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Abstract
Sentiment analysis methods have become popular for investigating human communication,
including discussions related to software projects. Since general-purpose sentiment anal-
ysis tools do not fit well with the information exchanged by software developers, new
tools, specific for software engineering (SE), have been developed. We investigate to what
extent off-the-shelf SE-specific tools for sentiment analysis mitigate the threats to conclu-
sion validity of empirical studies in software engineering, highlighted by previous research.
First, we replicate two studies addressing the role of sentiment in security discussions on
GitHub and in question-writing on Stack Overflow. Then, we extend the previous studies by
assessing to what extent the tools agree with each other and with the manual annotation on a
gold standard of 600 documents. We find that different SE-specific sentiment analysis tools
might lead to contradictory results at a fine-grain level, when used off-the-shelf. Conversely,
platform-specific tuning or retraining might be needed to take into account differences in
platform conventions, jargon, or document lengths.
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1 Introduction

Sentiment analysis, i.e., the task of extracting the positive or negative semantic orientation a
text (Pang and Lee 2008), has emerged as a tool for empirical software engineering studies
to mine emotions and opinions from textual developer-generated content (Novielli et al.
2019) in the ‘social programmer’ (Storey 2012) ecosystem. Its popularity is also due to the
availability of a plethora of sentiment analysis tools released for public use.

With a few notable exceptions (Blaz and Becker 2016; Ortu et al. 2016; Panichella et al.
2015), early empirical studies in this field have exploited off-the-shelf general-purpose sen-
timent analysis tools. However, general-purpose sentiment analysis tools tend to produce
unreliable results in the software engineering context as they are trained on documents from
non-technical domains, such as film critics and product reviews. Specifically, Jongeling
et al. (2017) tried to replicate previously published empirical studies and showed that the
choice of the sentiment analysis tool has an impact on the validity of the conclusions.

To overcome such limitations, researchers have started developing SE-specific sentiment
analysis tools to mine developers’ emotions (e.g., Calefato et al. (2018a), Ahmed et al.
(2017), Islam and Zibran (2017), and Chen et al. (2019)) and opinions (e.g., (Lin et al.
2019; Uddin and Khomh 2017)). In previous benchmarking studies, (Novielli et al. 2018b;
2020) showed how SE-specific customization gives a boost in accuracy in terms of both
agreement with manual annotation and agreement among tools, provided that model-based
annotation of emotions is implemented and that a robust gold-standard dataset for retraining
is available.

In this paper, we go beyond the simple assessment of performance of SE-specific tools
and their agreement, which is the main goal of the aforementioned benchmarking stud-
ies. Here, we investigate to what extent the SE-specific retraining operated by the original
authors of sentiment analysis tools enables researchers to address the threat to conclusion
validity induced by the use of general-purpose tools (Jongeling et al. 2017). Specifically,
we aim at understanding if we can reliably and safely reuse SE-specific tools off-the-shelf,
i.e., without further tuning or training beyond that performed by the original authors on
technical texts.

As such, we formulate our first research question as follows

– RQ1: Does the choice of the sentiment analysis tool introduce a threat to conclusion
validity in a software engineering study?

To address RQ1, we replicate two previously published studies on sentiment analysis
in software engineering. We decided to perform exact, dependent replications (Shull et al.
2008) to mitigate threats to validity that are inherent in replications. As such, we select two
studies in which a subset of the authors of the current paper were involved as co-authors.
By doing so, we are able to replicate the original study design, use the same dataset as
the original studies, and change only the sentiment analysis tools used to mine the devel-
opers’ sentiment. Specifically, we replicate the analysis of sentiment in GitHub security
discussion by Pletea et al. (2014) and the study of the role of emotions in effective question-
writing in Stack Overflow by Calefato et al. (2018b). First, we replicate each study with
four SE-specific tools and compare the conclusions we obtain. Then, we compare the find-
ings obtained with SE-specific tools with those previously published in the original studies
to verify whether they still hold.

Other than suggesting a threat to conclusion validity, Jongeling et al. showed that general-
purpose sentiment analysis tools also disagree with human annotation and with each other.
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To get further insights in this direction, but this time focusing on SE-specific sentiment
analysis tools, we inherit and revise two additional research questions from Jongeling et al.
(2017):

– RQ2: To what extent do results from different SE-specific sentiment analysis tools agree
with each other?

– RQ3: To what extent do different SE-specific sentiment analysis tools agree with human
raters?

We address RQ2 by measuring the agreement between the SE-specific tools themselves,
based on the manual annotation of a subset of 600 documents randomly selected from the
original datasets. We also use the obtained gold standard to address RQ3 by computing the
agreement of SE-specific tools with the manual labels. We release the annotated corpus1 as
an additional contribution of the study to encourage further studies on emotion detection in
software engineering.

This paper enhances the state of the art on sentiment analysis in empirical studies in
software engineering by furthering our understanding of off-the-shelf tool reuse, even in
presence of SE-specific tuning. We show how the choice of the specific sentiment analysis
tools might lead to contradictory results, thus representing a threat to conclusion validity,
when the analysis is at a fine-grained level. Our results suggest that SE-specific fine-tuning
of sentiment analysis tools to the software engineering domain might not be enough to
improve accuracy, and platform-specific tuning or retraining might be needed to adjust the
model performance to the shifts in lexical semantics due to different platform jargon or
conventions. Further fine-tuning should be implemented in order to adjust the sentiment
operationalization in line with the specific research goals.

The remainder of the paper is organized as follows. In Section 2, we review the related
work and describe the SE-specific sentiment analysis tools that we employ in our study. In
Section 3, we summarize the two studies that we replicate, including their goals, settings,
and results. We report the results of our replications in Section 4 and the results of the
analysis of the agreement between tools and with the manual labels in Sections 5 and 6,
respectively. In Section 7, we discuss our findings while in Section 8 we assess the main
limitations of the current study. Finally, we provide conclusions in Section 9.

2 Background

2.1 Related work

In recent years, a trend has emerged to use sentiment analysis as a new tool for empirical
studies in software engineering research. Other than the studies by Pletea et al. (2014) and
Calefato et al. (2018b) that we replicate in this paper, several others have applied sentiment
analysis to mine emotions of software developers from their communication traces. In par-
ticular, researchers investigated the role of affect in social software engineering by applying
sentiment analysis to the content available in collaborative software development platforms
such as GitHub (Guzman et al. 2014; Sinha et al. 2016) and Jira (Ortu et al. 2016; Mäntylä
et al. 2016; Murgia et al. 2018). In the scope of requirements engineering research, senti-
ment analysis has been also leveraged to mine users’ opinions about software products from

1https://figshare.com/s/faecffd83e65155ebc2a

https://figshare.com/s/faecffd83e65155ebc2a
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their reviews in the app stores (Panichella et al. 2015; Kurtanovic and Maalej 2018), from
user-generated contents in microblogging platforms (Guzman et al. 2016) and customers’
tickets (Werner et al. 2018).

In spite of the popularity of the topic, only a few papers report about replicated studies
on sentiment analysis in software engineering. Our study builds upon previous research by
(Jongeling et al. 2017) who compared the predictions of general-purpose, off-the-shelf sen-
timent analysis tools, showing that not only they disagree with human annotation, but also
with each other. Given the disagreement among these tools, Jongeling and colleagues con-
ducted a replication of previous studies on sentiment analysis in software engineering to
understand to what extent the choice of an instrument affects the results. They observed con-
tradictory findings and concluded that previous studies’ results cannot be replicated when
different, general-purpose sentiment analysis tools are used, i.e., the instrument choice can
induce threats to conclusion validity.

Novielli et al. (2018b) investigated to what extent different SE-specific sentiment analy-
sis tools agree with gold standard annotations of developers’ emotions and with each other.
To this aim, they performed a benchmarking study aimed at assessing the performance of
three SE-specific sentiment analysis tools on four gold standard datasets including devel-
opers’ communication traces from collaborative platforms, such as Stack Overflow and
Jira. The performance of each tool was assessed on a held-out test set extracted from the
gold standard, which was also used to build the baseline performance represented by a
general-purpose tool. The findings of Novielli et al. indicate that reliable sentiment analy-
sis in software engineering is possible, provided that manual annotation of gold standards
is inspired by theoretical models of affect. Furthermore, they found that, regardless of the
approach adopted for annotation, SE-specific customization/retraining does provide a boost
in accuracy with respect to the baseline approach represented by SentiStrength (Thelwall
et al. 2012), an off-the-shelf general-purpose tool. Based on the findings of their qualita-
tive error analysis, Novielli et al. suggest that we should be aware that tools and datasets
are built by having in mind specific research goals and different conceptualization of affect.
Thus, a sanity check is always recommended to assess the suitability of existing tools with
respect to the research goals.

Mäntylä et al. (2017) replicated a previous study on the identification of burnout and pro-
ductivity of software developers (Mäntylä et al. 2016). The original study was performed
by using a general-purpose lexicon of 14,000 English words with known emotion scores,
including the arousal associated to each word. In the replication study the authors built
a Software Engineering Arousal lexicon (SEA) to correctly measure the arousal, i.e., the
emotional activation (calm vs. excited), by means of linguistic analysis of developers’ com-
munication traces. They validated SEA and its ability to correctly capture the emotional
arousal of developers from the dataset 700,000 Jira issue reports containing over 2,000,000
comments used in the original study (Mäntylä et al. 2016). The results of the replicated
study confirm previous findings that emotion-related metrics can be used to identify differ-
ent types of issue reports as well as their priority. Furthermore, the replication with SEA
shows that an SE-specific lexicon is able to better differentiate between issue priorities. In
particular, a unified approach, combining SEA with the general purpose lexicon used in the
original study, offers a clear improvement over previous work.

Overall, the results from previous studies suggest that SE-specific tools are required to
overcome the limitations of general-purpose tools when applied to the software engineer-
ing domain. Furthermore, empirical evidence was provided that SE-specific tuning of tools
improves the accuracy of sentiment analysis in empirical software engineering studies.
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2.2 SE-specific Sentiment Analysis Tools

Sentiment analysis is the task of extracting positive, negative, or neutral orientation of opin-
ions and emotions conveyed by a text. Despite the popularity of general-purpose sentiment
analysis tools, a consensus in the research community is that such tools are not appropriate
for detecting emotions in developers’ technical discussions (Jongeling et al. 2017; Novielli
et al. 2015; Lin et al. 2018). As such, researchers have implemented and released their own
tools specifically customized for the software engineering domain. To enable comparison
with previous findings, we select four tools that were already included in previous bench-
marking studies on sentiment analysis in software engineering (Novielli et al. 2018b; 2020).
Two of the tools are lexicon-based, namely SentiStrength-SE (Islam and Zibran 2017) and
DEVA (Islam and Zibran 2018b), that is they rely on sentiment lexicons including polarity
scores at the word level. The other two, namely Senti4SD (Calefato et al. 2018a) and Sen-
tiCR (Ahmed et al. 2017), implement a supervised approach and are trained on manually
labeled gold standards.

SentiStrength-SE (Islam and Zibran 2017) is an SE-specific adaptation of the general-
purpose tool SentiStrength (Thelwall et al. 2012). It leverages a manually adjusted version of
the SentiStrength lexicon and implements ad hoc heuristics to correct the misclassifications
observed when running it on the dataset by Ortu et al. (2016). The sentiment scores of
words in the lexicon were manually adjusted to reflect the semantics and neutral polarity
of domain words such as ‘support’ or ‘default.’ SentiStrength-SE assigns an integer value
between 1 and 5 for the positivity of a text, p and, analogously, a value between 1 and 5 for
the negativity n (respectively, the positive and negative scores in second and third columns

Table 1 Examples of the annotation produced by the SE-specific sentiment analysis tools

Senti4SD SentiStrength-SE DEVA SentiCR

Example documents from our datasets Polarity label Pos Score Neg Score Score Label

I have Ubuntu 14.04 , I’ve installed
JULIA, and then I tried to install
IJULIA, writting Pkg.add(“IJulia”)
on julia, but this appears: Do any
one knows what to do? What I want
to achieve is to run ipython note-
book –profile julia

neutral 1 −1 1 0

I’m trying to use this cod for check-
ing expiry date. I’m using Code
before to open different file and
copy cells as below. Please can any
one help why I have Run time Error
13 Type mismatch. Any ideas ?? I
was trying to put If empty cell exit
sub but still that same :(

negative 1 −2 −2 −1

Here is my code: } It works fine so
far without warning or errors. The
only problem is, in the applications
it shows for example Dauer: 0:4:3
instead of 00:04:03. Does anyone
know how I can fix this? Thank you
very much... :)

positive 3 −1 3 0
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of Table 1). The evaluation performed by the authors shows that SentiStrength-SE achieves
.74 precision and .85 recall, which are higher than the performance of the general purpose
tool SentiStrength on technical texts.

DEVA (Islam and Zibran 2018b) leverages a lexicon-based approach for the identification
of both emotion activation (arousal) and polarity from text. To this end, the tool uses two
separate dictionaries developed by exploiting a general-purpose lexicon as well as one spe-
cific for software engineering text. To further increase its accuracy, DEVA also includes
several heuristics, some of which are borrowed from SentiStrength-SE. Given an input text,
the tool issues an integer score defined in the interval ±[1, 3], where values < −1 are con-
sidered negative and those > 1 are considered positive; otherwise values equal to ±1 are
neutral (see fourth column of Table 1). For the empirical evaluation, the authors constructed
a ground-truth dataset consisting of 1,795 JIRA issue comments, manually annotated by
three human raters, on which DEVA was found to achieve a precision of .82 and a recall of
.79.

Senti4SD (Calefato et al. 2018a) is a polarity classifier trained to support sentiment analy-
sis in developers’ communication channels using supervised machine learning. It leverages
a suite of features based on Bag of Words (BoW), sentiment lexicons, and semantic features
based on word embedding. Along with the toolkit, the authors distribute a classification
model, trained and validated on a gold standard of about 4K questions, answers, and com-
ments from Stack Overflow, and manually annotated for sentiment polarity. Furthermore,
the toolkit provides a training method that enables the customization of the classifier using a
gold standard as input. Given any text in input, the tool returns a predicted label in {positive,
neutral, negative} (see the first column of Table 1). Compared to the performance obtained
by SentiStrength on the same Stack Overflow test set, Senti4SD reduces the misclassifi-
cations of neutral and positive posts as emotionally negative (precision = .87, recall = .87,
F1=.87). The authors also report a good performance (F1=.84) of the tool with a minimal
set of training documents.

SentiCR (Ahmed et al. 2017) is a supervised tool that leverages a feature vector generated
by computing tf-idf for Bag-of-Words (BoW) extracted from the input text. SentiCR imple-
ments basic preprocessing of the raw input text to expand contractions, handle negations
and emoticons, remove stop-words, derive word stems, and remove code snippets. Further-
more, it performs SMOTE (Chawla et al. 2002) to handle the class imbalance in the train
set. Given a text in input, SentiCR issues either −1, for sentences predicted as negative, or 0
for non-negative ones—i.e., as opposed to Senti4SD, SentiStrength-SE and DEVA, SentiCR
does not distinguish between positive and neutral content (see the last column of Table 1).
Ahmed et al. (2017) report a mean accuracy of .83 for the tool. The currently distributed
version implements a training approach based on Gradient Boosting Tree and requires a
training set as an input in order to retrain the model and use it on the target document
collection.

In our replications, we follow the methodology of Jongeling et al. (2017) and use all
the SE-specific tools as ‘off-the shelf’ resources. For the two supervised tools Senti4SD
and SentiCR we use the classifier trained on the original gold standard by their respective
authors. Analogously, we use Sentistrength-SE and DEVA as they are originally imple-
mented, that is leveraging the lexical resources as they are distributed by the authors after
fine-tuning for the software engineering domain.



Empir Software Eng           (2021) 26:77 Page 7 of 29   77 

Table 2 Dataset of security-related comments and discussions

Data source Topic Distribution

Comments Discussions

Commits Security 2509 (4.13%) 1706 (9.28%)

Total 60658 18378

Pull Requests Security 1801 (3.28%) 1091 (11.36%)

Total 54892 9601

3 Original Studies

In this section, we summarize the two original studies replicated in this paper, giving an
overview of their research goals, settings, methodology, and results, following the repli-
cation report guidelines for software engineering studies by Carver (2010). We aim at
performing exact replications (Shull et al. 2008) of the studies, except for the use of a
SE-specific sentiment analysis tool. Specifically, the original study of Pletea et al. (2014)
used NLTK2, while the original study by Calefato et al. (2018b) used SentiStrength.3 In our
replications, we employ the four SE-specific tools reviewed in Section 2.2.

3.1 Sentiment Analysis of Security Discussions on GitHub (Pletea et al. 2014)

Research goals The first study we have chosen to replicate is the one by Pletea et al. (2014),
which analyzes discussions about security in GitHub. The authors conclude that security-
related threads contain more negative emotions than non-security related ones.

Dataset and methodology The dataset used by Pletea et al. consists in 60,658 commits
and 54,892 pull requests from the MSR 2014 Mining Challenge Dataset (Gousios 2013),
consisting of data for 90 GitHub projects (repositories) and their forks.

In their analysis, Pletea et al. distinguish between i) commits comments, ii) commit dis-
cussions, iii) pull request comments, and iv) pull request discussions. The term ‘discussion’
refers to the entire collection of comments belonging to a commit or a pull request. Fur-
thermore, the authors distinguish between a) security-related and b) non-security related
comments and discussions, thus resulting in eight different categories of texts. In this study,
we use the same dataset used in the original study, as reported in Table 2.

To address the research questions, the authors apply NLTK to GitHub comments and
discussions. Given an input text, NLTK outputs the probabilities that the text is neutral, neg-
ative, or positive as well as a polarity label summarizing the three scores. The probabilities
for positive and negative sum up to 1 while the probability for neutral is computed per se.
A text is classified as neutral if the neutral probability is greater than chance. Conversely, it
is either classified as positive or negative based on the highest probability score. Depending
on the aggregation considered (comments vs. discussions), Pletea et al. provide in input to
NLTK either the individual comments or the entire pull request/commit discussions. Hence,

2Natural Language Processing APIs and Python NLTK Demos, http://text-processing.com
3http://sentistrength.wlv.ac.uk

http://text-processing.com
http://sentistrength.wlv.ac.uk
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the polarity level is issued at the level of either individual comment or the entire discussion,
according to the chosen unit of analysis.

Findings The authors report that negative sentiment occurs more frequently in security
related texts for both commit/pull request comments and discussions. Moreover, they
observe that the NLTK results are characterized by both strong negative and strong positive
sentiment. As such, Pletea et al. conclude that the security-related discussions tend to be
more emotional than those not related to security.

A first replication of this study was performed by Jongeling et al. (2017) using both
NLTK and SentiStrength. SentiStrength (Thelwall et al. 2012) is a general-purpose sen-
timent analysis tool widely adopted in social computing at the time of their study.
SentiStrength is capable of dealing with short informal text, including abbreviations, intensi-
fiers, and emoticons. Based on the assumption that a sentence can convey mixed sentiment,
SentiStrength outputs both positive and negative sentiment scores for an input text. Positive
sentiment scores range from +1 (absence of positive sentiment) to +5 (extremely posi-
tive) while negative sentiment scores range from 1 (absence of negative sentiment) to 5
(extremely negative).

Comparing the results obtained using NLTK in the original study by Pletea et al.
and SentiStrength, Jongeling et al. observe differences in term of polarity label distribu-
tions. Overall, NLTK issues more negative labels, thus suggesting that both comments and
discussions are predominantly negative. Conversely, SentiStrength classifies the texts as
predominantly neutral. In spite of these differences, overall the study of Jongeling et al.
confirms the findings originally reported by Pletea et al., i.e., security pull request/commit
comments and discussions convey more negative sentiment than those revolving around
other topics.

3.2 How to Ask for Technical Help (Calefato et al. 2018b)

Research goals The second study we have chosen to replicate is the one by Calefato et al.
(2018b), which investigates how information seekers can increase the chance of eliciting a
successful answer to their questions on Stack Overflow—i.e., the best answer marked as the
accepted solution by the original asker. To achieve their research goal, they develop a frame-
work of factors influencing the success of questions in Stack Overflow. The framework is
built upon the community recommendations and the results from previous research in this
field. Specifically, the authors focus on actionable factors that can be acted upon by soft-
ware developers when writing a question to ask for technical help, namely affect (i.e., the
positive or negative sentiment conveyed by text), presentation quality, and time. The asker’s
reputation is also included in the framework as a control factor. As far as sentiment is con-
cerned, the authors investigate the correlation between expressing sentiments in a question
on Stack Overflow and the question probability of eliciting a successful answer.

Dataset and methodology Calefato et al. analyze a dataset of 87,373 questions extracted
from the official Stack Overflow dump, using logistic regression to estimate the probability
of a successful question. The authors operationalize the framework by defining a set of
metrics that are used as predictors in a logistic regression analysis. As for the affect factor,
they operationalize it using two metrics, namely Positive Sentiment and Negative Sentiment,
whose combination of values represents the overall sentiment orientation of a question.
Specifically, they measure the overall positive polarity (Positive Sentiment) and negative
polarity (Negative Sentiment) of the question body.
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To capture the sentiment of questions, Calefato et al. use SentiStrength (Thelwall et al.
2012). They discretize the sentiment scores by treating Positive Sentiment and Negative
Sentiment as Boolean variables. Specifically, they encode whether a question shows in its
lexicon a positive (positive score in [+2, +5]) or negative (negative score in [2, 5]) affective
load. A question is neutral when positive sentiment score is +1 and negative sentiment score
is -1.

Findings Calefato et al. report that, regardless of user reputation, successful questions are
short, contain code snippets, and do not abuse with uppercase characters. As regards affect,
successful questions adopt a neutral emotional style. Based on that, they recommend avoid-
ing both rudeness as well as positive sentiment in question writing. As regards presentation
quality, they recommend including example code snippets, writing concise questions, and
using capital letters only where appropriate. Finally, they observe the impact of time on the
question success and advice Stack Overflow users to be aware of low-efficiency hours of
the community.

4 Replications with SE-specific sentiment analysis tools

To address RQ1 (Does the choice of the sentiment analysis tool introduce a threat to conclu-
sion validity in a software engineering study?), we replicate the original studies by Pletea
et al. (2014) and Calefato et al. (2018b) using the four SE-specific sentiment analysis tools
reviewed in Section 2.2. The mapping of the tool output to consistent polarity labels is
described in Section 4.1. The results of the two replications are reported in Sections 4.2 and
4.3, respectively.

4.1 Mapping the Output of Tools to Polarity Labels

In our replications, we use all the SE-specific tools as ‘off-the shelf’ resources. Since the
tools issue heterogeneous outputs, we need to map them into polarity labels by enforcing
the same operationalization of sentiment adopted in the original studies.

In their study, Pletea et al. model sentiment using a single variable with three polarity
classes, namely negative, positive, and neutral (see Section 3.1). The output of Senti4SD is
consistent with such schema, so we do not need to apply any changes. Similarly, the scores
produced by DEVA can be directly mapped into the corresponding negative (score < 1),
positive (score > 1), and neutral (score = 1) labels. Because the output of SentiStrength-SE
has the same structure as the output of SentiStrength, we adopt the mapping implemented
for SentiStrength in the former replication by Jongeling et al. (2017): a text is considered
positive when p + n > 0, negative when p + n < 0, and neutral if p = n and p < 4. Texts
with a score of p = n and p ≥ 4 are considered having an undetermined sentiment and,
therefore, removed from the datasets. Finally, we translate the categorical scores of SentiCR
into negative (score = -1) and non-negative (score = 0).

Calefato et al. use two Boolean values (Positive Sentiment and Negative Sentiment) to
indicate the presence of positive and negative emotions, respectively. Neutral is modeled
by assigning ‘false’ to both values. To represent mixed cases both values are equals to
‘true’ (see Section 3.2). As for Senti4SD and DEVA, we implemented a direct mapping
by setting ’true’/’false’ values based on the output of the tool. As for SentiStrength-SE,
positive and negative sentiment are set to ‘true’ if positive score > 1 and negative score <

-1 , respectively, in line with the original study. Finally, the categorical scores of SentiCR
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are used to indicate the presence of negative sentiment. Conversely, the positive sentiment
cannot be modeled in the empirical setting using SentiCR as this tool does not distinguish
between positive and neutral.

4.2 Replication of Pletea et al.

As in the original study, we compute the proportions of negative, neutral, and positive in
the security comments and discussions for both commits and pull requests. The resulting
values are compared with the proportions of negative, neutral, and positive sentiment in
the comments and discussions revolving around other topics, i.e. the rest of the texts in the
dataset. We report the results from the replication and the comparison with the original work
by Pletea et al. in Tables 3 and 4 for commits and pull requests, respectively. For the sake
of completeness, we also report the results of the former replication of the work of Pletea
et al. performed by (Jongeling et al. 2017), which used both NLTK and SentiStrength.

From Tables 3 and 4, we notice that there is always a larger proportion of negative polar-
ity for security topics, regardless of the tool and the type of text. These results confirm the
findings of the original study, as well as the findings of the replication by Jongeling and col-
leagues. In particular, we observe that different proportions of positive, negative, and neutral
labels are issued by the different tools. Despite such differences, the original conclusion
of Pletea et al. still holds: whether we consider comments or discussions, commits or pull
requests, the proportion of negative sentiment among security-related texts is higher than
among non-security related texts. As such, we can claim that, in the case of the replication
of Pletea et al., different SE-specific tools do not lead to contradictory conclusions for this
study. Furthermore, the choice of the sentiment analysis tool does not affect the conclusion
validity of the results previously published.

However, the differences in the proportions of positive, negative, and neutral labels issued
by the various tools indicate the need for further reflection on the possible threats to conclu-
sion validity that might be due to the ’off-the-shelf’ use of sentiment analysis tools, beyond
the confirmation of the high level findings of the original study. In both Tables 3 and 4, we
observe such differences. First of all, we observe that SE-specific tools for sentiment anal-
ysis all tend to classify pull request and commit comments as predominantly neutral. This
is in line with previous evidence (Calefato et al. 2018a) showing how the SE-specific tools
are able to solve the negative bias of general purpose ones, due to the inability of the lat-
ter in dealing with technical jargon and domain specific semantics of words, such as ‘kill’
or ‘save,’ which are considered non-neutral outside the technical domain. As such, we do
not observe the prevalence of negative comments reported in the original study of Pletea
and colleagues, which used the general purpose tool NLTK. Even if SE-specific tools agree
on classifying the comments as mainly neutral, we still observe differences in the percent-
ages. This pertains to the problem of assessing the agreement between the SE-specific tools
(RQ3), which we address in Section 5.

As for pull request and commit discussions, overall we observe a lower proportion
of neutral labels, even when the same tool is adopted. For example (see the lower half
of Table 3), SentiStrength-SE classifies 68.84% of security commit comments as neutral,
15.46% as negative and 15.70% as positive. The situation changes when discussions are
analyzed as a whole, i.e., as a group of comments belonging to the same thread originated
by the commit (see the upper part of Table 3). In fact, SentiStrength-SE classifies 43.96%
of discussions as neutral, with a resulting higher percentage of negative (24.73%) and posi-
tive (31.30%). Same considerations hold for the other tools ad for the pull request analysis
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Table 3 Commit sentiment analysis statistics

Tool Topic Negative Neutral Positive

Commit Discussion

Original study by Pletea et al. (2014)

NLTK Security 72.52% 10.88% 16.58%

Rest 54.28% 20.37% 25.33%

Replication by Jongeling et al. (2017)

NLTK Security 70.16% 12.79% 17.05%

Rest 52.89% 21.50% 25.61%

SentiStrength Security 30.66% 42.92% 26.40%

Rest 24.13% 43.92% 31.94%

Our replication with SE-specific tools

SentiStrength-SE Security 24.73% 43.96% 31.30%

Rest 17.07% 51.61% 31.31%

DEVA Security 40.80% 19.69% 39.51%

Rest 31.79% 32.20% 36.01%

SentiCR Security 61.08% 38.92% (non-neg.)

Rest 37.07% 62.92% (non-neg.)

Senti4SD Security 36.93% 27.72% 35.34%

Rest 22.23% 43.07% 34.69%

Commit Comments

Original study by Pletea et al. (2014)

NLTK Security 55.59% 23.42% 20.97%

Rest 46.94% 26.58% 26.47%

Replication by Jongeling et al. (2017)

NLTK Security 55.96% 22.88% 21.16%

Rest 46.89% 26.61% 26.50%

SentiStrength Security 32.60% 46.95% 20.44%

Rest 22.30% 50.74% 26.95%

Our replication with SE-specific tools

SentiStrength-SE Security 15.46% 68.84% 15.70%

Rest 12.27% 66.85% 20.88%

DEVA Security 25.87% 51.13% 23.00%

Rest 21.10% 51.38% 27.52%

SentiCR Security 28.93% 71.06% (non-neg.)

Rest 19.49% 80.50% (non-neg.)

Senti4SD Security 17.58% 60.66% 21.76%

Rest 11.20% 63.47% 25.33%

The largest polarity group per study and topic is typeset in boldface. We report in Italic the higher percentage
of negative comments between security and rest of the topics per study
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Table 4 Pull request sentiment analysis statistics

Tool Topic Negative Neutral Positive

Pull Request Discussion

Original study by Pletea et al. (2014)

NLTK Security 81.00% 5.52% 13.47%

Rest 69.58% 11.98% 18.42%

Replication by Jongeling et al. (2017)

NLTK Security 77.61% 7.03% 15.36%

Rest 67.43% 13.82% 18.76%

SentiStrength Security 30.80% 45.51% 23.68%

Rest 24.15% 51.17% 24.67%

Our replication with SE-specific tools

SentiStrength-SE Security 27.33% 46.63% 26.04%

Rest 18.81% 58.90% 22.29%

DEVA Security 47.48% 21.17% 31.35%

Rest 30.35% 41.66% 27.99%

SentiCR Security 76.08% 23.92% (non-neg.)

Rest 52.06% 47.94% (non-neg.)

Senti4SD Security 49.31% 31.90% 18.79%

Rest 28.26% 49.55% 22.18%

Pull Request Comments

Original study by Pletea et al. (2014)

NLTK Security 59.83% 19.09% 21.06%

Rest 50.16% 26.12% 23.70%

Replication by Jongeling et al. (2017)

NLTK Security 59.67% 18.83% 21.50%

Rest 49.81% 26.45% 23.74%

SentiStrength Security 25.66% 51.22% 23.11%

Rest 18.14% 62.87% 18.97%

Our replication with SE-specific tools

SentiStrength-SE Security 11.60% 78.29% 10.10%

Rest 8.58% 79.97% 11.45%

DEVA Security 18.77% 63.91% 17.32%

Rest 12.77% 70.55% 16.67%

SentiCR Security 28.76% 71.24% (non-neg.)

Rest 19.62% 80.37% (non-neg.

Senti4SD Security 11.60% 74.90% 13.49%

Rest 7.28% 77.70% 15.01%

The largest polarity group per study and topic is typeset in boldface. We report in Italic the higher percentage
of negative comments between security and rest of the topics per study

(Table 4). This evidence suggests that different findings can be derived also depending on
the level of granularity of the unit of analysis (comments vs. discussions, in this case).
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Table 5 Distribution of polarity labels predicted by the SE-specific tools for the study by Calefato et al.
(2018b)

Tool Negative Neutral Positive

Original study by Calefato et al. (2018b)

SentiStrength 11.00% 63.00% 26.00%

Our replications with SE-specific tools

SentiStrength-SE 17.00% 51.07% 31.93%

DEVA 20.27% 40.05% 39.68%

SentiCR 39.33% 60.67% (non-negative)

Senti4SD 34.39% 40.73% 24.88%

The larger group per study is typeset in boldface

4.3 Replication of Calefato et al.

In our replication, we use the dataset of the original study.4 As in the original study, we
apply a logistic regression for estimating the correlation of each factors on the probability of
success of a Stack Overflow question. In particular, we use the output of the four SE-specific
sentiment analysis tools to recompute the metrics associated with the affect and other factors
of their framework, i.e., the positive and negative sentiment scores. Conversely, we do not
recompute the metrics associated to the remaining factors and use those originally extracted
in the original study, as they are distributed in the original dataset. Since SentiCR only
distinguishes between negative and non-negative sentiment, in the replication using this tool
we could only include the Positive Sentiment among the predictors. In line with the original
study, we treat the success of a question—i.e., the presence of an accepted answer—as the
dependent variable and the metrics that operationalize each factors as independent variables.

In Table 6, we report the results of the original study as well as the outcome of the repli-
cations with the four SE-specific sentiment analysis tools. For each predictor, we report
the coefficient estimate, the odds ratio (OR), and indicate statistical significance of the
correlation (p-value <.05) in bold. The sign of the coefficient estimate indicates the posi-
tive/negative association of the predictor with the success of a question. The odds ratio (OR)
weighs the magnitude of this impact, with values close to 1 indicating a small impact. A
value lower than 1 corresponds to a negative coefficients, and vice versa. Technically speak-
ing, an OR = x indicates that the odds of the positive outcome are x times greater than
the odds of the negative outcome. OR is an asymmetrical metric, with positive odds varying
from 1.0 to infinity and decreasing OR bounded by 0. To further investigate the outcome
of classification performed with the different tools, in Table 5, we report the label distribu-
tions for the predictions issued by the SE-specific tools and provide comparison with those
obtained with SentiStrength from the original study.

As for RQ1, we confirm the original findings related to Reputation, Time, and Presenta-
tion Quality, for which we observe comparable coefficients and ORs in all settings. More in
detail, we confirm that Reputation is the most influential factor for the success of questions,
with Trusted users having the highest probability of getting an accepted answers. As for
Time, evening and night are confirmed as the most effective time zones. As far as Presen-
tation Quality is concerned, the presence of code snippet remains the strongest predictor in

4The original dataset can be downloaded from https://goo.gl/whZEWA

https://goo.gl/whZEWA
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Table 7 Weighting scheme for computation of κ

Negative Neutral Positive

Negative 0 1 2

Neutral 1 0 1

Positive 2 1 0

all settings. The results from the replications also confirm the Body Length to be negatively
correlated with the success of questions. Conversely, we could not confirm the positive cor-
relation between low uppercase ratio with the success of questions. As for the impact of the
Affect factor, we confirm the negative impact of both positive and negative sentiment on the
success of questions when Senti4SD is used. Conversely, for SentiStrength-SE, DEVA, and
SentiCR we do not find empirical support for this claim. As already observed in the replica-
tion of the study by Pletea and colleagues (see Tables 3 and 4 in Section 4.2), the proportions
of polarity labels vary depending on the tools. As such, we conclude that the choice of the
sentiment analysis tools leads to partially contradictory results for this study. The original
findings about the impact of factors on the success of questions are mostly confirmed, with
a couple of exceptions. Specifically, the sentiment from the original work are fully con-
firmed only when Senti4SD is used for performing sentiment analysis of questions, while
the impact of writing in uppercase is not confirmed in any setting.

5 Agreement between SE-specific tools

To address RQ2 (To what extent do results from different SE-specific sentiment analysis tools
agree with each other?), we measure the agreement among the four SE-specific tools using
the weighted kappa (κ) by Cohen (1968). The κ metric is computed as the observed agree-
ment, i.e., the number of times the raters (either humans or classifiers) issue the same labels,
corrected by the chance agreement, that is the probability that the raters agree by chance.
Consistently with previous research (Jongeling et al. 2017; Novielli et al. 2018b), we dis-
tinguish between mild disagreement, that is the disagreement between negative/positive and
neutral annotations, and severe disagreement, that is the disagreement between positive
and negative judgments. As such, in computing the weighted κ , we assigned a weight =
2 to severe disagreement and a weight = 1 to mild disagreement (see Table 7). We follow
the interpretation of κ by Viera and Garrett (2005), suggesting that the agreement is less
than chance if κ ≤ 0, slight if 0.01 ≤ κ ≤ 0.20, fair if 0.21 ≤ κ ≤ 0.40, moderate if
0.41 ≤ κ ≤ 0.60, substantial if 0.61 ≤ κ ≤ 0.80, and almost perfect if 0.81 ≤ κ ≤ 1.
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The κ index represents the de facto standard used in research to assess the inter-rater
agreement. However, a debate is still open about the limitations of the κ statistic due to
the presence of bias in the case of skewed distributions of labels (Di Eugenio B and Glass
2004). The main problem with κ applied to computational linguistics and text classification
tasks is that it is possible to observe low κ values even in presence of high agreement if
the distribution of one label largely outnumbers the others. In fact, the minimum value of
chance agreement occurs when the labels are equally distributed among all the possible
categories (i.e., positive, negative, and neutral in our case). Conversely, the maximum value
of chance agreement (i.e., 1) occurs when all the labels belong to a single category. Indeed,
the problem of unbalanced polarity labels affects both our replication datasets, for which
we observe a prevalence of neutral cases (see Tables 3, 4, and 5).

Given these limitations and for the sake of completeness, in Tables 8 and 9 we report
both the weighted Cohen’s κ for the two datasets and the observed agreement, i.e., the
the percentage of cases for which the tools in each pair (by row) issue the same predic-
tion (perfect agreement). Furthermore, in line with previous research by Novielli et al.
(2018b), we also report the percentage of cases for which severe and mild disagreement
are observed. The only exception is represented by SentiCR that predicts two classes (i.e.,
negative vs. non-negative), thus making impossible to distinguish between severe and mild
disagreement.

For both datasets (see Tables 8 and 9), the κ values indicate an agreement between tools
ranging from slight to moderate. We observe the highest values of κ between SentiStrength-
SE and DEVA is the highest (.45–.59). This is reasonable as they have been created by
the same team and share the same underlying API and lexicon, which is an adaptation
of the lexicon and the rules of SentiStrength. The second highest agreement (.33–.53) is
observed between SentiStrength-SE and Senti4SD, which is again expected as Senti4SD
also leverages the SentiStrength lexicon that significantly overlaps with the adapted ver-
sion implemented by SentiStrength-SE. The lowest agreements involve SentiCR with both
DEVA (.04–.18) and SentiStrength-SE (.08–.15). A possible explanation for this is that
SentiCR does not leverage any sentiment dictionary, thus relying only on Bag-of-Words
(BoW) as features for the supervised classification model trained on a gold standard of code
reviews. Overall, Senti4SD is in the middle of the scale of observed κ values, showing a
moderate agreement with lexicon-based tools and a fair agreement with SentiCR, probably
because it leverages both lexicon-based features and BoWs.

These results are in line with findings from our previous benchmarking studies (Novielli
et al. 2018a; Novielli et al. 2020). Furthermore, we observe an improvement from κ = .25,
which is the highest agreement reported by Jongeling et al. for general purpose tool on
GitHub comments, to κ = .59 and κ = .57, which we observe for SentiStrength and DEVA,
respectively on pull request and commit comments, thus confirming the previous findings
about the positive impact of SE-specific tuning of sentiment analysis tools (Novielli et al.
2018a). However, lower agreement is observed for longer texts such as GitHub discus-
sions or Stack Overflow questions, for which we observe values of κ = .47 and κ = .48,
respectively.

Looking at the disagreement rates, we observe that the main cause for disagreement is
between neutral and either positive or negative polarity (mild disagreement). The highest
rates of severe disagreement are observed for both pull request and commit discussions
(between 8–16%, see Table 8) as well as for Stack Overflow questions (between 7–17%, see
Table 9). For pull request and commit comments, the severe disagreement ranges between
2–6%, thus providing a further indication of the higher difficulty of issuing an overall
polarity label for longer texts.
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Finally, the κ values are generally lower than the ones observed with fine-tuned SE-
specific tools in a within-platform condition. In our previous study (Novielli et al. 2020),
we observed a drop in agreement between tools for the supervised classifiers (i.e., Senti4SD
and SentiCR, in this case) when trained and tested in a cross-platform condition, that is,
when using train and test sets from different platforms. In line with evidence provided in
previous benchmark study, we observe the lowest agreement for pairs that include SentiCR.
This might be explained by the approach implemented by SentiCR, which relies on features
based on bag-of-words that hold a lower ability to generalize across-dataset thus causing
overfitting to the training data of the platform-specific lexicon. This evidence confirms
that shifts in lexical semantics also occur within the software development domain due to
platform-specific jargon and communication style, and highlight that SE-specific classifiers
are no silver bullet since problems arise if they are also used as ‘off-the-shelf’ solutions.

6 Agreement of SE-specific tools withmanual annotation

To address RQ3 (To what extent do different SE-specific sentiment analysis tools agree with
human raters?), we manually labeled a subset of 600 documents randomly selected from the
GitHub and Stack Overflow datasets: 200 pull request and 200 commit comments, equally
distributed between the ‘security’ and ‘no security’ groups from the dataset by (Pletea et al.
2014), plus 200 questions from the dataset by (Calefato et al. 2018b)

The labeling study was performed by the first two authors (raters hereinafter), follow-
ing previously published annotation guidelines for sentiment polarity by Calefato et al.
(2018a). Each document in the subsets was individually annotated by the two raters. For
each document, the raters indicated whether positive or negative sentiment was conveyed.
It was also possible to indicate both positive and negative polarity, to represent cases of
mixed polarity. To indicate neutral sentiment, the raters were required to annotate absence
of both positive and negative polarity. All the cases of disagreement were resolved through
discussion, leading to the assignment of a gold label to each document. Two comments
from the GitHub subset were discarded because the raters could not reach an agreement on
the polarity label. Conversely, the raters successfully addressed all the disagreements in the
Stack Overflow subset. The resulting label distributions for the two subsets are comparable,
with the majority of cases labeled as neutral (see Table 10). The GitHub subset contains
a slightly higher proportion of positive cases compared to the Stack Overflow one. Vice
versa, negative sentiment occurs more often in Stack Overflow. A larger proportion of mixed
cases appear in the Stack Overflow subset (7%) than in GitHub (2%). A possible explana-
tion for this, as also emerged during the disagreement resolution discussions, is that longer
texts are more likely to convey both positive and negative sentences. In fact, the average
length of the documents in the GitHub sample is 134 characters whereas it is 430 in Stack
Overflow.
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Table 8 greement between SE-specific tools for the dataset used in the study by Pletea et al. (2014)

Perfect Disagreement

Tool Pair κ Agreement Severe Mild

Pull request discussions

SentiStrength-SE vs. DEVA 0.45 67% 10% 23%

SentiStrength-SE vs. Senti4SD 0.33 61% 10% 30%

DEVA vs. Senti4SD 0.29 58% 16% 26%

SentiStrength-SE vs. SentiCR 0.15 55% 45%

DEVA vs. SentiCR 0.25 61% 39%

SentiCR vs. Senti4SD 0.32 65% 35%

Commit discussions

SentiStrength-SE vs. DEVA 0.47 66% 10% 23%

SentiStrength-SE vs. Senti4SD 0.45 66% 8% 26%

DEVA vs. Senti4SD 0.35 60% 16% 24%

SentiStrength-SE vs. SentiCR 0.15 63% 36%

DEVA vs. SentiCR 0.18 62% 38%

SentiCR vs. Senti4SD 0.29 69% 31%

Pull request comments

SentiStrength-SE vs. DEVA 0.59 84% 2% 14%

SentiStrength-SE vs. Senti4SD 0.47 82% 2% 17%

DEVA vs. Senti4SD 0.36 75% 3% 22%

SentiStrength-SE vs. SentiCR 0.08 77% 23%

DEVA vs. SentiCR 0.05 74% 26%

SentiCR vs. Senti4SD 0.14 79% 21%

Commit comments

SentiStrength-SE vs. DEVA 0.57 76% 4% 20%

SentiStrength-SE vs. Senti4SD 0.53 76% 3% 21%

DEVA vs. Senti4SD 0.39 66% 6% 28%

SentiStrength-SE vs. SentiCR 0.09 75% 25%

DEVA vs. SentiCR 0.04 69% 31%

SentiCR vs. Senti4SD 0.16 77% 23%

Table 9 Agreement between SE-specific tools for the dataset used in the study by Calefato et al. (2018b)

Perfect Disagreement

Tool Pair κ Agreement Severe Mild

SentiStrength-SE vs. DEVA 0.48 68% 7% 25%

SentiStrength-SE vs. Senti4SD 0.28 53% 11% 36%

DEVA vs. Senti4SD 0.21 50% 17% 34%

SentiStrength-SE vs. SentiCR 0.10 61% 39%

DEVA vs. SentiCR 0.14 63% 37%

SentiCR vs. Senti4SD 0.23 64% 36%
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Table 10 Distribution of polarity labels resulting from the manual annotation

Dataset

Pletea et al. Calefato et al.

Unit of annotation GitHub comments Stack Overflow questions

#Documents 400 200

Negative 47 (12%) 35 (18%)

Neutral 290 (73%) 132 (66%)

Positive 52 (13%) 20 (10%)

Mixed 9 (2%) 13 (7%)

Discarded 2 (.05%) –

We measure the agreement between the raters, as well as between manual gold labels
and the tool predictions, using the same metrics and approach adopted for assessing the
agreement between tools (see Section 5). The agreement metrics in Table 11 show a moder-
ate agreement between the two raters for both datasets. Similarly to what observed for the
agreement between tools, κ values indicate better agreement for shorter documents. This
holds true for both inter-rater agreement in the manual labeling study and for the tool-based
vs. manual labels. In fact, we observe better agreement for the GitHub commit and pull
request comments (average length of the comments in the labeled set is 134 characters).
Conversely, a lower agreement is observed for the Stack Overflow questions (average length
of 430 characters) for which we also observe a larger proportion of severe disagreement
cases and mixed cases (see Table 10).

Table 11 Agreement between raters in the labeling study and between tools and manual labels

Weighted Observed Disagreement

Pair k Agreement Severe Mild

Github comments

Rater 1 vs. Rater 2 (manual labeling) 0.54 80% 3% 17%

SentiStrength-SE vs. manual labels 0.50 77% 8% 21%

Senti4SD vs. manual labels 0.44 72% 3% 24%

DEVA vs. manual labels 0.35 69% 6% 25%

SentiCR vs. manual labels 0.16 81% 19%

Stack Overflow questions

Rater 1 vs. Rater 2 (manual labeling) 0.45 69% 3% 27%

SentiStrength-SE vs. manual labels 0.29 57% 5% 37%

Senti4SD vs. manual labels 0.29 59% 7% 33%

DEVA vs. manual labels 0.19 51% 11% 37%

SentiCR vs. manual labels 0.13 68% 32%
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6.1 Follow-up analysis onmajority voting

We run a follow-up analysis to investigate if the agreement with the manual gold label
improves if we focus on the comments for which the tools agree with each other. To this
aim, we replicate the approach followed by Jongeling et al. and select the subset of GitHub
comments and Stack Overflow questions for which Senti4SD, SentiStrength-SE, and DEVA
agree on the polarity classification. We cannot include SentiCR in this analysis as we are
not able to disambiguate between positive and neutral cases for which the tool issues the
‘non-negative’ macro-label. As a further investigation, we also repeat the same assess-
ment by considering only the two tools with higher agreement with manual labels, namely
SentiStrength-SE and Senti4SD (see Table 11). Of course, given the observed agreement
between tools, this analysis focuses on a reduced number of text items. We compute the
agreement of tools with the manual labels on 262 comments from the GitHub sample (66%)
and 73 questions from Stack Overflow (36%). For two tools, a larger proportion of texts
is included in the analysis, i.e., 302 GitHub comments (75%) and 111 Stack Overflow
questions (56%).

We summarize the results of this follow-up study in Table 12. As already reported by Jon-
geling et al., we observe that focusing on the comments where the tools agree improves the
agreement with the manual labeling, both in terms of weighted κ and in terms of disagree-
ment rates. Agreement with manual labels become substantial, raising from a maximum
of .50 in the full dataset (SentiStrength-SE, see Table 11) to .69 for GitHub and from .29
(SentiStrength-SE and Senti4SD, see Table 11) to .60 for Stack Overflow. As for disagree-
ment, the proportion of severe disagreement rates drops to 2% and 3% for GitHub and Stack
Overflow, respectively, which is comparable to the disagreement between human raters (see
Table 11). More recently, similar findings were presented by Zhang et al. (2020). In their
study leveraging deep learning for sentiment analysis, they provided evidence on how com-
position of different classifiers may boost performance. In line with previous findings, this
evidence suggests that in absence of a gold standard for retraining, implementing a voting
system between off-the-shelf tools might be a way to increase classification performance.
However, a trade-off exists between the accuracy and the agreement with manual label-
ing. This approach would not enable to classify the polarity of sentiment for those cases
for which tools do not reach an agreement, thus leaving the sentiment for such documents
undetermined.

Table 12 Agreement of group of tools with manual labeling

Tools #agreement Weighted Observed Disagreement

cases (%) k Agreement Severe Mild

GitHub

Three tools 262 (66%) .69 87% 2% 11%

Two tools 302 (75%) .60 85% 2% 12%

Stack Overflow

Three tools 73 (36%) .60 78% 3% 19%

Two tools 73 (36%) .60 78% 3% 19%
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6.2 Error analysis

To better understand the difficulties inherent to sentiment detection in our dataset, we per-
formed a qualitative analisys by manually examining the cases for which the gold label did
not match the majority voting label based on tool predictions. In order to include SentiCR
in this analysis, we mapped positive and neutral labels to ‘non-negative’. Furthermore, we
excluded from this analysis the text documents for which we could not assign a polarity
class based on majority voting between tools (31 for GitHub and 34 for Stack Overflow).
The resulting collection counted 67 text documents (referred to as the disagreement set here-
inafter), of which 36 are GitHub comments and 30 are Stack Overflow questions. The two
authors who performed the manual labeling also inspected the content of the documents in
the disagreement set to identify the cause of error. Specifically, one rater assigned the error
categories, while the other one reviewed them. The two raters labeled the disagreement set
by using the error categories defined in the benchmarking study on SE-specific sentiment
analysis tools by Novielli et al. (2018a). Therefore, each document in the disagreement set
was annotated with possible causes of error. In Table 13, we report the error category distri-
bution resulting from our analysis, ordered by frequency of observation. The overall number
of documents belonging to each class is reported as well, with a breakdown by dataset. For
each error category, we also indicate the percentage of items belonging to it. In 7 cases
multiple error categories were selected, indicating multiple causes for misclassification. For
this reasons the percentages do not sum up to 100%. In 9% of cases (10 Stack Overflow
questions), the raters agreed that there was no error in the classification as the disagreement
actually originated from the document conveying both positive and negative polarity (i.e.,
mixed cases in Table 13), and, therefore, they are not included in the error category count.

The most frequent error category is general error, that is the inability to identify lexical
cues of sentiment, as in the following GitHub comment:

“The alternative of course is to fixup the build system to split swscale and
libav*, which wouldn’t be a terrible idea as there are several places currently where
the removal of ffmpeg would mean the removal of unrelated features (screenshots, as
an example).”

that is erroneously classified as non-negative by the majority of tools, probably due to
their inability to deal with the negation (wouldn’t of the negative word terrible). Other

Table 13 Distribution of error categories in the Github and Stack Overflow (SO) datasets

Error category Github SO overall (%)

General error 12 17 29 (43%)

Implicit sentiment polarity 13 8 21 (31%)

Figurative language 5 1 6 (9%)

Politeness 1 3 4 (6%)

Pragmatics 3 1 4 (6%)

Subjectivity in annotation 2 – 2 (3%)

Polar facts 1 – 1 (1%)

Overall labeled documents 35 30

Overall labels assigned 37 30

Documents with multiple error categories 2 –
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causes for general errors are related to the wrong preprocessing of the raw text (i.e., code
or URL not removed properly before launching the tool-based classification), or to the fact
that the classifiers may overlook lexical features because either they are not included in
their sentiment lexicons or they are not modeled as relevant due to the low frequency in the
training sets of the supervised classifiers.

In 31% of cases the tools fail because of the presence of implicit sentiment polarity in
text, as in as in the following examples:

“Any way to report as spam on comments like these”

“Recently there were quite some changes which have not made their way to the wiki
yet. Someone should update it...”

“It is required to return HashWithIndifferentAccess instead of just plain regular
Hash??? I mean what value does it bring in to the code???”

These cases received a negative gold label because human raters could identify the neg-
ative attitude of the authors’ comments towards their interlocutor, even in the absence of
explicit emotion lexicon. This evidence is in line with previous findings from our study on
anger in collaborative software development, showing how detecting negative sentiments
towards peers is more difficult than detecting anger towards self or objects (Gachechiladze
et al. 2017). In fact, we observed that a hostile attitude towards the interlocutor is often
phrased using implicit, indirect lexicon, probably to avoid too aggressive verbal behavior.

In 9% of misclassified texts, we observe the use of figurative language such as the humor,
irony, sarcasm, or metaphors. For example:

“@username oh, duh! I’ll just go over to the corner and hang my head for awhile
for forgetting about that. I suppose it may be still worth adding a method to do the
comparison, as a convenience and ‘nudge in the hey use this direction’ for plugin a.”

“You are getting rusty in your old age...”

Such cases are extremely challenging to classify for sentiment analysis tools because
much figurative language is based on conventions, such as idiomatic expressions and
proverbs. Indeed dealing with figurative language, in general, and irony and sarcasm in par-
ticular, is still an open challenge for sentiment analysis research (Bosco et al. 2013; Weitzel
et al. 2016).

A few cases are misclassified because of the presence of ambiguous lexical cues of polite-
ness such as ‘thank you,’ which might be either interpreted as a way to convey politeness or
actual emotions (e.g., showing gratitude or appreciation) (Novielli et al. 2015). Finally, we
observe a few cases for which misclassification is due to the inability of tools to deal with
pragmatics. It is the case, for example, of suggestions formulated as questions, as in “Would
IE user agent sniffing be a bad idea?,” where the presence of negative lexicon (i.e., bad)
causes misclassification of this neutral text as negative. This is in line with previous research
showing how developers use questions to express emotional lexicon in order to induce
critical reflection in the interlocutor, to express criticism but also actual emotions, such as
anger or surprise, as well as to communicate perplexity or disagreement with respect to the
implemented solution (Ebert et al. 2018). Being able to identify the actual communicative
intention of a questions is not a trivial task. It requires being able to understand
information about context and pragmatics that cannot be successfully processed by
state-of-the-art sentiment analysis tools, which rather rely on lexical semantics of
documents.
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7 Discussion

In the following, we summarize the key insights from our replications in the form of action-
able guidelines to inform future research on sentiment analysis in software engineering.

Sentiment analysis tools should be retrained, if possible, rather than used off the shelf
We observe that, when used off-the-shelf as in our replications, SE-specific sentiment
analysis tools may lead to contradictory results if different levels of unit of analysis are con-
sidered. When replicating the study by Pletea et al., we could confirm the original findings
that GitHub security comments and discussions convey more negative sentiment than non-
security ones, regardless of the tool used. Similarly, when replicating the study on Stack
Overflow by Calefato et al., we could confirm the impact on question success of users’
reputation and the presentation quality of questions. However, in both cases, we observe
a different distribution of polarity labels that may lead to different conclusions at a finer-
grained level of analysis. As such, albeit specifically tuned for the software engineering
domain, we argue that using sentiment analysis tools off-the-shelf poses a potential threat
to conclusion validity, which might have an impact on the findings of previously published
studies in the field. This evidence is also supported by the findings reported in a bench-
marking study by Novielli et al. (2020), who report a drop in performance in cross-platform
settings, i.e., when SE-specific sentiment analysis tools are used off-the-shelf in the absence
of a gold standard for retraining.

Perform a preliminary sanity check to select the appropriate tool in line with the
research goals One of the assumptions underlying the choice of a sentiment analysis tool
is that we share the original goal and the same conceptualization of affect with the authors
of the tool. This is not necessarily true, regardless of the fine-tuning for the SE domain, as
different gold standard might be inspired by different theoretical models of affect, aiming
at modeling different affective states, such as emotions, interpersonal stances, attitudes, or
moods. The disagreement between tools observed in our replications shows how SE-specific
tuning of sentiment analysis tools does not necessarily represent per se a silver bullet for
improving the accuracy of sentiment analysis tools in software engineering studies. There-
fore, a possible explanation for the low agreement observed is that the benchmarked tools
have been originally validated and tuned on gold standards that include manual annotation
following different guidelines. As already pointed out by previous research, sentiment anno-
tation is a subjective task, thus even humans might disagree with each-others (Imtiaz et al.
2018) if model-driven annotation is not adopted (Novielli et al. 2018b). Moreover, Islam
and Zibran (2018a) showed how tools exhibit their best performance on the dataset they
were originally tested at the time of their release, whereas a drop in performance is observed
when they are assessed on a different dataset. Furthermore, they report that the accuracy of
the tools largely vary across different datasets in line with what was observed by Lin et al.
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(2018) and further confirmed by our cross-platform benchmarking study (Novielli et al.
2020).

In our previous research, we already argued about the importance of grounding sentiment
analysis research on theoretical models of affect (Novielli et al. 2018b). As such, a sanity
check is always recommended to assess the suitability of existing tools with respect to the
specific research goals (Novielli et al. 2018a; 2020). For example, in some cases the mining
of opinions might be the target rather than the recognition of actual emotions, such as joy
or sadness. (Lin et al. 2019) reported poor performance of classifiers designed to detect
developers’ emotions (e.g., love, joy, fear) when applied to the different task of detecting
developers’ opinions about software libraries.

If retraining is not possible, consider an ensemble of multiple tools to improve perfor-
mance As for any classifier, the retraining of sentiment analysis tools on new datasets can
largely improve their performance. However, not all the solutions support retraining, as in
the case of the lexicon-based tools DEVA and SentiStrength-SE. Based on the results of our
analysis on the agreement of tools (see Section 5) and in line with previous evidence (Jon-
geling et al. 2017; Zhang et al. 2020), we suggest implementing an ensemble of tools with
a majority voting system as a possible way to increase the agreement with manual labels
when the retraining of the selected solution is not an option.

Beware of the effects of different units of analysis on tool performance The results of
the agreement study suggest that the choice of the unit of analysis may represents a poten-
tial threat to construct validity. We observe better agreement for shorter documents both
between tools (see Tables 8 and 9) as well as between tools and manual annotation (see
Table 11). Specifically, we found the best κ values of agreement between tools for GitHub
comments (shorter unit of analysis), immediately followed by Stack Overflow posts, and the
worst values for GitHub discussions (longer unit of analysis). This evidence suggests that
sentiment analysis perform better on short text, whereas longer documents are more prob-
lematic as they might actually convey both positive and negative emotions–as confirmed by
the higher percentage of manually-labeled mixed cases for the Stack Overflow dataset (7%)
compared to GitHub comments (2%) (see Table 10).

Furthermore, we observe that each tool produces different distributions of positive, neg-
ative, and neutral labels for the dataset by Pletea et al., who considered as units of analysis
individual comments vs. entire discussion. This confirms the evidence by (Jongeling et al.
2017) that care is needed when choosing the unit of analysis as it may affect the result-
ing polarity label distribution. Therefore, other than fine-tuning sentiment analysis tools to
address the challenges specific of the software engineering domain (Novielli et al. 2018b)
and the data source (Lin et al. 2018), tools might need further ad hoc tuning if different
lengths of documents or interaction threads are considered. For example, for the two super-
vised tools considered in this study (Senti4SD and SentiCR), this tuning could be done by
retraining the classification models using a training set with gold labels assigned at a dif-
ferent granularity, e.g., at the level of individual sentences rather than at the level of the
entire document. If retraining is not feasible due to the absence of a gold standard, we rec-
ommend explicit modeling of mixed cases by using tools that are designed to denote the
presence/absence of positive and negative sentiment, such as SentiStrength-SE.

Finally, the dependency of the label distribution on the tools used and on the unit of
analysis suggest further implications on the replicability of findings. In spite of the different
polarity distribution labels as issued by the four tools inlcuded in our replications, the claims
of Pletea et al. are more stable regardless of the tool used since they do not explicitly refer



Empir Software Eng           (2021) 26:77 Page 25 of 29   77 

to this distribution but to percentage over groups (i.e., security vs. non-security) as opposed
to negative vs positive. These findings are also confirmed when discussions rather than
comments are used as a unit of analyis. However, different scenarios and research goals
might suffer seriously from the impact of the choice of the tools and of the unit of analysis. It
is the case, for example, of identification of negative comments denoting a hostile attitude in
the scope of community moderation activities, where optimizing by precision of the negative
class on a single comment is crucial to avoid unnecessary ban of users.

8 Threats to Validity

Since we strictly replicated the two original studies, we also inherited some of the threats
to validity reported in the original papers, e.g., the datasets under consideration are not
representative for GitHub and Stack Overflow as a whole. Still, the limitations to the validity
of each study are shared across both the original studies and the replications, and, therefore,
unlikely to have influenced the findings reported here.

As for the annotation of the 600 document gold standard, threats to construct validity
are mitigated by the fact that the labeling is performed by two independent raters, with
discussion-based resolution of disagreements.

When running replications, one of the inherent risk is to introduce unintended minor
changes in the settings used in the original study, thus observing major differences in the
results that are due to confounding factors. To mitigate this risk, we decided to perform
our own studies, to avoid weakening the conclusion validity of our study. In particular,
we performed two dependent replications in which the original design of the studies was
preserved. The only change we introduced consists in the choice of the sentiment analysis
tool, in line with our research goal of investigating the impact of the choice SE-specific
tools on the conclusion validity.

9 Conclusion

In this paper, we reported the results of an extended replication aimed at assessing to what
extent SE-specific sentiment analysis tools mitigate the threats to conclusion validity high-
lighted by previous research. We found that, despite being tuned to address the challenges
specific to the SE domain, the use of different sentiment analysis tools might lead to con-
tradictory results when used off-the-shelf. This is especially true at a fine-grained level of
analysis, as we found a moderate agreement between tools as well as differences in the
distribution of polarity labels assigned by the different tools in the text items of our dataset.

Our results suggest that SE-specific fine-tuning of sentiment analysis tools to the
software engineering domain might not be enough to improve accuracy. Conversely,
platform-specific tuning or retraining might be needed to adjust the model performance
to the shifts in lexical semantics due to different platform jargon or conventions. Further
fine-tuning or retraining of tools might be required with respect to different lengths of doc-
uments as we found that longer texts might convey mixed sentiment polarity. Finally, a
sanity check of the tool performance against manual labeling should always be performed
as classifiers might be built according to different operationalization of emotions, which
do not necessarily match the intended research goals. Dealing with figurative language and
implicit sentiment polarity in texts still represent open challenges for sentiment classifiers
that should be address by future work in this field.
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CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmed T, Bosu A, Iqbal A, Rahimi S (2017) Senticr: A customized sentiment analysis tool for code
review interactions. In: Proceedings of the 32nd IEEE/ACM international conference on automated
software engineering. IEEE Press, Piscataway, pp 106–111. ASE 2017, http://dl.acm.org/citation.cfm?
id=3155562.3155579

Blaz CCA, Becker K (2016) Sentiment analysis in tickets for it support. In: Proceedings of the 13th
international conference on mining software repositories. ACM, New York, pp 235–246,. MSR ’16,
https://doi.org/10.1145/2901739.2901781

Bosco C, Patti V, Bolioli A (2013) Developing corpora for sentiment analysis: the case of irony and senti-tut.
IEEE Intell Syst 28(2):55–63

Calefato F, Lanubile F, Maiorano F, Novielli N (2018a) Sentiment polarity detection for software develop-
ment. Empirical Softw Engg 23(3):1352–1382. https://doi.org/10.1007/s10664-017-9546-9

Calefato F, Lanubile F, Novielli N (2018b) How to ask for technical help? evidence-based
guidelines for writing questions on stack overflow. Inform Softw Technol 94:186–207.
https://doi.org/10.1016/j.infsof.2017.10.009, cited By 10

Carver JC (2010) Towards reporting guidelines for experimental replications: A proposal. In: 1st International
workshop on replication in empirical software engineering research

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: Synthetic minority over-sampling
technique. J Artif Intell Res 16:321–357

Chen Z, Cao Y, Lu X, Mei Q, Liu X (2019) Sentimoji: An emoji-powered learning approach for sen-
timent analysis in software engineering. In: Proceedings of the 2019 27th ACM joint meeting on
european software engineering conference and symposium on the foundations of software engineer-
ing, association for computing machinery, New York, NY, USA, ESEC/FSE 2019, pp 841–852.
https://doi.org/10.1145/3338906.3338977

Cohen J (1968) Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial
credit. Psychol Bull 70:213–220

Di Eugenio B, Glass M (2004) The kappa statistic: A second look. Computat Linguist 30(1):95–101.
https://doi.org/10.1162/089120104773633402

Ebert F, Castor F, Novielli N, Serebrenik A (2018) Communicative intention in code review questions.
In: 2018 IEEE international conference on software maintenance and evolution, ICSME 2018, madrid,
spain, september 23-29, 2018, pp 519–523. https://doi.org/10.1109/ICSME.2018.00061

Gachechiladze D, Lanubile F, Novielli N, Serebrenik A (2017) Anger and its direction in collaborative
software development. In: Proceedings of the 39th international conference on software engineering:
New ideas and emerging results track. IEEE Press, Piscataway, NJ, USA, ICSE-NIER ’17, pp 11–14.
https://doi.org/10.1109/ICSE-NIER.2017.18

Gousios G (2013) The ghtorent dataset and tool suite. In: Proceedings of the 10th working conference on
mining software repositories, IEEE Press, Piscataway, NJ, USA, MSR ’13, pp 233–236. http://dl.acm.
org/citation.cfm?id=2487085.2487132
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