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Background. Radiation-induced toxicity represents a crucial concern in oncological treatments of patients affected by head and
neck neoplasms, due to its impact on survivors’ quality of life. Published reports suggested the potential of radiomics combined
with machine learning methods in the prediction and assessment of radiation-induced toxicities, supporting a tailored radiation
treatment management. In this paper, we present an update of the current knowledge concerning these modern approaches.
Materials and Methods. A systematic review according to PICO-PRISMA methodology was conducted in MEDLINE/PubMed
and EMBASE databases until June 2019. Studies assessing the use of radiomics combined with machine learning in predicting
radiation-induced toxicity in head and neck cancer patients were specifically included. Four authors (two independently and two
in concordance) assessed the methodological quality of the included studies using the Radiomic Quality Score (RQS). &e overall
score for each analyzed study was obtained by the sum of the single RQS items; the average and standard deviation values of the
authors’ RQS were calculated and reported. Results. Eight included papers, presenting data on parotid glands, cochlea, masticatory
muscles, and white brain matter, were specifically analyzed in this review. Only one study had an average RQS was≤ 30% (50%),
while 3 studies obtained a RQS almost≤ 25%. Potential variability in the interpretations of specific RQS items could have
influenced the inter-rater agreement in specific cases. Conclusions. Published radiomic studies provide encouraging but still
limited and preliminary data that require further validation to improve the decision-making processes in preventing and
managing radiation-induced toxicities.

1. Introduction

Worldwide, head and neck squamous cell carcinoma
(HNSCC) represents the sixth most common nonskin cancer,
with about 600,000 new cases diagnosed annually [1]. Despite
the established role of Human Papilloma Virus (HPV) in-
fection in oropharyngeal cancer [2], a critical lack of

prognostic factors limits the possibility to apply personalized
medicine in head and neck oncology. Radiotherapy (RT) is an
essential component of the aforementioned personalized
treatment for HNSCC, however burdened with a high rate of
acute and late severe toxicity [3].

&e paradigm shift towards quantitative imaging, which
has been observed in the last two decades, might represent
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the turning point to capture individual tumor heterogeneity,
along with gene expression profiling [4]. &e exponential
progress in medical image analysis has allowed an un-
precedented, high-throughput extraction of quantitative
features. Radiomics [5, 6] has been defined as a process
which consists of the conversion of digital images into high-
dimensional data and the ensuing data mining to support
clinical decision making. Its potential in providing accurate
prognostic and predictive information has been highlighted
by several studies published in the last five years across
different cancer types [7, 8]. In HNSCC, radiomics and
machine learning are still in its infancy, both in terms of
predictive and prognostic value and treatment-related
toxicity assessment.

In light of this rapidly evolving scenario, the present
analysis sought to define the current state of the art on the
prediction of radiation-induced side effects (RISEs) in
HNSCC through radiomics and machine-learning applica-
tions. No previous systematic reviews have been published
on this topic.&emain purpose was to evaluate the potential
of these modern approaches in the assessment of radiation-
induced toxicities, which could support a tailored radiation
treatment management.

2. Materials and Methods

2.1. Search Strategy and Study Selection. A systematic review
according to the PRISMA methodology [9] was performed
to answer to the following research question: “Is radiomics
combined with machine-learning methods effective in
predicting radiation-induced toxicity in head and neck
cancer patients?”

A literature search via PICO (Population, Interven-
tion, Comparison, and Outcome) to identify articles
published in MEDLINE/PubMed and EMBASE was in-
dependently conducted by two authors until June 2019.
Discrepancies in study selection were solved by consen-
sus. &e main inclusion criteria for study selection were
the reporting of machine-learning models based on
radiomic analyses in the considered clinical setting. All
the specific inclusion and exclusion criteria for study
selection and leading keywords which were used to
identify studies in both databases are reported in Table 1.
To identify more papers, the Boolean operator “OR”
rather than “AND” was used to link the keywords
“radiomics” and “machine learning.” No restrictions for
publication years or type were applied for study identi-
fication. Furthermore, three separate searches were
conducted on MEDLINE/Pubmed via PICO (https://
pubmedhh.nlm.nih.gov/nlmd/pico/piconew.php)
according to the “Outcome” keywords “radiation toxic-
ity”, “radiation tolerance,” and “radiation injury,”
respectively.

Only original articles edited in English were eligible for
this analysis. Review articles, editorials, meeting abstracts,
commentary, letters, or other forms of reports were ex-
cluded. In selected cases, the full-text of those retrieved
papers has been also analyzed to identity additional refer-
ences satisfying the inclusion criteria.

2.2. Data Extraction and Study Quality Assessment.
General characteristics of the included studies (first author,
year of publication, patients number, and organ at risk
(OAR) considered, as well as image modality and radiomic
features) along with articles main results and relevant sta-
tistical results (radiomic model performance) were extracted
and tabulated. Four authors (two independently and two in
concordance) assessed the methodological quality of the
included studies using the Radiomic Quality Score (RQS)
[10], a tool consisting of sixteen items which provide an
indication of radiomics study quality.

2.3. Statistical Analysis. &e overall score for each analyzed
study was obtained by the algebraic sum of the single RQS
items (see the supplementary materials for overall RQS
scores assessed by each author). To take into account the
interrater variability, the average and standard deviation
values of the authors’ RQS scores were calculated; finally, the
mean RQS value of each study was reported as a percentage.

3. Results and Discussion

Among 134 identified studies, eight papers satisfying the
inclusion criteria were specifically analyzed in this review.
&e PRISMA flow chart is shown in Figure 1. A summary of
the main results of the included studies is reported in Ta-
ble 2. Among the 8 included studies, two were identified as
additional records through the retrieved reviews. Data on
parotid glands, cochlea, masticatory muscles, and white
brain matter were collected and analyzed.

3.1. Study Quality Assessment. Only the study by Van Dijrk
[13] had an average RQS score≥ 30% (50%), while 3 studies
obtained a RQS score almost≥ 25% (Abdollahi, Van Dijrk,
and Gabrys) [14, 16, 18]. &is finding suggests the lack of
high-quality studies assessing the role of radiomics com-
bined with machine learning in the prediction of radiation-
induced toxicity in HNSCC cancer patients. We observed
some interobserver discrepancies in the interpretation of
specific RQS score items: the greatest were found for RQS
score items “potential clinical applicability” and “open
science and data,” even if other detected disagreements claim
the need for more robust and easily interpretable meth-
odological scoring systems for radiomic studies. Globally,
higher standard deviations (4, 5) were observed in the
studies by Leng, Abdollahi, and Pota [11, 14, 17].

3.2. Focus on Imaging Modality. In analogy with other
findings reported for other cancer sites, computed tomog-
raphy (CT) was the imaging modality analyzed in half of the
selected articles [12, 14, 17, 18]. On the whole, the versatility,
reproducibility, and integration into RT workflow make CT
an ideal tool for multidimensional modelling. &rough a
longitudinal assessment of parotid glands, Scalco et al. [12]
investigated the potential ability of quantitative imaging to
predict parotid shrinkage, a well-known relevant issue in
head and neck radiotherapy. With an interesting machine
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learning approach, Abdollahi et al. [14] explored the cor-
relation between CT-related features of cochleas and the
development of sensorineural hearing loss (SNHL) after
treatment. When looking at very small ranges of interest
(ROIs), the relatively low contrast resolution of CT is an
intrinsic limitation and may lead to suboptimal segmenta-
tion, in particular if performed manually, as in this case. In
addition, the significant association of the first- and second-
order texture features with SNHL should be interpreted with
caution, taking into account that cisplatin (a known ototoxic
drug) was administered in less than two-thirds of cases and
that pretreatment audiometry was not included in the
proposed modelling. Pota et al. [17] further expanded
Scalco’s experience, by applying a novel artificial intelligence
methodology (“likelihood-fuzzy analysis”). However, only
19 patients had complete information available for late
xerostomia assessment, the primary endpoint in this work.
In an innovative way, Gabrys et al. [18] were able to model
the contribution of dose distribution to the contralateral
parotid gland, parotid volume, and its asymmetry (or “ec-
centricity”). In particular, the authors were able to dem-
onstrate that baseline small parotid glands (median volume
of 9.5mm3) and a steep right-left median gradient (1.7Gy/
mm) in contralateral parotid were significant risk factors for
late xerostomia. Moreover, the study did not integrate a
longitudinal (or “delta”) assessment; therefore, the impact of
weight loss and parotid deformation throughout radiation
could not be taken into account. Importantly, dose-gradient
data may be more informative than mean dose itself when
parotid glands are irradiated with a low range of dose, such
as that commonly achieved with highly conformal intensity-
modulated radiation therapy (IMRT) plans. Only one study
in the present review is focused on the role of fluo-
rodeoxyglucose positron emission tomography (FDG PET)
[16]. In view of the possibility to capture information on
tumor microenvironment, functional imaging may intrin-
sically have a greater predictive power than morphologic

modalities. In this respect, cross comparing the work of Van
Dijk et al. with a previous investigation from the same group
[19], PET biomarkers were more informative than the CT
ones. In particular, FDG PET hypermetabolism could better
reflect the degree of activity within parotid glands and
discriminate between fatty and nonfatty tissue in compar-
ison with CT characteristics. High-intensity and texture
features were associated with a lower risk of 12-month
xerostomia; therefore, it could be hypothesized that
hypercellularity within the gland may correlate with a lower
radiosensitivity. On the other hand, outside of a prospective
controlled trial, the dependence of semiquantitative PET
features (such as SUVmax) on scan acquisition parameters
and anthropometric factors may be bias prone. In addition,
the lack of follow-up scans to lend support to the authors’
findings is a relevant limitation. &e remaining 3 papers
[11, 13, 15] were centered on magnetic resonance imaging
(MRI) data. In a similar comparison with CT-based accu-
racy, the application of T1-weighted pretreatment MRI [13]
was able to better detect the relationship between functional
and nonfunctional parotid tissue and to improve the pre-
diction ability of late xerostomia (AUC 0.83). &e quanti-
tative analysis of MRI intensity features is the most robust
method to identify before treatment those patients at higher
risk of toxicity. However, addressing MRI complex stan-
dardization is paramount. Taking all together, only one
paper [13] reported on an external validation cohort and
only 3 studies [11, 12, 17] can be considered in terms of
“delta” radiomics. In this perspective, the analysis of in-
tensity and texture features may contribute to the unresolved
issue of replanning in HNSCC [20]. Overall, these imaging
biomarkers may be the ideal candidate for parotid moni-
toring throughout treatment, since they mainly reflect
variations in tissue organization. By scanning patients with
nasopharyngeal cancer 3 times in planning position (first,
second, and last weeks of RTcourse), Scalco et al. speculated
that the early decrease into treatment of texture features

Table 1: Study selection criteria and research keywords according to the PICO model.

Selection
criteria Inclusion criteria Exclusion criteria EMBASE search via

PICO

MEDLINE/
PubMed search via

PICO

P: population

Adults (age >18 years) affected by
nonmetastatic HNSCC

(nasopharynx; oral cavity;
oropharynx; hypopharynx, larynx;
nasal cavity; and paranasal sinus);

salivary gland cancer

Pediatric patients (age< 18); non-
HNSCC primary tumors; metastatic
HNSCC cancer; and diagnosis of
cutaneous squamous cell carcinoma
or basal cell carcinoma of HNSCC

“Head and neck tumor”/
exp OR “head and neck

cancer”/exp

Head and neck
tumor

I: intervention

Radiomics with artificial
intelligence; radiomics-based

machine-learning methods; and
quantative radiographic phenotype

analysis

Exclusion of radiomic analysis from
the machine-learning method

(exclusive analysis of biomarkers,
genetic profiles, clinical data, etc.)

“Radiomics”/exp OR
“machine learning”/exp

Radiomics OR
machine learning

C: comparison (Not explored)

O: outcome Radiation-induced toxicity;
radiation-induced toxicity risk

Prediction of survival outcomes;
local disease response; prediction of
HPV-status or nodal status; and

automatic contouring
implementation

“Radiation toxicity”/exp
OR “radiation
tolerance”/exp

OR’radiation injury’/exp

Radiation toxicity/
radiation
tolerance/

radiation injury
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(specifically of mean intensity and fractal dimension) may
correlate with a rapid deterioration of glandular tissue, as
known from pathologic data [21]. A similar approach was
described by Pota et al., with CT acquisitions scheduled
before RT, at the middle of treatment and after it. Taking
into account that adaptive replanning is not supported by
evidence for a routine use [22], a radiomics-based strategy
may be highly advantageous also in terms of cost effec-
tiveness. Parotid texture and volume features may rep-
resent a composite image biomarker with high sensitivity
to assess tissue derangement throughout treatment. Fi-
nally, the work of Leng et al. [11] can be considered
hypothesis-generating only, since the time-weighted
monitoring of white matter injury with diffusion tensor
magnetic resonance imaging (DT-MRI) cannot be con-
sidered predictive in the absence of a related clinical
endpoint.

3.3. Xerostomia. Radiation-induced xerostomia is a major
side effect for head and neck patients, and it has a con-
siderable impact on quality of life [23]. Normal Tissue
Complication Probability (NTCP) models that predict
xerostomia are principally based on dose-volume parame-
ters and baseline patient-rated xerostomia [24, 25]. How-
ever, there is a significant variance in predicting xerostomia
with these models, so the improvement in the identification
of patients at risk is crucial.

A better understanding of the mechanisms of radiation-
induced xerostomia is necessary to advance towards more
individualized treatments and improved sparing of normal
tissues by dose optimization, with new radiation techniques
such as proton therapy and MRI-guided radiation [13].
Radiomic features, such as shape, intensity, and texture
characteristics extracted by images can contribute to the
prediction of the disease response and survival [26].

Total identified studies: n = 134

EMBASE: 15
MEDLINE/PubMed

(three P-I-O search strategies): 60 + 21 + 38
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However, the role of these image features to predict radi-
ation-induced toxicities is not well explored.

Acute and late xerostomia symptoms are strongly as-
sociated with structural changes of parotid glands, which are
in part related to parotid volume shrinkage during radio-
therapy treatment [27]. It is known that when parotids
shrink, they shift toward the midline, which is typically the
high-dose region, thus a higher irradiation is received by the
glands with respect to the planned dose [28]. Prediction of
this volume shrinkage is, thus, relevant, since it allows
personalized replanning strategies (adaptive radiotherapy)
[29] which consider these anatomical variations, sparing the
healthy parotid tissue from the highest dose regions [30].

In the study of Gabrys et al. [18], mainly based on
machine-learning methods, the univariate analysis showed
that parotid volume and dose shape features can be highly
predictive of xerostomia. Patients with small parotid glands
and steep dose gradients in the patient’s right-left direction
were significantly more likely to develop long-term xero-
stomia because of the shrinking of parotid glands during
treatment toward the medial direction. &e multivariate
analysis highlighted the importance of other patient-specific
(dose-independent) factors for the development of late
xerostomia, such as parotid volume, parotid eccentricity,
and the patient’s sex. Females with small, elongated parotid
glands were at higher risk of long-term xerostomia than
males with large and round parotids. In many works, clinical
and dosimetric parameters were considered possible pre-
dictors of the shrinkage process and xerostomia, such as age,
body mass index, tumor location, planned dose to parotid
glands, initial parotid glands volume, and overlap between
parotid glands and lymph node metastases [31, 32], but the
predicting power of models found by considering only these
types of features can be improved using radiomic features
extracted by imaging, suggesting that the presence of ra-
diation-induced toxicity could also be explained by the
structural properties of the glands. Recent investigations
have suggested that parotid deformation may be related to
complex structural and functional modifications [31]. Ob-
viously, different types of imaging reveal different structural
changes of parotids, due to the peculiarity of each imaging
technique in distinguishing the various structural compo-
nents of salivary glands. Scalco et al. [12] showed that there is
a variation in the mean intensity of parotid glands on CT
images during a RT course, suggesting a loss of acinar cells
with a decrease of entropy due to an increase of adipose ratio
in parotid during treatment. Another work compared pa-
rotids of normal subjects with parotids submitted to RT
using ultrasound images [33].&e authors found an increase
in tissue heterogeneity in post-RT subjects, with an increase
in variance and entropy with respect to normal subjects. &e
latter two analyses were apparently in disagreement, but
Yang’s study based on ultrasound and not on CT images; in
fact, the tissue of normal parotid glands, filled with serous
acinar cells, provides uniform and highly reflective interfaces
for the ultrasound beam. After RT, the loss of acinar cells in
parotids leads to a more disorganized tissue organization,
appearing in ultrasound images as a heterogeneous echo-
graphic pattern. Decrease in local entropy, seen with CT

images, can be interpreted in the same way [12]. A study by
Van Djik et al. [13] is based on MRI. MRI is superior in
defining soft tissue contrast and, therefore, more accurate in
differentiating fat from the parenchymal gland tissue [34].
RT can cause increased fat concentration in parotid gland
during treatment (due to parenchymal changes determined
by lipid infiltration), so radiomic features extracted by
pretreatment MRI can increase the probability of predicting
late xerostomia after radiotherapy [13].

&e same group published another study [16], based on
PET imaging, suggesting that patients with low metabolic
parotid glands, quantified by features extracted by pretreat-
ment FDG PET, were more likely to develop late xerostomia.
&is finding suggests that the nonfunctional (which can be
fatty tissue) to functional tissue ratio is an important pre-
treatment characteristic to improve prediction of xerostomia.
Moreover, high metabolic parotid glands could have more
viable cells (parenchyma and/or stem cells) with more repair
capability and/or could be less radiosensitive.

In the study of Pota et al. [17], the final parotid shrinkage
rate was found to be correlated with 12-month xerostomia.
Patients with low half thickness have lower probability of
undergoing the problem of parotid shrinkage than patients
with high half thickness. &is means that patients of larger
size are more at risk, and patients with low initial parotid
volume have lower probability of parotid shrinkage than
patients with high initial parotid volume. &ese results seem
to be in conflict with other results [18], but this is not true if
we consider (as showed previously) that xerostomia depends
mainly on glandular structure and that radiomic features
extracted by imaging sharply improve the predicting power
of models based only on clinical and dosimetric parameters.
For example, in 2015, Sanguineti et al. [35] showed that
patients with rapidly shrinking parotids during the earlier
part of treatment were those at higher risk of developing
acute xerostomia; but the opposite is true: shrinkage during
the first part of treatment predicts a higher rate of long-term
recovery. In fact, acinar cell loss is the main cause of
functional damage in human salivary glands after RT, and
we previously found that parotid shrinkage during treatment
is accompanied by a decrease in tissue density consistent
with an increase in fat over glandular tissue. Even if a given
dose of radiation would kill the same fraction of cells, the
absolute damage would be higher for those glands with a
lower baseline acinar component. On the other hand, there
is a clear possibility that more sensitive patients (showing
larger shrinkage) could experience a faster replacement of
the acinar cells due to the activation of stem cells, efficiently
recovering the gland functionality.

More recently, a confirmation of the potential im-
provement in xerostomia risk stratification by integrating
baseline image features into predictive models, with the aim
to ensure tailored HNSCC radiotherapy, has come from
Sheikh’s results [36], which suggested that baseline CT and
MRI features may reflect baseline salivary gland function
and potential risk for radiation injury. In 2020, Wilkie et al.
[37] also showed that the addition of pretreatment parotid
gland PET biomarkers improved a predictive model for late
xerostomia over dose and pretreatment symptoms.
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3.4. Other Toxicities. Chemoradiation can induce SNHL in
HNSCC patients, and it could have a great impact on the
patient’s quality of life. Abdollahi et al. [14] integrated
image features of the cochlea with clinical measures to
improve the prediction of SNHL in HNSCC patients
treated with chemoradiation: their results were obtained
through a function of multiple CT imaging, dosimetric,
clinical, and biological variables including radiomic fea-
tures, age, sex, generalized equivalent uniform dose, ra-
diation dose, and number of fractions, and chemotherapy.
&e results of this associations demonstrated that sex,
generalized equivalent uniform dose, and concurrent
chemoradiotherapy have a statistical impact on SNHL.
Other variables are not associated with SNHL. Further
analyses should be conducted using MRI radiomic features
due to the major resolution for hearing structures obtained
with MRI.

Trismus as RISE in HNSCC patients could be observed
in up to 50% of all head and neck survivors. Mouth-opening
limitation appears between three and twelve months after
RT, and it produces eating and speech difficulties, with a
considerable impact on patients’ quality of life. Trismus after
RT is a consequence of masticatory muscle contraction due
to RT-induced fibrosis. &or et al. [15] investigated an MRI
approach to quantify radiation-inducedmasseter andmedial
and lateral pterygoids and temporalis muscle injuries ap-
plied to trismus. For these muscles, 24 textures from a T1-
weighted MRI scan post-contrast were extracted with the
aim to identify the related intramuscle intensity patterns
muscles responsible for the radiation-induced trismus. &e
authors used univariate logistic regression to compare the
muscle mean dose and textures between 10 cases and 10
control (ipsilateral muscles). &e mean dose to the masseter
and medial pterygoid related to the mean MRI intensity of
these muscles could be a candidate predictor for trismus
cases compared to controls.

&e damage to the whole brain white matter (WM) in
nasopharyngeal carcinoma patients after RT is due to blood
vessel injuries that produce consequent ischemic necrosis.
DT-MRI is the technology that can better evaluate the
microstructural and morphological change of WM asso-
ciated with RT. In the study by Leng et al. [11], DT-MRI,
fibre bundle-/tract-based spatial statistics, and machine
learning methods were used to study change in the whole
brain white matter structure. After RT, patients were di-
vided into three groups according to the stage of radiation
brain injury: the acute reaction period, early delayed ra-
diation period, and late delayed radiation group. &e WM
injury is a gradual and irreversible process located in the
temporal lobe and bilateral cerebella, probably because
these regions are near to the treated volumes. With the
proposed machine-learning method, authors concluded
that there was no observation of WM damage in the ex-
tensive brain region. After a period of progressive aggra-
vation, the destruction of the whole brain can be gradually
restored, due to the compensation and self-repair of the
whole brain. &ese brain-discriminating WB regions could
be used as biomarkers for clinical diagnosis of radiation
brain injury.

3.5. StudyLimitations andFuture Perspectives. At the time of
this review article, only few published reviews discussing the
role of radiomics and machine-learning methods in HNSCC
radiotherapy [38] were published; these previous analyses
had a general focus on both adverse events and response/
survival outcomes and reported the necessity of prospective,
multicentric trials to prove the actual benefit of the use of
these modern approaches in clinical practice.

A major limitation of the present analysis is the lack of
large evidence from multiple high-quality radiomic studies
assessing specific RISE. Indeed, only a limited number of
published radiomic studies satisfied the inclusion criteria for
our review, and heterogeneity in outcomes’ assessment has
been observed. Furthermore, only limited radiomic studies
obtained high-quality RQS values due to observed limita-
tions in internal consistency, reproducibility, clinical rele-
vance, and applicability.

In addition, even if the RQS is a score system which
supports the evaluation of quality level of radiomics studies,
supplementary considerations are still required for both a
comprehensive understanding of the radiomics process and
a more accurate study quality assessment; these necessities
are mostly due to potential variability in the interpretations
of specific RQS items which could influence the interrater
agreement in specific cases.

Because of all the aforementioned reasons, our findings
should be carefully interpreted and several radiomic analyses
from prospective clinical trials are encouraged for the val-
idation of imaging biomarkers.

At the time of our search on the clinicaltrials.govwebsite,
the NCT03294122 and NCT02489084 studies were
assessing models, also based on image biomarkers ana-
lyses, to predict RISE in HNSCC, regardless of the primary
tumor site. We specifically observed an emerging interest
on the influence on RISE of the microenvironment (e.g.,
microbiota-host relationship and inflammatory markers),
as well as on predictive models based on DNA profile
assessment.

4. Conclusions

&e radiomic analysis of images acquired during the di-
agnostic-therapeutic pathway of HNSCC patients may
provide data relevant to improve predictive models for
RISE. In selected cases of normal tissues exposed to ra-
diations (e.g., parotid glands), the evaluation and inte-
gration into predictive models of baseline CT and MRI
features and pretreatment PET biomarkers could be rele-
vant for the evaluation and management of RISE; indeed,
radiomics information should reflect baseline normal tis-
sue’s function and potential risks for late toxicity. Post-
treatment images should support clinical findings and
models’ accuracy.

Nevertheless, at the time of this review, only limited
studies seem to be useful for evaluating the potential of these
modern approaches in the assessment of radiation-induced
toxicities. Moreover, the radiomic studies which have been
reviewed in this paper using a systematic approach provide
preliminary data that require further validation to improve
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the decision-making processes. In this scenario, further
studies using radiomics-basedmodels andmachine-learning
applications with a large-scale validation system are
encouraged.
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