analy-

es of fMRI data focus on identifying patterns of brain activations using

 Generalized Linear Model (GLM) ( Friston et al., 1995 ), which repre-

ents the fMRI data as a linear combination of the stimuli onsets and

esponses across time. In recent years data driven approaches for fMRI

ave become increasingly popular. For example, Principal Component

nalysis (PCA) ( Viviani et al., 2005 ) and Independent Component Anal-

sis (ICA) ( Calhoun and Adali, 2012; Calhoun et al., 2001 ) reduce the

igh-dimensional fMRI data based on maximizing the data variance and

on-Gaussian statistical independence, respectively. As an alternative,

ictionary learning finds a low dimensional representation of the data

 Xie et al., 2017 ) captured by a linear combination of sparse basis vec-

ors ( Eavani et al., 2012 ). While these methods have been used to study

 variety of neural processes, they do not naturally accommodate ex-

genous information, such as genetics data or subject diagnosis. 

In contrast to fMRI, the most commonly analyzed genetic data are

ingle Neucleotide Polymorphisms (SNPs), which capture variations

t individual base pairs (i.e., SNPs) along the DNA double strand. A

enome Wide Association Study (GWAS) is the most common approach

o find associations between the common genetic variants and the dis-

ase of interest. GWAS uses logistic regression to predict disease from

he SNP genotype data (coded as the number of copies of the mi-

or or less frequent allele, 1 degree of freedom). Despite its preva-

ence, the traditional GWAS does not take into account multivariate i.e.,

pistatic, relationships, which are hypothesized to explain part of the

eritability. 

Finally, the rise of deep learning has prompted end-to-end analy-

is of fMRI and genetics data separately. Unlike traditional methods,

eep learning can automatically learn complex representations from

ata ( Najafabadi et al., 2015; Srinivasagopalan et al., 2019; Zeng et al.,

018 ). These techniques have become the state of the art for analyzing

MRI data sets and resulted in performance improvements in diverse

MRI applications. Deep learning is less common in the genetics liter-

ture due to the high dimensionality and unstructured nature of the

ata. However, with the exponentially increasing volume of genomics

ata deep learning has proven to be an useful tool for multiple ge-

omic modeling applications ( Eraslan et al., 2019 ). The main drawback

n both cases is the black-box nature of deep neural networks. In gen-

ral, interpretations for deep learning methods are based on heuristics,

uch as using attention models to select a subset of the input variables

 Tomita et al., 2019 ), computing feature weights either at the input or

ntermediate layers ( Liu et al., 2015 ), or even treating interpretability

s a preprocessing step ( Yin et al., 2019 ) by selecting the predictive fea-

ures before training the deep network. Due to the lack of interpretabil-

ty, deep learning has not gained much traction in the imaging-genetics

ealm. In comparison, our model gives the researcher the unique ability

o explore potential biomarkers and their interactions in a multivariate

ramework. 

.2. Prior Work on Multivariate Imaging-genetics 

Imaging-genetics has become a growing field of study in recent years.

hese multi-variate approaches can be grouped into three general cate-

ories. The simplest case is a penalized regression framework ( Nathoo

t al., 2019; Wang et al., 2012 ). This approach considers the SNP data as

nput features and the imaging phenotype as the response variable. The

stimated regression coefficients capture the relationship between the

enetic variants and phenotype. The work of ( Wang et al., 2012 ) goes

ne step further by incorporating a structured sparsity over the regres-

ion coefficients, which makes the model robust to noise and outliers.

hile simple to implement and easy to interpret, penalized regression

odels do not consider interdependencies within each modality, for ex-

mple, the network organization of the brain. In addition, these models

o not naturally incorporate the effect of a disease. 

The second approach for imaging-genetics is to estimate multivariate

epresentations to “align ” the SNP data and the imaging features. One
2 
uch variant is Canonical Correlation Analysis (CCA) ( Du et al., 2017;

iu and Calhoun, 2014 ), which estimates a linear projection for both the

maging and genetics data such that they are strongly correlated. Exten-

ions of CCA ( Du et al., 2017 ) incorporate sparsity penalties to regularize

he problem formulation and to obtain a robust set of relevant features.

arallel ICA (pICA) is an alternative method that uses statistical indepen-

ence to identify a set of basis vectors for each modality ( Pearlson et al.,

015 ). Compared to CCA, pICA is capable of extracting higher-order de-

endences beyond linear correlation. While both CCA and pICA capture

ultivariate relationships, they do not incorporate disease status, which

s crucial for identifying discriminative biomarkers. 

Finally, the work of ( Batmanghelich and others., 2016 ) presents an

ntirely different view of the problem using a Bayesian setup. Here,

he authors identify the set of genetic variants while using the imag-

ng features as intermediate phenotypes, thus imposing a one-to-one

elationship from genetic variations to imaging phenotypes and from

maging phenotypes to disease. However, in actuality the intricate in-

erdependencies between all the modalities makes it hard to find such

elationships. In addition, the model does not accommodate direct links

etween genetic variation and disease status, instead requiring that they

e linked via the imaging data. As a consequence, it cannot identify ge-

etic variants that directly affect the diagnosis, which is often observed

n real-world data. 

In this paper, we introduce a new optimization framework that

ses disease status to regularize the projection of imaging and genetics

ata onto a shared low-dimensional subspace. This projection is done

hrough a coupled dictionary learning framework. The imaging and ge-

etic bases in this framework provide interpretable biomarkers in each

odality, and the patient specific projections into this space are used

o classify disease status through a logistic regression model. A prelim-

nary version of this work was presented at the Medical Image Com-

uting and Computer Assisted Intervention conference ( Ghosal et al.,

019 ). Here, we substantially extend our preliminary work by redesign-

ng the optimization strategy to be more robust, performing a simu-

ation study, replicating our analysis on data from a second site, and

reater statistical validation to quantify reproducibility. Finally, we per-

orm an exploratory pathway analysis on the genetic biomarkers to iden-

ify the pathways through which they confer risk. Our model achieves

etter diagnostic classification than the baseline methods and is able

o identify biomarkers that underlie the well documented deficits in

chizophrenia. 

.3. Schizophrenia as an Ideal Testbed 

Schizophrenia is a debilitating neuropsychiatric disorder character-

zed by a distorted perception of reality ( Chaudhury, 2010 ). In addition

o their psychiatric symptoms, schizophrenia patients often suffer from

ognitive dysfunction, such as impaired executive function, language

rocessing, and general intelligence ( Orellana and Slachevsky, 2013 ).

xecutive dysfunctions may be central to schizophrenia, as it is ob-

erved in adolescents with high risk, in patients with a first outbreak

f schizophrenia, and also in their first-degree relatives ( Breton et al.,

011 ). 

Deficits in working memory and executive functioning are thought

o be related to genetic risk for schizophrenia ( Callicott et al., 2003 ).

hile genetic influences seem to play a role, the genetic susceptibility

f schizophrenia is complex, resulting from the combined effects of mul-

iple alleles. The ground breaking work on imaging genetics ( Egan et al.,

001 ) suggested a relation between COMT Val108/158 Met-genotype,

rontal lobe function and risk for SZ. Additional studies ( Chen et al.,

018 ) also looked into the effect of genetic variants over hippocampal

ctivity. They found that decreased hippocampal-parahippocampal ac-

ivity is strongly associated with high polygenic risk score. In this work

e examine multivariate whole-brain imaging and individual SNP in-

uences, thus going beyond the existing literature. 
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Fig. 1. Generative-discriminative framework 

linking imaging ( 𝐟 𝑛 ), genetics ( 𝐠 𝑛 ), and diag- 

nosis ( 𝑦 𝑛 ). The generative module captures the 

brain activations and the genetic data in a dic- 

tionary learning setup, and the discriminative 

module tracks the disease status using logis- 

tic regression. The classification module also 

guides the generative process to find a low 

dimensional space where the patient specific 

scores 𝐱 𝑛 are maximally separated. Therefore, 

the basis vectors { 𝐀 , 𝐁 } identify biomarkers 

which capture group level differences between 

patients and controls. We have shown represen- 

tative contributions of these basis vectors in the 

form of a Manhattan plot and a colored brain 

plot. 
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. Material and Methods 

.1. Coupled Generative-discriminative Framework 

Figure 1 presents an overview of our imaging-genetic framework.

he inputs to the model for each subject 𝑛 are a vector of region-wise

maging features 𝐟 𝑛 , a vector of genetic SNP variants 𝐠 𝑛 , and patient ver-

us control diagnosis 𝑦 𝑛 ∈ {0 , 1} . As seen, our model consists of a gen-

rative module and a discriminative module. The generative module is

losely related to dictionary learning, where we have coupled the rep-

esentation of imaging and genetic features by tying them to a common

atent space. The discriminative module implements a logistic regression

sing the patient specific scores, thus ensuring that the latent space cap-

ures discriminative facets of the data. Our joint optimization enables us

o learn both group level and patient specific information. 

.2. Feature Representation using Dictionary Learning 

In our model we assume that the brain has been parcellated into

ROIs, from which we extract an 𝑀 × 1 vector 𝐟 𝑛 , that quantifies the

unctional activation across the ROIs. Our model assumes that 𝐟 𝑛 can be

epresented by a low dimensional projection, i.e., 

 𝑛 ≈ 𝐀𝐱 𝑛 s.t. 𝐀 

𝑇 𝐀 = 𝐈 (1) 

here the columns of 𝐀 ∈ 𝐑 

𝑀×𝑑 correspond to the basis vectors and 𝐱 𝑛 
re subject-specific projection weights. The basis vectors capture com-

on pattern across population, whereas the projection vector describes

ubject variability. We incorporated an orthogonality constraint over

 to remove redundancy from the basis vectors. We also introduce a

raph based Laplacian regularizer on the basis matrix 𝐀 to enforce that

he highly correlated brain regions play a similar role in projection: 

𝐫 ( 𝐀 

𝑇 𝐋𝐀 ) = 

∑
( 𝑖,𝑗) 

𝑤 𝑖𝑗 ||𝐚 𝑖 − 𝐚 𝑗 ||2 2 (2) 

here 𝐚 𝑖 denotes the 𝑖 th row of 𝐀 , and 𝑤 𝑖𝑗 is the Pearson correlation

etween the activation map of region 𝑖 and region 𝑗 across the training

ata. To ensure convexity we threshold these correlations to be positive.

The fMRI data is acquired while the subjects perform a standardized

ask in the scanner. Hence, most of the data variance will be concen-

rated in a consistent set of brain regions across subjects. The orthogo-

ality constraint in our model reduces the redundancies in the learned

ases vectors while simultaneously ensuring that they capture most of

he data variance. 
3 
In our model for the genetic data we use a set of LD independent SNPs

epresented as 𝐠 𝑛 . Let 𝐺 denote the number of genetic variants under

tudy, so the genetic data has dimensionality 𝐠 𝑛 ∈ 𝐑 

𝐺×1 . We represent

 𝑛 as a linear combination of basis vectors, i.e., 

 𝑛 ≈ 𝐁𝐱 𝑛 (3) 

here 𝐁 is the basis matrix. Notice that we have coupled the imaging

nd genetic domains by tying them to the same latent projection 𝐱 𝑛 . We

ntroduce an 𝓁 21 penalty on the basis matrix as regularization. Mathe-

atically, 

|𝐁 ||2 , 1 = 

𝐺 ∑
𝑖 =1 

||𝐛 𝑇 
𝑖 
||2 (4) 

here 𝐛 𝑇 
𝑖 

is the 𝑖 th row of 𝐁 . Eq. (4) selects a sparse set of genetic vari-

nts through the 𝓁 1 penalty across rows. Simultaneously, 𝓁 2 penalty

cross columns preserves the representational similarity across basis

ectors. 

We note that even though we use similar representation schemes

or the imaging and genetics data, they are different modalities. In con-

rast to fMRI data, the SNP data is more variable across subjects, and

ends to be sparse. Additionally, standard preprocessing for SNP data

nvolves linkage disequillibrium (LD) correction, which removes much

f the correlation between pairs of SNPs. Therefore, we have not made

dditional orthogonality assumptions. Instead, we use an 𝓁 2 , 1 norm to

elect a sparse set of relevant SNPs across the projections. From an opti-

ization standpoint the SNP data has much higher dimensionality than

he imaging data. An orthogonality constraint over the high dimensional

NP data would make the optimization unstable. Since our fMRI acti-

ation maps are based on a region parcellation, rather than voxel-wise

nalysis, we circumvent the issue. 

.3. Diagnosis Prediction 

We use the subject-specific projection coefficients { 𝐱 𝐧 } 𝑁 

𝑛 =1 to predict

iagnosis. Mathematically, the diagnosis prediction is captured in a lo-

istic regression framework, where we represented the class labels as,

 𝑛 ≈ 𝜎( 𝐱 𝑇 
𝑛 
𝐜 ) . Here, 𝜎( ⋅) is the standard sigmoid function and 𝐜 ∈ 𝐑 

𝑑×1 is

he regression vector. We introduce an 𝓁 2 penalty on both { 𝐜 , 𝐗 } to make

he optimization bounded and well posed. 

Notice that we have coupled both the data modalities by tying the

inear projection coefficients 𝐱 𝑛 to the same latent space. These coeffi-

ients are used as a low-dimensional feature vector to predict diagnosis.

his assumption allows us to extract discriminative patterns in 𝐀 and 𝐁
hat are associated with each other. For example, if the 𝑑th basis ele-
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Fig. 2. The alternating minimization approach to estimate the set of minimizers. 
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ent is highly discriminative, then the corresponding coefficient of the

ogistic regression will be large. Thus, our joint formulation enables us to

nd discriminative patterns that simultaneously capture the data vari-

tions while being predictive of the disease. While our framework does

ot require the imaging and genetics data dimensions 𝑀 and 𝐺 to be

qual, it assumes that both modalities can be represented by the same

umber of basis vectors. 

.4. Joint Optimization 

We combine Eqs. (1) , (3) , the logistic regression loss, and the reg-

larization losses in a single joint objective function. This joint learn-

ng strategy guides groupwise discrimination informed by the two data

odalities. Our joint objective function can be written as 

 ( 𝐀 , 𝐁 , 𝐗 , 𝐜 ) = ||𝐅 − 𝐀𝐗 ||2 
𝐹 
+ ||𝐆 − 𝐁𝐗 ||2 

𝐹 

− 

𝑁 ∑
𝑛 =1 

(
𝑦 𝑛 log 

(
𝜎
(
𝐱 𝑇 
𝑛 
𝐜 
))

+ (1 − 𝑦 𝑛 ) log 
(
1 − 𝜎

(
𝐱 𝑇 
𝑛 
𝐜 
)))

+ 

𝜆1 
2 
𝑇 𝑟 

(
𝐀 

𝑇 𝐋𝐀 

)
+ 𝜆2 ||𝐁 ||2 , 1 + 

𝜆3 
2 
||𝐗 |2 

𝐹 
+ 

𝜆4 
2 
||𝐜 ||2 2 

s.t. 𝐀 

𝑇 𝐀 = 𝐈 (5) 

e have concatenated the patient activations maps as 𝐅 = [ 𝐟 1 , … , 𝐟 𝑁 

] ,
he genetic variants as 𝐆 = [ 𝐠 1 , … , 𝐠 𝑛 ] , and the projection coefficients

s, 𝐗 = [ 𝐱 1 , … , 𝐱 𝑁 

] . The first two terms in Eq. (5) capture the error asso-

iated with the imaging and genetic data representations, respectively.

e minimize the Frobenius norms, ||𝐅 − 𝐀𝐗 ||2 
𝐹 

and ||𝐆 − 𝐁𝐗 ||2 
𝐹 

to es-

imate the unknown variables, { 𝐀 , 𝐁 , 𝐗 } . The third term captures the

inary cross entropy loss for patient versus control prediction. The hy-

erparameters { 𝜆1 , 𝜆2 , 𝜆3 , 𝜆4 } control the influence of the regularization

enalties, as described in the previous section. 

We use an alternating minimization strategy to optimize the un-

nown variables { 𝐀 , 𝐁 , 𝐗 , 𝐜 } in Eq. (5) from the data { 𝐟 𝑛 , 𝐠 𝑛 , 𝑦 𝑛 } 𝑁 

𝑛 =1 . This

rocedure iteratively updates each unknown variable while holding the

emaining variables constant. The alternating minimization approach is

llustrated in Fig. 2 . 

Optimize 𝐀 using ADMM The orthonormality constraint in Eq. (5) ren-

ers the problem nonconvex with respect to the matrix 𝐀 . We circum-

ent this problem using Alternating Direction Method of Multipliers

ADMM). At a high level, ADMM introduces auxiliary variables to create

 larger problem, such that each subproblem is easy to solve. In this case

e introduce the matrices 𝐂 and 𝐃 into Eq. (5) to obtain the following

odified objective for both them and the matrix 𝐀 : 

 𝐀 

∗ , 𝐂 

∗ , 𝐃 

∗ } = argmin 
𝐀 , 𝐂 , 𝐃 

||𝐅 − 𝐂𝐗 ||2 
𝐹 
+ 

𝜆1 
2 
𝑇 𝑟 ( 𝐃 

𝑇 𝐋𝐃 ) 

.t. 𝐀 

𝑇 𝐀 = 𝐈 , 𝐂 = 𝐀 , and 𝐃 = 𝐀 (6) 

e find the closed form solution of { 𝐀 , 𝐂 , 𝐃 } for the three subproblems

y constructing an augmented Lagrangian to Eq. (6) defined as follows: 

 ( 𝐀 , 𝐂 , 𝐃 , 𝐖 , 𝐙 ) = ||𝐅 − 𝐂𝐗 ||2 
𝐹 
+ 

𝜆1 
2 
𝑇 𝑟 ( 𝐃 

𝑇 𝐋𝐃 ) 

+ 

1 
𝜇
||𝐃 − 𝐀 + 𝐖 ||2 

𝐹 
+ 

1 
𝜇
||𝐂 − 𝐀 + 𝐙 ||2 

𝐹 

s.t. 𝐀 

𝑇 𝐀 = 𝐈 (7) 
4 
here { 𝐖 , 𝐙 } are dual variables. We minimize Eq. (7) with respect to the

rimal variables { 𝐀 , 𝐂 , 𝐃 } and maximize it with respect to the dual vari-

bles { 𝐖 , 𝐙 } . We solve this problem in a iterative fashion. The pseudo

ode for our ADMM approach is shown in Algorithm 1 . Each step is

urther detailed below. 

lgorithm 1 Iterative procedure for ADMM based on Augmented La-

rangian in Eq. (7) . 

Initialise 𝐀 

0 , 𝐂 

0 , 𝐃 

0 , 𝐖 

0 , 𝐙 

0 

for 𝑖 = 0 to Convergence do 

𝐀 

𝑖 +1 = 𝐔𝐈 𝑀×𝑑 𝐕 

𝑇 

𝐃 

𝑖 +1 = 

2 
𝜇

(
𝜆1 𝐋 + 

2 
𝜇
𝐈 
)−1 

( 𝐀 − 𝐖 ) 

𝐂 

𝑖 +1 = 

(
𝐅𝐗 

𝑇 + 

2 
𝜇
( 𝐀 − 𝐙 ) 

)(
𝐗𝐗 

𝑇 + 

2 
𝜇
𝐈 
)−1 

𝐖 

𝑖 +1 = 𝐖 

𝑖 + 𝐃 

𝑖 +1 − 𝐀 

𝑖 +1 

𝐙 

𝑖 +1 = 𝐙 

𝑖 + 𝐂 

𝑖 +1 − 𝐀 

𝑖 +1 

end for 

(1) Closed form update for 𝐀 : We update 𝐀 by minimizing corre-

ponding terms of Eq. (7) . 

 

𝑖 +1 = argmin 
𝐀 

1 
𝜇
||𝐃 

𝑖 − 𝐀 + 𝐖 

𝑖 ||2 
𝐹 
+ 

1 
𝜇
||𝐂 

𝑖 − 𝐀 + 𝐙 

𝑖 ||2 
𝐹 

s.t. 𝐀 

𝑇 𝐀 = 𝐈 

iven the other primal and dual variables, the update of 𝐀 has a closed

orm analytical solution. 

 = 𝐔𝐈 𝑀×𝑑 𝐕 

𝑇 

here 𝐈 𝑀×𝑑 is a matrix of dimension 𝑀 × 𝑑 whose diagonal elements

re 1, 𝐔 ∈ 𝐑 

𝑀×𝑀 , 𝐕 ∈ 𝐑 

𝑑×𝑑 are two orthogonal matrices and Σ ∈ 𝐑 

𝑀×𝑑 

s a diagonal matrix satisfying the SVD factorization 𝐃 + 𝐂 + 𝐖 + 𝐙 =
 Σ𝐕 

𝑇 . The solution ( Lai and Osher, 2014 ) is similar to Procustes prob-

em ( Schönemann, 1966 ). 

(2) Closed form update for 𝐃 and 𝐂 : The augmented Lagrangian is

onvex in each of the variables { 𝐂 , 𝐃 } while keeping the other variables

onstant. Hence, we can simply set the gradient of the cost function with

espect to 𝐂 and 𝐃 , equal to zero. 

 = 

2 
𝜇

( 

𝜆1 𝐋 + 

2 
𝜇
𝐈 
) −1 

( 𝐀 − 𝐖 ) (8) 

 = 

( 

𝐅𝐗 

𝑇 + 

2 
𝜇
( 𝐀 − 𝐙 ) 

) ( 

𝐗𝐗 

𝑇 + 

2 
𝜇
𝐈 
) −1 

(9) 

(3) Update for 𝐖 and 𝐙 : We maximize Eq. (7) with respect to 𝐖
nd 𝐙 , by performing gradient ascent: 

 

𝑖 +1 = 𝐖 

𝑖 + 𝐃 

𝑖 +1 − 𝐀 

𝑖 +1 (10) 

 

𝑖 +1 = 𝐙 

𝑖 + 𝐂 

𝑖 +1 − 𝐀 

𝑖 +1 (11) 

aximizing the Lagrangian with respect to the dual variables ensures

hat the constraints are satisfied. 

Optimize 𝐁 using fixed point iteration The matrix, 𝐁 does not have a

losed form solution due to the 𝓁 2 , 1 norm. However, it can be efficiently

pdated using a fixed point iteration method. In this method the 𝓁 2 
orm of each row 𝐛 𝑇 

𝑖 
is kept fixed to its value 𝑟 𝑡 

𝑖 
= ||𝐛 𝑇 

𝑖 
||2 from the pre-

ious iteration 𝑡 . The matrix 𝐁 is updated by minimizing the modified

bjective. 

 ( 𝐁 ) = ||𝐅 − 𝐁𝐗 ||2 
𝐹 
+ 𝜆2 

𝐺 ∑
𝑖 =1 

||𝐛 𝑇 
𝑖 
||2 2 

2 𝑟 𝑡 
𝑖 

(12) 
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Fig. 3. The Bayesian framework for our simulation study. 
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q. (12) has closed form solution for each row, 𝐛 𝑇 
𝑖 

. 

 

𝑇 
𝑖 
= 𝐟 𝑖 𝐗 

𝑇 

( 

𝐗𝐗 

𝑇 + 

𝜆2 

2 𝑟 𝑡 
𝑖 

𝐈 
) −1 

here 𝐟 𝑇 
𝑖 

is the 𝑖 th row of matrix, 𝐅 . Since each iteration has a closed

orm solution the algorithm converges very quickly. The proof of con-

ergence can be found in Wang et al. (2012) . Optimizing 𝐗 and 𝐜 using

rust region method 

The cost function  ( ⋅) in Eq. (1 ) is convex in each of the variables

 𝐗 , 𝐜 } while keeping the others constant. However, it does not have

 closed form solution due to the logistic function 𝜎( ⋅) . Therefore, we

olve for 𝐗 and 𝐜 in a iterative fashion using unconstrained trust region

ethod. At each iteration the optimizer estimates a feasible direction

nd a step size to update the variable of interest by minimizing the fol-

owing quadratic program: 

 𝑘 = argmin 𝐬 𝑓 ( 𝐮 𝑘 ) + ∇ 𝐟 𝑇 
𝑘 
𝐬 + 

1 
2 
𝐬 𝑇 𝐇 𝑘 𝐬 

subject to: ||𝐬 || < 𝛿 (13) 

here ∇ 𝐟 𝑘 and 𝐇 𝑘 are the gradient and Hessian of 𝑓 ( 𝐮 ) at 𝐮 𝑘 .
he update 𝐮 → 𝐮 𝑘 + 𝐬 𝑘 is taken such that 𝑓 ( 𝐮 𝑘 + 𝐬 𝑘 ) < 𝑓 ( 𝐮 𝑘 ) .
n our setting 𝑓 ( ⋅) involves the terms of  ( ⋅) that contain

he variable under consideration. For example while mini-

izing over 𝐗 we consider 𝑓 ( 𝐗 ) = ||𝐅 − 𝐀𝐗 ||2 
𝐹 
+ ||𝐆 − 𝐁𝐗 ||2 

𝐹 
−

0 
∑𝑁 

𝑛 =1 
(
𝑦 𝑛 log 

(
𝜎
(
𝐱 𝑇 
𝑛 
𝐜 
))

+ (1 − 𝑦 𝑛 ) log 
(
1 − 𝜎

(
𝐱 𝑇 
𝑛 
𝐜 
)))

+ 

𝜆3 
2 ||𝐗 ||2 

𝐹 
. We

an solve for 𝐜 in a similar fashion. 

.5. Prediction on unseen data 

We use 10 fold cross validation to evaluate the performance of our

odel. In each fold we optimize the variables { 𝐀 

∗ , 𝐁 

∗ , 𝐜 ∗ } over the train-

ng set and used them to evaluate the diagnostic classification on the test

et. During testing we remove the cross entropy term and use { 𝐟 𝑡𝑒𝑠𝑡 , 𝐠 𝑡𝑒𝑠𝑡 }
s input to obtain the projection coefficients, 𝐱 𝑡𝑒𝑠𝑡 . We then use the same

ogistic expression 𝑦 𝑡𝑒𝑠𝑡 = 𝜎( 𝐱 𝑇 
𝑡𝑒𝑠𝑡 

𝐜 ∗ ) to predict the class labels. 

.6. Baseline Comparisons 

We compare the predictive performance of our joint model with five

aseline methods. For each case, we use the same 10 fold cross val-

dation described above. Support vector machine classification Support

ector Machines (SVM) construct a hyper-plane in a potentially high-

imensional and nonlinear feature space of the input data that maxi-

ally separates the two classes ( Ben-Hur and Weston, 2010; Wang and

thers., 2007 ). Here, as a baseline we use a linear SVM based on the

oncatenated imaging and genetic features, [ 𝐟 𝑇 
𝑛 
, 𝐠 𝑇 

𝑛 
] 𝑇 . Once again the

utput is the disease status 𝑦 𝑛 . Random forest classification Random For-

st (RF) uses an ensemble of decision trees ( Sim et al., 2013 ) to extract

redictive features for classification. Each decision tree is constructed

sing a random subset of the input features. This double randomization

rovides robustness to overfitting over deterministic models ( Roy and

arocque, 2012 ). Once again, the input to the RF will be the concate-

ated imaging and genetic features, { 𝐟 𝑛 , 𝐠 𝑛 } , and the output will be a

atient versus control prediction, i.e., the label 𝑦 𝑛 . Canonical correlation

nalysis + RF classification Canonical Correlation Analysis (CCA) finds

ivariate associations between the imaging and genetics data. These

anonical coefficients are obtained by maximizing the following func-

ion: 

 𝐮 ∗ 
𝑖 
, 𝐯 ∗ 

𝑖 
} = max 𝐮 𝑖 , 𝐯 𝑖 𝑐𝑜𝑟𝑟 ( 𝐅 𝑇 𝐮 𝑖 , 𝐆 

𝑇 𝐯 𝑖 ) 

here { 𝐮 𝑖 , 𝐯 𝑖 } are the orthonormal basis vectors. These basis vectors

orm a low dimensional space where the two data modalities are maxi-

ally correlated. After obtaining the individual basis vectors, we stack

hem as matrices 𝐔 = [ 𝐮 , … , 𝐮 ] ∈ 𝐑 

𝑁×𝑅 and 𝐕 = [ 𝐮 , … , 𝐮 ] ∈ 𝐑 

𝐺×𝑅

1 𝑅 1 𝑅 

5 
o generate the imaging and genetics projection coefficients 
[
𝐟 𝑇 
𝑚 
𝐔 , 𝐠 𝑇 

𝑚 
𝐕 

]
,

hich are used as inputs to an RF classifier to predict 𝑦 𝑛 . 

Parallel independent component analysis + RF classification Parallel

CA (p-ICA) decomposes the imaging and genetics data into indepen-

ent but interrelated networks. This is done by jointly maximizing mul-

iple ‘cost functions,’ one of which specifies the independence among

etworks in each of the data sets and another term that maximizes the

orrelation among pairs of networks across data sets. Formally, 

 = 𝐒𝐗 and 𝐆 = 𝐖𝐙 

here 𝐒 , 𝐖 are independent source matrices and the 𝐗 , 𝐙 are loading

atrices whose cross-correlation is maximized. Since p-ICA is a purely

enerative model, we concatenate the loading matrices 
[
𝑋 𝑡𝑒𝑠𝑡 , 𝑍 𝑡𝑒𝑠𝑡 

]
and

se it as the input feature vector for a random forest classifier. 

During training, we apply p-ICA to just the training data to estimate

he sources { 𝐒 𝑡𝑟𝑎𝑖𝑛 , 𝐖 𝑡𝑟𝑎𝑖𝑛 } . During testing, we use these sources to obtain

he loading matrices for the test data via: 

 𝑡𝑒𝑠𝑡 = 𝐒 𝑡𝑟𝑎𝑖𝑛 𝐗 and 𝐆 𝑡𝑒𝑠𝑡 = 𝐖 𝑡𝑟𝑎𝑖𝑛 𝐙 

maging only variant of our framework We also consider a variant of our

ethod that involves only the imaging terms. This baseline will help

s quantify the improvement that we can achieve by incorporating the

enetic data. As previously described we optimize the variables, { 𝐀 

∗ , 𝐜 ∗ }
n training set and use it for prediction 𝑦 𝑡𝑒𝑠𝑡 = 𝜎( 𝐱 𝑇 

𝑡𝑒𝑠𝑡 
𝐜 ∗ ) on test set. 

Genetic Only variant of our framework Finally, we consider a variant

f our method that involves only the genetic terms. The setup is similar

o the above. Here we optimize the variables, { 𝐁 

∗ , 𝐜 ∗ } on training set

nd use it for prediction 𝑦 𝑡𝑒𝑠𝑡 = 𝜎( 𝐱 𝑇 
𝑡𝑒𝑠𝑡 

𝐜 ∗ ) on test set. 

. Synthetic Experiment 

As a sanity check, we verify whether our model can identify the un-

nown variables when the underlying assumptions of our objective func-

ion are met. Notice that our joint framework has an equivalent Bayesian

odel, as illustrated in Fig. 3 . Namely, for each patient 𝑛 , the process

tarts by sampling a latent projection 𝐱 𝑛 from a zero-mean Gaussian,

orresponding to 𝓁 2 regularization in Eq. (1 ). From here, the imaging

ata 𝐟 𝑛 is generated as the noisy observation of the linear combination

f the orthonormal basis matrix, 𝐀 : 

 𝑛 = 𝐀𝐱 𝑛 + 𝜖𝑛 

here 𝜖𝑛 ∼  (0 , 𝜎2 𝐈 ) with effective noise level 𝜎. We generate the de-

erministic orthonormal matrix 𝐀 as a QR decomposition of random

aussian matrix, 𝐀̃ , with each column sampled from  

(
𝛍𝐀 , 0 . 01 𝐈 

)
with

parse binary mean 𝛍𝐀 ∈ [0 , 1] 𝑀 . In our analysis we explore the task

ased fMRI data which has an underlying assumption that a sparse set

egions involve in the task show significant activity compared to the

est of the brain. This process approximates the Laplacian constraints

nforced on 𝐀 in Eq. (1 ). 

The procedure to generate the genetics vector 𝐠 𝑛 is similar but based

n the projection matrix 𝐁 : 

 𝑛 = 𝐁𝐱 𝑛 + 𝜈𝑛 

here 𝜈𝑛 ∼  (0 , 𝛾2 𝐈 ) . The columns 𝐛 𝑗 from the matrix 𝐁 is sampled as a

andom multivariate Gaussian  

(
𝛍𝐁 , 0 . 01 𝐈 

)
with a sparse mean vector
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Fig. 4. The overlap between our estimated bases with the true sparse bases 𝐀 and 𝐁 at varying level of noise. Compared to the numerical range of the feature vectors 

we have sweeped over four standard deviation for the noise. 
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Fig. 5. Left The experimental paradigm of the N-Back task. The top row shows 

a sample response for N0-Back and the bottom row shows a sample response for 

N2-Back. Right The experimental setup for the SDMT task. 

Table 1 

The number of subjects present from each experimental 

paradigms from the two institutions. 

Institution 

fMRI Paradigms 

N-Back SDMT 

Cases Controls Cases Controls 

LIBD 53 53 46 47 

BARI 43 54 
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𝐵 ∈ [0 , 1 , 2] 𝐺 . This choice of mean mimics the real-life scenario where

NP values are generally given as [0 , 1 , 2] based on the variation of the

wo alleles. Additionally, Gaussian sampling across the columns of 𝐁
imic the 𝓁 21 regularization as shown in Eq. (1 ). 

Finally, the discriminative term is obtained via 

 𝑛 = 𝜎
(
𝐜 𝑇 𝐱 𝑛 

)
here 𝐜 𝑛 is a zero-mean Gaussian. 𝐜 ∼  (0 , 𝐈 ) . 

We evaluate the performance of our model and optimization for dif-

erent noise levels on the imaging and genetic representations. The per-

ormance metric is the accuracy of our selected features, as quantified

y the Jaccard overlap between the non-zero locations of the original

ases matrices 𝐀 and 𝐁 and the estimated bases matrices 𝐀̂ and 𝐁̂ , re-

pectively. 

In our synthetic experiment the dimensionality of the data is similar

o our real data, i.e., 𝐟 𝑛 ∈ 𝐑 

246×1 , 𝐠 𝑛 ∈ 𝐑 

1242×1 , and number of subjects

 = 106 . Empirically, this allows us to evaluate whether our generative-

redictive framework can identify the set of ground-truth biomarkers in

oth 𝐀 , and 𝐁 . As our detection strategy we take the absolute sum of

he columns of estimated matrices { ̂𝐀 , ̂𝐁 } , and identify the top { 𝑛 𝑔 , 𝑛 𝑖 }
egions, where 𝑛 𝑖 is the number of true non-zero locations in 𝛍𝐀 , and

 𝑔 is the number of true non-zero locations in 𝛍𝐁 . Finally, we find the

verlap between the estimated locations with the true locations which

s shown in Fig. 4 . A high Jaccard index indicates that our model can

orrectly find the non-zeros location in 𝛍𝐀 and 𝛍𝐁 . 

Figure 4 shows the performance of our model at varying noise level

s governed by 𝜎 and 𝛾. As seen, in one case we fix the noise for 𝐟 𝑛 at

= 0 . 2 and sweep over 𝛾, while in the other case we fix the noise for

 𝑛 at 𝛾 = 0 . 4 and sweep over 𝜎. We allowed a wide range for our noise

arameter { 𝜎2 ∈ [0 . 01 , 1] , 𝛾2 ∈ [0 . 01 , 4]} to check the model’s robustness

gainst random noise. We observe that 𝛾2 = 0 . 16 and 𝜎2 = 0 . 04 are the

ariability in our real-world fMRI and genetic datasets, which lies well

ithin the stable region of our model as shown in Fig. 4 . With the in-

rease in noise the amount of overlap as quantified by the Jaccard Index

ecreases. However, the model can extract relevant features with high

ccuracy over a wide range of input noise. This shows that the optimiza-

ion strategy is robust and is capable to extract the informative features

ven when we are outside noise regime of our real-world data. 

. Experiments 

.1. Real-world Study of Schizophrenia 

.1.1. Experimental Datasets 

We validate our framework on task fMRI and genetic data acquired

t two different sites on two different study populations. The first dataset

as provided by researchers at the Lieber Institute for Brain Devel-

pment (LIBD) in Baltimore, MD, USA. The second dataset was acquired
6 
t the University of Bari Aldo Moro, Italy. The data collection procedures

nd pre-processing were consistent across sites. 

Neuroimaging data As shown in Fig. 5 , our datasets include two fMRI

aradigms that have been used to study schizophrenia ( Callicott et al.,

003; Rasetti et al., 2014 ). The first paradigm is a block design working

emory task (N-Back). During the 0-back blocks, participants were in-

tructed to press a button corresponding to a number displayed on the

creen. During the 2-back working memory blocks, participants were

nstructed to press the button corresponding to the number they had

een two stimuli previously. We use a standard General Linear Model

GLM) to estimate the activation coefficients from each block separately.

he final contrast is the subtraction 𝛽2− 𝑏𝑎𝑐𝑘 − 𝛽0− 𝑏𝑎𝑐𝑘 . Our region-wise

nputs are the average of these contrast values across all voxels in each

articular region. The second paradigm is a block design declarative

emory task (SDMT), which involved incidental encoding of complex

versive visual scenes. Similar to the N-back analysis we estimate the

oefficients of association from a generalized linear model. The SDMT

ontrast map is the subtraction 𝛽𝑎𝑣𝑒𝑟𝑠𝑖𝑣𝑒 − 𝛽𝑐𝑟𝑜𝑠𝑠ℎ𝑎𝑖𝑟 . Our region-wise in-

uts are the average of these contrast values across all voxels in each

arcel of brain. Further details for generating the contrast maps can be

ound in ( Friston et al., 1995 ). 
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Table 2 

The demographic of all the subjects used for our 

analysis. The education data for BARI is not avail- 

able and hence is not included in our analysis. 

Demographic 

LIBD BARI 

N-back SDMT N-back 

Sex (M/F) 65∕41 57∕36 74∕23 
Age (years) 30 ± 10 33 ± 9 30 ± 9 
Education (years) 15 ± 2 15 ± 3 –

IQ 105 ± 10 105 ± 8 107 ± 8 
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Fig. 6. The change in AUC for different ranges of the hyperparameters 

{ 𝜆1 , 𝜆2 , 𝜆3 , 𝜆4 } . We sweep one hyperparameter while keeping the others constant 

at their stable value. This analysis has been done on the N-back dataset. 
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Table 1 reports the subject numbers for each paradigm and site. The

roups were matched on age, IQ (WRAT score), years of education and

n the case of N-Back, the percent correct response for the 2-Back task.

able 2 shows the demographic variability of all the subjects used in our

nalysis. Here we note that the education data for BARI is not available

o us and hence is not used in the analysis. 

All fMRI data was acquired on 3-T General Electric Sigma scanners

EPI, TR/TE = 2000/28 msec; flip angle = 90; field of view = 24 cm, res

 3 . 75 × 3 . 75 × 6 𝑚𝑚 

3 for NBack and res = 3 . 75 × 3 . 75 × 5 𝑚𝑚 

3 for SDMT).

MRI preprocessing included slice timing correction, realignment, spa-

ial normalization to an MNI template, smoothing and motion parameter

egression. SPM12 was used to generate activation and contrast maps for

ach paradigm. We use the Brainnetome atlas ( Fan et al., 2016 ) to define

46 cortical and subcortical regions. The input to our model is the av-

rage contrast map over these 246 ROIs. As fMRI data are often subject

o noise, we average the activation across voxels in a single region to

onstruct our model input. This averaging mitigates the impact of noise

nd helps us to find meaningful patterns across groups. In addition, we

egress out the effect of age, IQ (WRAT reading score), years of edu-

ation and percent-correct on the 2-back task for the N-BACK dataset,

nd we regress out the effect of age, IQ (WRAT reading score), years

f education for the SDMT dataset. We regressed out working memory

erformance as it may partly account for differences in brain activity be-

ween patients and controls and may be related with other explanatory

ariables, such as genetics ( Pergola et al., 2016 ). Thus, we treat it as

 confounder in the analysis. However, the SDMT contrast used in this

ork is specific to the encoding phases (aversive scenes vs. crosshair),

o we do not regress retrieval performance. The subjects were not in-

ormed about the retrieval portion beforehand, so the encoding is in-

idental ( Rasetti et al., 2014 ). In all cases, we estimate the regression

oefficients only from the training set and use them for the test set. 

Genetic data Genotyping was done using variate Illumina Bead Chips

ncluding 510K/ 610K/660K/2.5M. Quality control and imputation

ere performed using PLINK and IMPUTE2, respectively. The result-

ng 102K linkage disequilibrium independent SNPs ( 𝑟 2 < 0 . 1 in 500kb)

re used to obtain our genetic data (see Chen et al., 2018 for further

etails). Given the small sample sizes in Table 1 ( 𝑁 ≈ 100 for each

ataset), we subselect a set of SNPs whose p-value for disease associ-

tion is 𝑝 < 10 −4 , as identified by the PGC-Consortium GWAS analysis.

n total, this threshold yields 1242 linkage disequilibrium independent

NPs, which balances the representativeness of the genetic data with ro-

ustness of our optimization procedure. We use the same reduced set of

NPs for all cross validation folds. This reduced set was obtained from

 larger genetics study of 36,989 schizophrenia patients and 113,075

eurotypical controls run by the PGC Consortium. Further details about

his study can be found in Ripke et al. (2014) . Hence, our feature selec-

ion procedure does not confound the training and testing data in our

nalysis. 

.2. Evaluation Strategy 

We quantify the performance of our method and all the baselines in

erms of Accuracy (Acc), sensitivity (Sens) and Specificity (Spec). Accu-
7 
acy is a measure of correct detection of the class labels. Sensitivity is the

atio of the true positives among all predicted positives, whereas speci-

city is the ratio of the true negatives among all predicted negatives.

ormally, 

cc = 

TP + TN 

TP + FP + TN + FN 

ens = 

TP 

TP + FN 

pec = 

TN 

TN + FP 

here TP = True Positive, TN = True Negative, FP = False Positive,

N = False Negative. 

.3. Hyperparameter Selection 

Our generative-discriminative framework contains the following hy-

erparameters: { 𝜆1 , 𝜆2 , 𝜆3 , 𝜆4 } to control the contributions of the reg-

larization terms in the optimization, and 𝑑 specifies the latent space

imensionality. To combat overfitting, our strategy is to optimize these

yperparameters based on the LIBD N-back dataset and use the same

alues for the LIBD SDMT and Bari N-back analyses. We sweep the regu-

arizers { 𝜆1 , 𝜆2 , 𝜆3 , 𝜆4 } over two orders of magnitude and the latent space

imension from 𝑑 = 5 , … , 11 . In our analysis we have observed that the

yperparameter 𝜆3 , and 𝜆4 are stable over a range of [0 . 005 − 5] , so we

x them at 𝜆3 = 1 , 𝜆4 = 1 . The sensitivity plot is shown in Fig. 6 . Based

n our experiments we fix the feature dimension ( 𝑑) , the imaging reg-

larizer ( 𝜆1 ) , the genetic regularizer ( 𝜆2 ) , to { 𝑑 = 7 , 𝜆1 = 1 , 𝜆2 = 10} . We

ave used the same hyperparameter setting for all the variants of our

odel for both the SDMT (LIBD), and the N-Back (BARI) datasets. The

ensitivity plots, Fig. 6 of { 𝜆1 , 𝜆2 } also show stability over a wide range,

ut they are closely tied with the biomarker detection regime. So, for

uture applications on a standalone dataset we advise the researcher to

ne tune them using some validation techniques, like cross-validation. 

As our optimization is non-convex, we use an informed initialization

trategy to satisfy the variable constraints while not biasing the solu-

ion path. To this end, we initialize the imaging basis matrix 𝐀 as a QR
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Table 3 

Classification performance of each method. We abbreviated Sensitivity to SENS, Specificity to SPEC, Accuracy to ACC, and Area Under Curve to AUC. 

Method 

LIBD BARI 

N-Back SDMT N-Back 

SPEC SENS ACC AUC SENS SPEC ACC AUC SENS SPEC ACC AUC 

SVM 0 . 53 ± 0 . 03 0 . 44 ± 0 . 03 0 . 49 ± 0 . 02 0 . 35 ± 0 . 04 0 . 60 ± 0 . 06 0 . 57 ± 0 . 03 0 . 57 ± 0 . 02 0 . 56 ± 0 . 03 0 . 73 ± 0 . 04 0 . 49 ± 0 . 05 0 . 63 ± 0 . 04 0 . 70 ± 0 . 02 
RF 0 . 55 ± 0 . 05 0 . 52 ± 0 . 03 0 . 53 ± 0 . 03 0 . 54 ± 0 . 03 0 . 64 ± 0 . 03 0 . 57 ± 0 . 04 0 . 61 ± 0 . 02 0 . 65 ± 0 . 03 𝟎 . 𝟖𝟖 ± 𝟎 . 𝟎𝟏 0 . 49 ± 0 . 03 0 . 70 ± 0 . 01 𝟎 . 𝟖𝟒 ± 𝟎 . 𝟎𝟏 
CCA + RF 0 . 49 ± 0 . 10 0 . 48 ± 0 . 09 0 . 49 ± 0 . 08 0 . 52 ± 0 . 08 0 . 53 ± 0 . 05 0 . 48 ± 0 . 09 0 . 51 ± 0 . 05 0 . 51 ± 0 . 05 0 . 75 ± 0 . 06 0 . 31 ± 0 . 05 0 . 56 ± 0 . 05 0 . 56 ± 0 . 05 
p-ICA + RF 0 . 49 ± 0 . 09 0 . 45 ± 0 . 08 0 . 47 ± 0 . 04 0 . 47 ± 0 . 05 0 . 53 ± 0 . 10 0 . 41 ± 0 . 10 0 . 47 ± 0 . 08 0 . 45 ± 0 . 08 0 . 75 ± 0 . 05 0 . 65 ± 0 . 05 0 . 71 ± 0 . 03 0 . 76 ± 0 . 02 
Our Method (Imaging Only) 0 . 55 ± 0 . 04 𝟎 . 𝟔𝟐 ± 𝟎 . 𝟎𝟑 0 . 58 ± 0 . 02 0 . 63 ± 0 . 02 0 . 63 ± 0 . 04 0 . 59 ± 0 . 03 0 . 61 ± 0 . 03 0 . 67 ± 0 . 02 0 . 67 ± 0 . 04 0 . 80 ± 0 . 05 0 . 73 ± 0 . 03 0 . 79 ± 0 . 02 
Our Method (Genetic Only) 0 . 44 ± 0 . 03 0 . 50 ± 0 . 05 0 . 47 ± 0 . 03 0 . 45 ± 0 . 02 0 . 45 ± 0 . 08 0 . 45 ± 0 . 07 0 . 45 ± 0 . 04 0 . 43 ± 0 . 03 0 . 65 ± 0 . 02 0 . 66 ± 0 . 02 0 . 66 ± 0 . 02 0 . 69 ± 0 . 01 
Our Method (Imaging + 

Genetics) 

𝟎 . 𝟓𝟔 ± 𝟎 . 𝟎𝟒 0 . 60 ± 0 . 02 𝟎 . 𝟓𝟖 ± 𝟎 . 𝟎𝟐 𝟎 . 𝟔𝟑 ± 𝟎 . 𝟎𝟐 𝟎 . 𝟔𝟒 ± 𝟎 . 𝟎𝟒 𝟎 . 𝟔𝟏 ± 𝟎 . 𝟎𝟒 𝟎 . 𝟔𝟑 ± 𝟎 . 𝟎𝟑 𝟎 . 𝟔𝟗 ± 𝟎 . 𝟎𝟐 0 . 66 ± 0 . 04 𝟎 . 𝟖𝟑 ± 𝟎 . 𝟎𝟐 𝟎 . 𝟕𝟑 ± 𝟎 . 𝟎𝟐 0 . 81 ± 0 . 01 
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ecomposition of random Gaussian matrix. The QR decomposition satis-

es the orthogonality constrain over columns of 𝐀 in our framework. We

nitialize 𝐁 , 𝐗 , 𝐜 such that each element is sampled from a uniform distri-

ution between 0 and 1. We note that since our optimization converges

o a local optimum, different initializations may produce different final

olutions. However, Table 3 suggests that classification performance re-

ains stable across different cross validation folds, each of which has

ifferent initialization. 

Similar to our method, we optimized the hyperparameters for the

aseline methods on the LIBD N-back data and used these settings for

he two analyses. For RF classification we swept over the number and

epth of the trees. We controlled the depth of the tree depth by set-

ing the minimum number of observations per leaf node. These param-

ter sweeps were repeated for CCA+RF and pICA+RF. Based on these

weeps, we fixed { No. trees = 2000 , 𝑀𝑖𝑛𝑙𝑒𝑎𝑓𝑆𝑖𝑧𝑒 = 5} for the standard

F classification { No. trees = 8000 , 𝑀𝑖𝑛𝑙𝑒𝑎𝑓𝑆𝑖𝑧𝑒 = 10} for CCA+RF

nd { No. trees = 9000 , 𝑀𝑖𝑛𝑙𝑒𝑎𝑓𝑆𝑖𝑧𝑒 = 1} for pICA+RF. Additionally,

or the implementation of pICA we use the standard hyperparameter set-

ing as explained in the Fusion ICA (FIT) ( Rachakonda et al., 2012 ) tool-

ox. The linear SVM includes one hyperparameter, BoxConstraint which

ontrols the outlier penalty. Our final settings was { 𝐵𝑜𝑥𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 1} .

.4. Class Prediction 

Table 3 reports the classification performance of all methods on the

hree fMRI datasets. We can see that the machine learning baselines

erform poorly compared to all the three variants of our model. This

esult suggests that our coupled generative-discriminative framework is

ble to extract meaningful features from the data that capture group

evel differences. Moreover, we observe that our framework achieves

he best cross-site performance between the LIBD and Bari cohorts. This

erformance gain demonstrates that our model is agnostic to the choice

f hyperparameters and our optimization procedure is robust enough

o handle noises associated with different sample sets. Though all the

ariants of our model achieve good classification accuracy compared to

he baselines, the performance gain obtained by integrating both the

maging and genetic data modalities is apparent across all experiments

articularly with regards to accuracy and AUC. This performance gain

an also be attributed tot the fact that our method can find patterns from

he imaging and genetics data that are highly predictive of the disease. 

.5. Predictive Biomarkers 

In this section, we aim to identify and interpret the underlying bi-

logy of potential imaging-genetics biomarkers. We emphasize that our

nalyses and conclusions are exploratory, and for this reason, we focus

n just the LIBD data. 

We use the patient specific scores 𝐱 𝑛 for disease classification and

ata reduction. They contain information both about the imaging data

nd the genetic data. These vectors are 𝑑 dimensional where each di-

ension can be associated with a column of 𝐀 and a column of 𝐁 . In
8 
rder to identify which columns of 𝐀 and 𝐁 contain most discrimina-

ive patterns we perform a KS test ( Kolmogorov-Smirnov Test, 2008 )

etween 𝐱 𝑑 
𝑑𝑖𝑠𝑒𝑎𝑠𝑒 

( 𝑑th feature of the disease group) and 𝐱 𝑑 
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

( 𝑑th fea-

ure of the control group). A low p-value along a specific dimension 𝑑

ould mean that the distribution of that feature is not equal between

atients and controls. The KS test gives us 𝑑 p-values for all the 𝑑 dimen-

ions of 𝐱 𝑛 . Finally, we select the significant components with FDR cor-

ected 𝑝 < . 01 . Here, we note that this test allows us to prune out regions

nd SNPs that do not track with diagnosis, the interpretation should be

iewed as an exploratory analysis, and further work is required to verify

linical relevance. 

We perform a subsampling experiment to quantify the repro-

ucibility of these bases. Namely, we train the model over the com-

lete dataset to identify the reference basis vectors indicated by(
𝐚 ∗ 1 , 𝐛 

∗ 
1 
)
, … , 

(
𝐚 ∗ 
𝑑 
, 𝐛 ∗ 

𝑑 

)}
. Our subsampling strategy relies on random sam-

ling of data without replacement. At a high level patterns that are

onsistent with the reference vectors 
{(

𝐚 ∗ 1 , 𝐛 
∗ 
1 
)
, … , 

(
𝐚 ∗ 
𝑐 
, 𝐛 ∗ 

𝑐 

)}
across all

he trials are more likely to generalize beyond the present experimental

etup. The subsampling strategy to identify the biomarkers is shown in

lgorithm 2 . 

lgorithm 2 Subsampling strategy for identifying predictive biomark-

rs. 

1: Train the model on the complete dataset. 

2: Perform KS test on loading vectors 𝑥 𝑑 
𝑛 

(subject 𝑛 and basis 𝑑) between

patients and controls. 

3: Identify the significant imaging and genetic components{(
𝐚 ∗ 1 , 𝐛 

∗ 
1 
)
, … , 

(
𝐚 ∗ 
𝑐 
, 𝐛 ∗ 

𝑐 

)}
based on a KS test. 

4: for 𝑖 = 1 to 50 random subsamples. 

5: Randomly sample 90% of the data, 

6: Train the model on the sampled dataset. 

7: Perform KS test on loading vectors 𝑥̂ 𝑑 
𝑛 

between patients and

controls . 

8: Identify the significant imaging and genetic components based

on the KS test. 

9: Match the estimated basis vectors as identified by the KS test

with the reference vectors as shown in Eq.~ (~14). 

10: Normalize the matched vectors to 𝑧 scores. 

11: end for 

12: Find the order statistics as shown in Eq. (~15). 

13: Predictive Biomarkers ~← ~Find the locations (rows) of  𝑐 where| 𝐶 ( 𝑟 ) | ≥ 1 . 5 . 

Our subsampling procedure uses 90% random sampling without re-

lacement. For each trial, we perform a KS test to identify the significant

asis vectors estimated from the sampled data. We then perform a one-

o-one mapping between the reference vectors and the estimated vectors

y maximizing the correlation between them. The correlation between
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Fig. 7. A detailed description of all the brain 

regions identifies by our model for N-Back data. 
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he 𝑖 th reference vector and the 𝑗th estimated vector is defined as 

 ij = 

(|𝐚 ∗ 
𝑖 
| − |𝐚 ∗ 

𝑖 
|)𝑇 (|𝐚̂ 𝑗 | − |𝐚̂ 𝑗 |)( ‖‖‖(|𝐚 ∗ 𝑖 | − |𝐚 ∗ 

𝑖 
|)‖‖‖2 2 ‖‖‖(𝐚̂ 𝑗 − |𝐚̂ 𝑗 |)‖‖‖2 2 

) 

1 
2 

(14) 

here 𝐚 ∗ 
𝑖 

is the 𝑖 th reference basis vector, 𝐚̂ 𝑗 is the 𝑗th estimated basis

ector and ̄( ⋅) denotes the mean of features along the vector. We take

n absolute value because our model is invariant to a change of sign of

he bases. This correlation analysis allows us to match the set of basis

ectors obtained from the sampled data that are strongly correlated with

he reference vectors. 

Finally, we identify the consistent set of biomarkers across the sub-

amples via the element-wise median 𝑧 -score of the basis vectors across

he 50 trials. 

 

𝑎 
𝑗 
( 𝑟 ) = 𝑚𝑒𝑑𝑖𝑎𝑛 

(
𝐚̂ 1 
𝑗 
( 𝑟 ) , … , ̂𝐚 50 

𝑗 
( 𝑟 ) 

)
(15) 

here  𝑎 
𝑗 
( 𝑟 ) quantifies the importance of region 𝑟 across the subsamples,

nd ̂𝐚 𝑘 
𝑗 
( 𝑟 ) is the estimated basis obtained from the 𝑘 th subsample. A high

alue in  means that the region is consistently selected for diagnosis

f a subject during subsampling. We perform a meta analysis on the set

f biomarkers thresholded at | 𝑐 
𝑗 
( 𝑟 ) | > 1 . 5 to show their relevance in the

ontext of schizophrenia. 

As a second stage of our exploration study we perform a correlation

nalysis between the identified biomarkers and a generalized cognitive

core derived from a battery of standard cognitive assessment which

ere performed on the patients and controls subjects. The generalized

ognitive score, or “g ” score ( Dickinson et al., 2011 ), is composite mea-

ure of general cognitive ability based on six broad cognitive domains:

erbal memory, n-back, visual memory, processing speed, card sorting

nd digit span. Here, we consider the imaging components that show

ignificant group level differences between cases and controls, as iden-

ified by the KS test. In order to find the association between these com-

onents and cognition, we calculate the Pearson’s correlation between

he patient specific scores { 𝑥 𝑑 
𝑛 
} 𝑁 

𝑛 =1 and the corresponding patient g-score.

ach dimension 𝑑 of the patient specific scores 𝐱 𝑑 
𝑛 

is associated with the

asis vector which capture group level difference. So, as a next step we

lot the basis vectors in the brain. This analysis explores the relationship

etween the cognitive scores and the identifiesd set of biomarkers. 

As a second stage of our exploration study we perform a correla-

ion analysis between the identified biomarkers and a generalized cog-

itive score of schizophrenia. The generalized cognitive score, or “g ”

core ( Dickinson et al., 2011 ), is composite measure of general cognitive

bility based on six broad cognitive domains: verbal memory, n-back,

isual memory, processing speed, card sorting and digit span. Here, we

onsider the imaging components that show significant group level dif-

erences between cases and controls, as identified by the KS test. In or-

er to find the association between these components and cognition, we
9 
alculate the Pearson’s correlation between the subject specific scores

 𝑥 𝑑 
𝑛 
} 𝑁 

𝑛 =1 and the corresponding g-score. Each dimension of the subject

pecific loading scores 𝐱 𝑑 
𝑛 

is associated with the basis vector which cap-

ures group level difference. So, as a next step we plot the basis vectors

n the brain. This analysis explores the relationship between the cogni-

ive scores and the identified set of biomarkers. 

Analysis of the N-back biomarkers For the N-Back data our initial KS

est reveals three components that are significantly different between

ases and controls with 𝑝 < . 0021 , 𝑝 < . 0024 , and 𝑝 < . 009 , respectively

FDR corrected). We use these components as reference for our subsam-

ling experiments. 

A detailed diagram of all the brain regions across the three differ-

nt components along with their corresponding annotations are shown

n Fig. 7 . In Component 1 and Component 3 we can see regions

hat include superior frontal gyrus (SFG), and inferior frontal gyrus

IFG), which are know to subserve executive cognition ( Callicott et al.,

003 ). Moreover, in Component 2 we can see regions from the de-

ault mode network (DMN) which is also implicated in schizophrenia

 Sambataro et al., 2010 ). We further use Neurosynth ( Tor D., 2011 )

o decode the higher order brain states of the biomarkers aggregated

cross all the three components. Figure 9 shows the Neurosynth terms

hat are strongly correlated with our biomarkers. We note that the terms

or Component 2 involve regions used for planning and execution of a

ask, whereas Component 1 and Component 3 involve regions associ-

ted with memory retrieval and the default mode. These results show

hat the model can extract potential imaging biomarkers that contain

nformative patterns of the data. 

Figure 10 illustrates the component-wise SNP contributions, whose

 -values are overlapped with a gene. We use the SNPnexus ( Dayem Ul-

ah et al., 2018 ) web interface to find the set of overlapping genes or

he nearest upstream or downstream gene for each SNP. As parallel

o Neurosynth analysis, we perform a gene expression based analysis

 Lonsdale et al., 2013 ) over the 20 overlapping (or nearest) genes of the

op SNPs identified from each of the three components. This exploratory

nalysis may help us to understand the cis -effects of the SNPs and how

hey alter the functionalities of genes expressed in different tissues of

he brain. Figure 11 shows the gene expression pattern of each gene

cross different brain tissues. As seen, two of the most expressed genes

hat appeared in multiple components are TCF20 and LINC00599 which

re known to be associated with schizophrenia ( Ripke et al., 2014 ) and

euroticism ( Luciano et al., 2018 ). 

The scatter plots in Fig. 8 show association between each of the

back components, as selected via the KS test, and the “g ” scores. Among

he three Nback components the first two components show significant

ssociation while the third one was not significantly correlated. Addi-

ionally, in Fig. 8 we plot the identified set of biomarkers associated with

he loading scores as separate brain plots. Both Nback components show

hat the shared variance between brain regions of the frontoparietal net-

ork, such as the inferior frontal gyrus and angular gyrus, is anticorre-
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Fig. 8. Left: The identified set of biomark- 

ers that have shown strong association with 

the generalized cognitive scores for the Nback 

dataset. Right: The scatter plot between the 

cognitive scores and the subject specific load- 

ing scores for the Nback dataset. The correla- 

tion between the loading scores and the “g ”

scores are identified by 𝜌, and level of signifi- 

cance is captured by the FDR corrected 𝑝 -value. 

Fig. 9. The correlation value of each brain component iden- 

tified in the N-Back dataset with the higher order brain states 

based on the Neurosynth database. 

Fig. 10. The importance map of all the SNP and their overlapping genes across all the subsamples for N-Back data. 

10 
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Fig. 11. The gene expression pattern of the top genes identified from the N-Back task based on the GTEx database. 

Fig. 12. A detailed description of all the brain regions identi- 

fies by our model for SDMT data. 
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l  
ated with components of the default mode network such as the cuneus

nd the medial prefrontal cortex. Positive loading scores were associated

ith lower g, suggesting that, across individuals, high loading in these

wo components covaried with greater frontoparietal network activa-

ion. At the Nback load we considered, greater frontoparietal activity

as been reported in patients with schizophrenia, when performance is

quated between groups ( Callicott et al., 2003 ). 

Analysis of SDMT biomarkers Our KS test on the SDMT data re-

ealed two significant components with 𝑝 < . 0004 and 𝑝 < . 0004 (FDR

orrected) between patients and controls. Once again, these components

erved as the reference vectors in our subsamples. 

Figure 12 shows the set of brain regions identified by our method

long different axial views. The SDMT biomarkers implicate the parahip-

ocampal (P-HIP), superior frontal regions (SFG) along with precuneus,

usifor gyrus and cuneus, all of which are affected in schizophrenia ( Di

iorgio et al., 2013; Zhu et al., 2017 ). We also observe regions from the

efault mode network that control memory encoding in schizophrenia.

igure 14 reports the results of our Neurosynth meta-analysis. Notice

hat our biomarkers include regions involve in memory ( Rasetti et al.,

014 ) and facial recognition, both of which are impaired in schizophre-

ia. 

Taken together, these results highlight the promise of our model for

eural biomarker discovery. 

Figure 15 shows the SNPs, and their overlapping (or nearest) genes

s found from the SNP-nexus web interface. Again, we perform a gene

xpression phylogeny ( Lonsdale et al., 2013 ) over the identified set of

enes. Figure 16 captures the expression level of the most significant

enes implicated by the identified set of SNPs. Here, LINC00599 shows

igh expression levels in brain and are also known to be associated with

chizophrenia ( Goes et al., 2015 ) and neuroticism ( Luciano et al., 2018 ).

t  

11 
The association with cognitive scores for the SDMT data has been

one by following the same strategy of finding correlation between the

atient specific scores 𝑥 𝑑 
𝑛 

and the “g ” scores. Likewise, Fig. 13 shows

he identified set of biomarkers associated with the loading scores along

ith the scatter plot that shows significant association between the load-

ng scores and the cognitive “g ” scores. Both SDMT components tapped

nto the episodic memory network, including the hippocampus, the me-

ial and dorsolateral prefrontal cortex, posterior cingulate and parietal

egions, mostly negatively correlated, with some heterogeneity between

omponents. Considering the correlation with “g ”, negative loadings

uggest that the best cognitive performers showed a greater involve-

ent of the episodic memory network during the task, which is consis-

ent with previous reports on these data ( Chen et al., 2018 ). 

These findings show that the model can be used to explore potential

iomarkers and their interactions in a multivariate framework. 

. Discussion 

Our generative-discriminative framework exploits the interconnect-

dness of two different data modalities. The dictionary learning module

xtract features from the imaging and genetic data that are strongly

onnected with each other, while the classification module guides our

ramework to identify patterns that are representative of the disease. The

egularity terms enforce additional structure associated with the data,

.e., the genetic regularizer captures sparse representative patterns from

he data and the graph Laplacian penalty captures the grouping effect

etween different brain regions. Empirically, we find that the Laplacian

tructure is stable across different cross validation folds. Figure 17 il-

ustrates the histogram of variance in the correlation maps 𝑤 𝑖𝑗 used as

he regularizer for 𝐀 in Eq. (5) when computed across the 10 cross val-
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Fig. 13. Left: The identified set of biomark- 

ers that have shown strong association with 

the generalized cognitive scores for the SDMT 

dataset. Right: The scatter plot between the 

cognitive scores and the subject specific load- 

ing scores for the SDMT dataset. 

Fig. 14. A detailed description of all the brain regions identifies by our model 

for SDMT data. The correlation between the loading scores and the “g ” scores 

are identified by 𝜌, and level of significance is captured by the FDR corrected 

𝑝 -value. 
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dation folds. This stability may be partially attributed to the task fMRI

aradigm, which tends to activate similar brain areas across subjects. 

In the preprocessing stage of our analysis we parcellate the brain ac-

ivation maps into 246 regions and use them as input to our model.

iven the small dataset 𝑁 ∼ 100 , this parcellation scheme balances

he expressibility of the data while maintaining the stability of our

odel. Additionally, averaging the brain activation over multiple vox-

ls smooths out the noise and helps us to find meaningful patters across

roups. Finally, the consistent labelling of the brain regions across sub-

ects enables us to interpret our results and perform further exploratory

nalysis. 

We use an alternating minimization strategy to optimize our coupled

ramework. Alternating minimization is popular for large-scale non-

onvex problems due to the simple implementation and empirically sta-

le performance. With that said, there are few theoretical convergence

uarantees. While our objective function is bounded from below, con-

ergence to a local minim depends on how well the objective function

ecreases after each iteration, which finally depend on the convergence

roperties of Eqs. (6) , (12) , and (13) . Our objective function is contin-

ously differentiable and convex with respect to { 𝐁 , 𝐗 , 𝐜 } . The works of

 Grippo and Sciandrone, 2000; Li et al., 2019 ) show that under such con-

itions alternating minimization converges to a stationary point. How-
Fig. 15. The importance map of all the SNP 

and their overlapping genes across all the sub- 

samples for SDMT data. 
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Fig. 16. The gene expression pattern of the top genes identified from the SDMT task based on the GTEx database. 

Fig. 17. The distribution of variance between each pair of brain regions over the 10 cross validation fold. 
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ver, the orthogonality constraint over the imaging basis matrix 𝐀 makes

he problem non-convex. The work of ( Lai and Osher, 2014 ) shows the

onvergence property of the orthogonality constraint using ADMM. De-

pite the lack of theoretical guarantees, we observe a robust empirical

onvergence of our alternating minimization procedure to a local min-

ma. Thus, in practice, our optimization strategy is stable across the dif-

erent datasets and initializations used in our experiments. 

In Section 4.4 we demonstrate that our model achieves better clas-

ification accuracy than the baselines across all three datasets. In

ection 4.5 we go a step further and present a strategy to identify a

obust set of discriminative biomarkers that are coupled via the latent

rojections 𝐱 across the imaging and genetic data. Through the meta-

nalysis we show that these biomarkers are strongly related with the

isease propagation pathway of schizophrenia. For example, the N-Back

iomarkers involve regions from dorsolateral prefrontal cortex, and de-

ault mode network, which are known in literature to be affected by

chizophrenia. Likewise, the genetic biomarkers are expressed in mul-

iple regions of brain, which shows a probable association between ge-

etic risk and the disease propagation pathway. Similarly, in the SDMT

nalysis we see association between parahippocampal activity and genes

hat are associated with multiple behavioral deficits. In this exploratory

nalysis we note that the estimated components contain overlapping

rain regions. This behavior may be attributed to our optimization strat-

gy. In order to capture the variance of the data, the model may assign

ore than one basis vector to the same subset of features. The regu-

arizations and the constraints does not prevent our model to identify

omponents with spatial overlap, which facilitates the behavior. As a

econd stage of our exploration study we further show that these set of
13 
iomarkers show strong association with the cognitive “g ” scores. Even

hough performing sub-type analysis is not the target of this model but

his post processing strategy helps to identify imaging and genetic in-

eractions which may prove to be significant for identifying novel ther-

peutic targets. 

One disadvantage of our framework is that, it is invariant to changes

n sign, so the exact association between a imaging or genetic region

ith the disease is unknown. Moreover, the identified set of SNPs from

ur model are most likely tag-SNPs ( Stram, 2004 ), meaning that there

s a low probability that they are causal. An added complexity is that

he SNPs may not lie in a genetic region, but they still affect a gene by

odulating the regulatory factors. Hence, further analysis is required to

dentify the potential gene targets for therapy. 

One limitation of this work is the relatively small sample size. We

emonstrate that in this setting our generative-predictive framework

an outperform traditional machine learning methods across two task

MRI paradigms and two sites. With that said, we acknowledge that

ollow-up studies should be done to validate this framework on a larger

ohort. 

Finally, our current framework only considers disease classification

ia the logistic regression term in Eq. (5) . However, psychiatric research

s exploring the utility of a finer-grained characterization of different dis-

rders across multiple cognitive or behavioral axes. In future, we will

xplore extensions of our generative-predictive framework for patient

ubtyping via ordinal regression and multivariate linear regression. We

ill also explore nonlinear relationships between the data modalities. As

lluded to above, incorporating more complex relationships may help

s to build a bigger picture of the disease under study. Hence, in the
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uture work we will explore pathway specific information for better un-

erstanding of the disease propagation. 

. Conclusion 

We have presented a novel generative-discriminative framework that

elies on coupled latent projections to jointly model imaging and genet-

cs data. The projection operations leverage a dictionary learning setup,

here the imaging and genetics basis matrices capture representative

acets of the data. The projection coefficients are tied across modalities

nd are input to a logistic regression model to predict class diagnosis. We

ave demonstrated our framework on a population study of schizophre-

ia. Our generative-discriminative approach achieves better diagnostic

lassification accuracy than competing machine learning baselines, and

t implicates an interpretable set of biomarkers that underlie the well-

ocumented deficits in schizophrenia. Finally, our model is agnostic to

he imaging modality and the clinical population. Hence, it is a powerful

ool to study a range of neuropsychiatric disorders. 
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