
VARIABLE-ORDER FRACTIONAL CALCULUS:

A CHANGE OF PERSPECTIVE

ROBERTO GARRAPPA, ANDREA GIUSTI, AND FRANCESCO MAINARDI

Abstract. Several approaches to the formulation of a fractional theory of calculus
of “variable order” have appeared in the literature over the years. Unfortunately,
most of these proposals lack a rigorous mathematical framework. We consider an
alternative view on the problem, originally proposed by G. Scarpi in the early sev-
enties, based on a naive modification of the representation in the Laplace domain of
standard kernels functions involved in (constant-order) fractional calculus. We frame
Scarpi’s ideas within recent theory of General Fractional Derivatives and Integrals,
that mostly rely on the Sonine condition, and investigate the main properties of the
emerging variable-order operators. Then, taking advantage of powerful and easy-to-
use numerical methods for the inversion of Laplace transforms of functions defined
in the Laplace domain, we discuss some practical applications of the variable-order
Scarpi integral and derivative.

1. Introduction

Derivatives and integrals of fractional (i.e., non-integer) order are among the most
fashionable tools for modeling phenomena featuring persistent memory effects (i.e.,
non-localities in time). Since many physical systems are characterized by dynamics
involving memory effects whose behaviour changes over time, even transitioning from
a fractional order to another, the interest for fractional operators soon moved to their
variable-order counterparts. Needless to say that the compelling practical implications
of these variable-order objects come at the price of a more involved mathematical
characterization.

A naturally looking variable-order generalization of standard fractional derivatives
is obtained by replacing the constant order α with a function α : [0, T ] ⊂ R

+ → (0, 1)
in the Riemann-Liouville (RL) integral, i.e.,

(1) I
α(t)
0 f(t) =

1

Γ
(

α(t)
)

∫ t

0

(t− τ)α(t)−1 f(τ)dτ,

possibly coupled to the RL-like variable-order derivative

(2) D
α(t)
0 f(t) =

1

Γ
(

1 − α(t)
)

d

dt

∫ t

0

(t− τ)−α(t)f(τ)dτ,

where we restricted 0 < α(t) < 1 for the sake of simplicity. However, the mathematical
characterization of fractional calculus based on these operators is rather problematic

since D
α(t)
0 does not necessarily act as the left-inverse for I

α(t)
0 [50; 53]. This property

is, nonetheless, recovered in the constant-order limit of the theory.
Over the years, several proposals for fractional variable-order operators have ap-

peared in the literature; for instance, we recall the works by Bohannan [3], Coimbra
[6], Ingman and Suzdalnitsky [25], Kobelev et al. [27; 28], Lorenzo and Hartley [34],
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Pedro et al. [46], Sierociuk et al. [57], Sun et al. [62]. For a comprehensive review of
the literature we refer the interested reader to Ortigueira et al. [43], Samko [49] and
Sun et al. [61]. However, despite showing seemingly useful for physical applications,
these definitions face the conceptual mathematical problems discussed by Samko and
Ross [50; 53].

It is worth noting that, despite the complications discussed above, variable-order
methods were employed by Zheng et al. [75; 76] in an attempt of overcoming the
inconsistencies of some families of regular-kernel operators (in this regard, see aslo
[1; 10; 24] for a detailed discussion).

From a numerical perspective, methods for solving variable-order fractional differ-
ential equations (FDEs) have also been analysed to some extent; as a general reference
we mention here the works by Chen et al. [5], Tavares et al. [67], Zhuang et al. [77]
and some of the several papers by Karniadakis et al. [72; 73; 74].

Viscoelasticity is the perfect playground for variable-order operators, as certain
known scenarios display peculiar transitions from an order to another as a function
time (see, e.g., [11], [48] or [7; 19; 21]). Further, in recent years variable-order frac-
tional calculus has found some applications also in control theory [2; 44] as well as
in modelling aggregation of particles in living cells [13]. It is also worthwhile to be
mentioned the pioneering work by Checkin, Gorenflo and Sokolov [4] in which a time-
fractional diffusion equation with time-fractional derivative whose order varies in space
is derived starting from the continuous time random walk scheme; a problem for which
the asymptotic representation of the solution has been recently investigated in [12].
For a review of some of the latest applications of variable-order fractional operators in
natural sciences we refer the interested reader to [45].

To the best of our knowledge, the Italian engineer Giambattista Scarpi was how-
ever the first to propose [54; 55; 56], in the early seventies, the use of time-fractional
derivatives with a time-dependent order. Scarpi’s work was inspired by an early model
by Smit and de Vries [58] which was aimed at providing a theoretical framework for
materials showing features intermediate between solids and liquids. Notably, the ap-
proach proposed by G. Scarpi was not based on a naive replacement, in the kernel of
some fractional derivative, of the constant order α with a variable-order function α(t).
The procedure proposed by Scarpi, instead, acts in a more subtle way at the level
of the Laplace transform (LT) domain (on a different basis, however, with respect to
the operators proposed by Coimbra in [6]) and constitutes an interesting novelty with
respect to more traditional approaches.

Despite the boom that the active research on fractional calculus has been experienc-
ing for the last decade, so far Scarpi’s approach has been mostly overlooked (except
for a very recent contribution by Cuesta and Kirane [8] of which we are aware thanks
to a private communication).

If, on the one hand, Scarpi’s works were the first to introduce this peculiar approach
to variable-order theories, on the other hand, they are solely focused on physical prop-
erties and implications of the proposed methods. In other words, the mathematical
foundations supporting these object were not analyzed in details. Additionally, the
operators proposed by Scarpi require reliable numerical techniques for handling the
inversion of the LT, which were not available at the time of publication of Scarpi’s
seminal works.

Recently, much effort has been devoted, particularly by Yuri Luchko [40; 39; 38],
to a mathematically sound formulation of a theory of general fractional integrals and
derivatives. Such a theory is aimed at characterizing classes of operators that satisfy



VARIABLE-ORDER FRACTIONAL CALCULUS 3

some generalizations of the fundamental theorem of calculus by using the Sonine equa-
tion [59] as guiding principle. This novel approach has the merit of relaxing some of
the conditions of Kochubei’s general fractional calculus [29; 31; 30] (see also [41]), thus
encompassing a larger class of non-local operators. The key feature of this classifica-
tion consist in the fact that it relies upon the Laplace-domain representation of these
general fractional operators, thus providing the perfect tool set for designing a robust
mathematical framework for Scarpi’s ideas.

On the numerical side, the several advancements in the field of the numerical inver-
sion of the LT, among which we recall the contribution by Weidemann and Trefethen
[71], provide us with the machinery needed to implement Scarpi’s ideas to their fullest.

It has now come the time to bring Scarpi’s variable-order fractional calculus into
the spotlight, precisely characterizing its mathematical foundations and highlighting
its potential as modelling tool by taking advantage of modern numerical methods.

This work is organized as follows. In Section 2, after recalling some basics of frac-
tional calculus, we introduce the notions of the Scarpi derivative and integral. In
Section 3 we frame Scarpi’s theory within a more general theoretical scheme for frac-
tional calculus, based on the Sonine equation, and we investigate possible assumptions
on the variable-order functions α(t). In Section 4 we consider some instructive exam-
ples operators obtained for some variable-order functions α(t) and Section 5 is devoted
the solution of the relaxation equation with the Scarpi derivative. Some considerations
about higher-order operators are provided in Section 6 and, finally, in Section 7 we
provide some concluding remarks. Note that the method used to invert numerically the
LT, allowing the investigation of Scarpi’s fractional operators, is discussed in Appendix
A.

2. Scarpi’s variable-order fractional calculus

In order to introduce, and further develop, Scarpi’s ideas on variable-order deriva-
tives we preliminary recall some background materials on fractional integrals and
derivatives.

2.1. Preliminaries. In this work we consider functions which are absolutely contin-
uous on some interval [0, T ], i.e. f ∈ AC[0, T ]. This is a not particularly restrictive
assumption and it means that f is differentiable almost everywhere in [0, T ], with
f ′ ∈ L1[0, T ], where L1[0, T ] is the usual space of Lebesgue-integrable functions on
[0, T ], and

(3) f(t) = f(0) +

∫ t

0

f ′(s)ds, t ∈ [0, T ].

The standard Dzhrbashyan-Caputo notion of fractional derivative of order 0 < α <
1, commonly referred to simply as Caputo derivative, is defined in terms of the weakly-
singular Volterra-type integro-differential operator

(4) CDα
0 f(t) =

∫ t

0

φ(t− τ)f ′(τ)dτ, φ(t) =
t−α

Γ(1 − α)
.

The defining property of CDα
0 is that it acts as the left-inverse of the RL integral

(5) RLIα0 f(t) =

∫ t

0

ψ(t− τ)f(τ)dτ, ψ(t) =
1

Γ(α)
tα−1,
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see e.g. [9; 26].1 In other words, one has that

CDα
0

RLIα0 f(t) = f(t) and RLIα0
CDα

0 f(t) = f(t) − f(0) ,

thus implementing a sort of fundamental theorem of fractional calculus [37]. Basically,
the Caputo derivative CDα

0 was introduced to provide a regularization of the RL one

(6) RLDα
0 f(t) =

d

dt

∫ t

0

φ(t− τ)f(τ)dτ, φ(t) =
t−α

Γ(1 − α)
.

Indeed, the Caputo derivative allows to write fractional differential equations (FDEs)
of order 0 < α < 1 coupled to the usual initial value conditions at the origin, i.e.,
involving just integer order derivatives. Since these initial value problems have a
more straightforward physical interpretation, in this work we focus on regularized
Caputo-like derivatives, though this is done without loss of generality since recasting
the arguments presented here in the RL framework does not involve any particular
complication.

Before moving on with the analysis of the Scarpi derivative it is important to recall
some important properties of standard fractional operators. Specifically, we recall that
the LT of the kernels involved in the definitions of the Caputo derivative (4) and of
the RL integral (5) are

(7) Φ(s) := L
(

φ(t) ; s
)

= sα−1, Ψ(s) := L
(

ψ(t) ; s
)

=
1

sα

and, by taking advantage of these LTs, one finds that, assuming that the function f(t)
admits the LT F (s), the LTs of (4) and (5) are

(8) L
(

CDα
0 f(t) ; s

)

= sαF (s) − sα−1f(0), L
(

RLIα0 f(t) ; s
)

=
1

sα
F (s) .

2.2. A variable-order fractional derivative. In order to provide a variable-order
generalization of (4) we consider a function

α(t) : [0, T ] → (0, 1)

assumed to be locally integrable on [0, T ]. The restriction on the image of α(t) to (0, 1)
is done to avoid further technical complications.

The main idea by Scarpi presented in the pioneering works [54; 55; 56] was to define
a fractional derivative of variable order α(t) by generalizing the representation (7) in
the LT domain of the kernel φ(t), rather than in the time domain.

If one considers the constant function α(t) ≡ α, t > 0, its LT is A(s) = α/s and
hence one can trivially infer that Φ(s) and Ψ(s) in (7), can be recast in terms of A(s)
as

Φ(s) = ssA(s)−1 Ψ(s) = s−sA(s).

Thus, Scarpi’s idea consists in extending this simple argument to any non-constant
locally integrable function α(t) with LT

A(s) := L
(

α(t) ; s
)

=

∫

∞

0

e−stα(t)dt,

and define a variable-order derivative by means of a convolution similar to those in
(4) and (6). We now formalize this idea in the framework of the theory of Generalized
Fractional Derivatives [39; 38; 29; 37].

1The function ψ(t) is known as the Gel’fand-Shilov kernel [18; 23; 42].
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Definition 2.1. Let α : [0, T ] → (0, 1) be a locally integrable function, with A(s)
being its LT, and let f ∈ L1[0, T ]. The regularized (Caputo–Dzhrbashyan type) Scarpi

fractional derivative SD
α(t)
0 of variable order α(t) is defined as

(9) SD
α(t)
0 f(t) :=

d

dt

∫ t

0

φα(t− τ)f(τ)dτ − φα(t)f(0), t ∈ (0, T ],

where the kernel function φα(t) is the inverse LT

(10) φα(t) := L−1
(

Φα(s) ; t
)

, Φα(s) = ssA(s)−1.

From the practical perspective it is often useful to recast a fractional operator in
the standard Caputo representation for fractional derivatives. Thus,

Proposition 2.1. Let α : [0, T ] → (0, 1) be a locally integrable function, with A(s)
denoting its LT, and let φα(t) be the inverse LT of Φα(s) = ssA(s)−1. If f ∈ AC[0, T ]
then

(11) SD
α(t)
0 f(t) =

∫ t

0

φα(t− τ)f ′(τ)dτ, t ∈ [0, T ],

almost everywhere.

Proof. Since f ∈ AC[0, T ], in view of (3) the integral in (9) reads

∫ t

0

φα(t− τ)f(τ)dτ =

∫ t

0

φα(t− τ)f(0)dτ +

∫ t

0

φα(t− τ)

∫ τ

0

f ′(s)dsdτ .

Exchanging the order of integration in the second piece one finds

∫ t

0

φα(t− τ)f(τ)dτ =

∫ t

0

φα(t− τ)dτf(0) +

∫ t

0

(
∫ τ

0

φα(τ − s)f ′(s)ds

)

dτ,

then differentiating both sides with respect to t one gets

d

dt

∫ t

0

φα(t− τ)f(τ)dτ = φα(t)f(0) +

∫ t

0

φα(t− s)f ′(s)ds,

that concludes the proof. �

Clearly, the Scarpi derivative reduces to the standard Caputo one when α(t) becomes
constant. Furthermore, from well-known properties of the LT one immediately finds
that

(12) L
(

SD
α(t)
0 f(t) ; s

)

= ssA(s)F (s) − ssA(s)−1f(0) .

However, finding an explicit representation of the kernel φα(t) is not always possible
and in one of the following sections we will explore some computational approaches to
this problem.

Remark 2.1. Note that Scarpi did not consider a variable-order derivative regularized
in the Caputo–Dzhrbashyan way in his 1972 and 1973 works. Nonetheless, since such
a regularization has relevant implications we believe that it is of grater interest to deal
with this formulation of the Scarpi derivative.
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2.3. A corresponding variable-order fractional integral. It is of interest, espe-

cially for solving differential equations, to find an integral operator SI
α(t)
0 of convolution

type, with some kernel ψα(t), such that the fundamental theorem of fractional calculus
holds also for the Scarpi derivative, namely

(13) SD
α(t)
0

SI
α(t)
0 f(t) = f(t), SI

α(t)
0

SD
α(t)
0 f(t) = f(t) − f(0).

For this to be true the two kernels φα(t) and ψα(t) must satisfy the Sonine equation
[38; 59; 29; 51; 52]

(14)

∫ t

0

φα(t− τ)ψα(τ) = 1, t > 0,

and, in this case, φα(t) and ψα(t) are said to form a Sonine pair. Sonine pairs have
been extensively studied in the literature, see e.g., [51; 52].

Given a generic function φα(t), finding the corresponding ψα(t) such that the two
functions form a Sonine pair is not trivial. However, this problem simplifies substan-
tially when working in the Laplace domain.

Proposition 2.2. Let α : [0, T ] → (0, 1) be a locally integrable function, let A(s)
denote the LT of α(t), and let f ∈ L1[0, T ]. The integral operator

(15) SI
α(t)
0 f(t) =

∫ t

0

ψα(t− τ)f(τ)dτ,

satisfies the conditions in (13) when

(16) ψα(t) := L−1
(

Ψα(s) ; t
)

, Ψα(s) = s−sA(s).

Proof. If Ψα(s) = s−sA(s), then φα(t) and ψα(t) form a Sonine pair. Indeed, the Sonine
equation (14) in the Laplace domain reads

(17) Φα(s)Ψα(s) =
1

s
which is trivially satisfied because of the definition of the Scarpi derivative that requires
Φα(s) = ssA(s)−1.

�

It is worth mentioning that given two functions α, β : [0, T ] → (0, 1) a commutative
index law

SI
α(t)
0

SI
β(t)
0 f(t) = SI

β(t)
0

SI
α(t)
0 f(t) = SI

α(t)+β(t)
0 f(t)

can be inferred from Eqs (44) and (45) in [39].

3. Some necessary assumptions

Clearly, not all transition functions α(t) will allow for a suitable definition of a
pair of Scarpi-type variable-order fractional operators. In other words, not all α(t)
are such that the corresponding kernels {φα(t), ψα(t)} form a Sonine pair and hence

{SDα(t)
0 , SI

α(t)
0 } satisfy the fundamental theorem of calculus (13).

Following the arguments by Samko and Cardoso in [51], or by Hanyga in [24],
a necessary requirement to ensure that two functions φ(t) and ψ(t) form a Sonine
pair (without moving to the realm of distributions) is for them to have an integrable
singularity at the origin. This is further supported by the analysis in [10] where it was
shown that operators based on regular kernels can satisfy the fundamental theorem
of fractional calculus (13) only if their action is restricted to spaces of functions with
severe (and somewhat artificial) constraints (see also [60]).
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A more detailed characterization of Sonine kernels has been investigated in [40; 39;
38], where major attention was devoted to kernels φ(t) ∈ C−1(0, T ], i.e. such that

φ(t) = tp−1φ̂(t) with t > 0, p > 0 and φ̂(t) ∈ C[0, T ]. In the context of Scarpi’s theory,
however, characterizing the kernel φα(t) as a C−1(0, T ] function appears quite difficult
since just its LT Φα(s) is known. Here we do not pursue the goal of establishing a
complete and general characterization of α(t) leading to kernel pairs that satisfy the
Sonine condition; such a hard task is left for future investigations. Instead, here we
focus on some minimal arguments that can be employed to grant the viability of our
approach in some simplified scenarios.

Consider a given transition function α(t) for which the LT A(s) exists, then the
kernels φα(t) and ψα(t) automatically satisfy the Sonine equation (14) provided that
Φα(s) and Ψα(s) admit real-valued inverse LTs. Indeed, Φα(s) and Ψα(s) satisfy (17)
by construction.

The real-valued character of the inverse LTs φα(t) and ψα(t) of Φα(s) and Ψα(s) is
guaranteed by the following simple result.

Proposition 3.1. Let α : [0, T ] → R be a function whose LT is A(s). If there exist
functions φα(t) and ψα(t) which are LT-inverse of Φα(s) = ssA(s)−1 and Ψα(s) =
s−sA(s), then they are real-valued functions.

Proof. Let s⋆ and g⋆(t) denote the complex conjugate of a complex variable s and of
a complex-valued function g(t), respectively, and observe that if G(s) is the LT of
g(t), then G⋆(s⋆) is the LT of g⋆(t). Therefore, to ensure that φα(t) and ψα(t) are
real-valued it is sufficient to show that Φα(s) = Φ⋆

α(s⋆) and Ψα(s) = Ψ⋆
α(s⋆).

Since α(t) is real, then α⋆(t) = α(t) and hence A⋆(s⋆) = A(s). Setting G(s) =
sA(s) − 1, for which one has that G⋆(s⋆) = G(s), then one finds

Φ⋆
α(s⋆) =

(

eG(s⋆) ln s⋆
)⋆

= eG
⋆(s⋆)

(

ln s⋆
)⋆

= eG(s) ln s = sG(s) = Φα(s) ,

by taking advantage of some elementary properties of complex functions. Similarly,
one can show that Ψα(s) = Ψ⋆

α(s⋆). �

To find a necessary condition ensuring that Φα(s) and Ψα(s) are LTs of some func-
tions φα(t) and ψα(t) we observe that if a complex-valued function G(s) is the LT of
g(t), then G(s) → 0 as s → ∞. Therefore, if one assumes that α(t) admits a limit in
(0, 1) as t→ 0+, i.e.,

lim
t→0+

α(t) = ᾱ ∈ (0, 1),

then the initial value theorem [33, 12.7] for the LT implies that sA(s) → ᾱ ∈ (0, 1)
as s → ∞. This ensures that Φα(s) = ssA(s)−1 → 0 and Ψα(s) = s−sA(s) → 0 as
s→ ∞. Therefore one can conclude that any function α(t) : [0, T ] → (0, 1) admitting
a LT is a suitable candidate for generating a pair of Scarpi variable-order operators

{SDα(t)
0 , SI

α(t)
0 } provided that Φα(s) = ssA(s)−1 and Ψα(s) = s−sA(s) are LTs of some

functions φα(t) and ψα(t).
Note that, for practical reasons, in this work we further require an explicit analytic

expression for A(s).

3.1. Kochubei’s General Fractional Calculus and Scarpi’s operators. In Kochubei’s
General Fractional Calculus (GFC) [29; 31], the operator

Dφf(t) =
d

dt

∫ t

0

φ(t− τ)f(τ)dτ − φ(t)f(0), t ∈ (0, T ],
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defines a Caputo–Dzhrbashyan type General Fractional Derivative if the kernel φ(t)
has the following properties:

A1:: the LT Φ(s) of φ(t) exists for all s > 0;
A2:: Φ(s) is a Stieltjes function, i.e., it admits the integral representation

(18) Φ(s) =
a

s
+ b+

∫

∞

0

KΦ
α (r)

s+ r
dr ,

with a, b ≥ 0 and KΦ
α (r) ≥ 0 a (non-negative) spectral distribution;

A3: : Φ(s) → 0 and sΦ(s) → ∞ as s→ ∞,
A4: : Φ(s) → ∞ and sΦ(s) → 0 as s→ 0.

Then, it is easy to see that denoting by Ψ(s) := 1/(sΦ(s)) one has that ψ(t) and φ(t)
form a Sonine pair.

This theory might appear rather appealing for our purposes since it relies completely
on the LT representation of the kernel φ(t). However, the aforementioned conditions
further constrain φ(t) and ψ(t) to be completely monotone (CM) functions. In other
words, these conditions guarantee that the solution of the relaxation equation

Dφf(t) = −λf(t) , f(0+) = f0 , λ > 0

is CM [29; 31; 42].
Requiring the solution of a relaxation equation of variable order to be CM is a

bit too restrictive in this case and makes GFC hardly applicable to Scarpi’s theory.
In fact, as we shall see with some numerical examples in the following section, even
very simple transition functions α(t) yield “derivative kernels” φα(t) that violate A2,
thus supporting the conclusion that Kochubei’s GFC is not the proper theoretical
framework for this type of variable-order operators.

4. Physically relevant examples of transition functions

In this Section we present some examples of variable-order functions α(t). We
confine to potentially physically interesting scenarios where α(t) shows a monotone
transition from an initial order α1 to a final order α2, where the latter is only reached
asymptotically as t→ ∞. Various expressions for α(t) are presented here and for each
of them we show the emerging kernels φα(t) and ψα(t) associated to the corresponding
SD

α(t)
0 and SI

α(t)
0 defined respectively in (11) and (15).

Even when α(t) and its LT A(s) are given by simple expressions, in general it is not
possible to provide an explicit representation of the kernels φα(t) and ψα(t). Therefore,
they need to be evaluated numerically by means of LT inversion of Φα(s) and Ψα(s).
On the one hand, this complication constituted the main reason why Scarpi’s ideas
have been overlooked for so long. On the other hand, over the years some very powerful
methods for the numerical inversion of the LT have been developed and can be easily
exploited in this context. To lighten the presentation we avoid describing here the
technical details about the numerical strategy adopted for the numerical inversion of
LTs and we confine it to the Appendix A.

4.1. Example 1: Exponential transition. For 0 < α1 < α2 < 1 and a real constant
c > 0, we consider the function

α(t) = α2 + (α1 − α2)e
−ct
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describing a variable-order transition from α1 to α2 according to an exponential law
with rate −c. It is simple to evaluate the LT of α(t) as

A(s) =

∫

∞

0

e−stα(t)dt =
α2c+ α1s

s(c+ s)

and, hence,

Φα(s) = ssA(s)−1 = s
(α2−1)c+(α1−1)s

c+s , Ψα(s) = s−sA(s) = s−
α2c+α1s

c+s .

The spectral distribution KΦ
α (r) that yields the integral representation (18) of Φα(s)

can be evaluated by means of the Titchmars [68] inversion formula

KΦ
α (r) = ∓ 1

π
Im

[

Φα(s)
∣

∣

s=re±iπ

]

= − 1

π
r

(α2−1)c−(α1−1)r
c−r sin

[(α2 − 1)c− (α1 − 1)r

c− r
π
]

.

Since KΦ
α (r) ≥ 0 for r ≥ 0 is satisfied only if c = 0 or α1 = α2, namely when the

time-dependency of α(t) is suppressed, Kochubei’s GFC theory does not apply and
φα(t) (as well as the solution of the associated relaxation equation) clearly is not a
CM function.

Although it is reasonable to assume, for some physical models, that α1 and α2 are
close values, we shall consider distant enough values for these parameters, as illustrated
in Figure 1 for α1 = 0.6 and α2 = 0.8, in order to be able to graphically present the
asymptotic behaviour of φα(t) and ψα(t) in a nice way.

As one can see from Figure 2, the resulting kernels φα(t) and ψα(t) start as the cor-
responding kernels of the standard fractional operators of order α1 and asymptotically
converge to the kernels of the operators of order α2. This behaviour can be better
appreciated in Figure 3 where φα(t) and ψα(t) are plotted in logarithmic scale.

0 1 2 3 4
0.6

0.65

0.7

0.75

0.8

Figure 1. Plot of α(t) for variable-order transition of exponential type
(c = 2.0) from α1 = 0.6 to α2 = 0.8.

4.2. Example 2: Order transition of Mittag-Leffler type. The previous example
can be generalized by replacing the exponential with the Mittag-Leffler (ML) function,
i.e.,

α(t) = α2 + (α1 − α2)Eβ(−ctβ),

where

Eβ(z) =
∞
∑

k=0

zk

Γ(αk + β)

is the one parameter ML function (see, for instance [22]). This procedure gives a better
control on the transition from α1 to α2 thanks to the additional parameter β.



10 ROBERTO GARRAPPA, ANDREA GIUSTI, AND FRANCESCO MAINARDI
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Figure 2. Plot of kernels φα(t) (left plot) and ψα(t) (right plot) for
variable-order transition of exponential type (c = 2.0) from α1 = 0.6 to
α2 = 0.8.
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10-2

10-1

100

101

102

10-3 10-2 10-1 100 101

100

101

Figure 3. Plot of kernels φα(t) (left plot) and ψα(t) (right plot) for
variable-order transition of exponential type (c = 2.0) from α1 = 0.6 to
α2 = 0.8 (logarithmic scale).

The representation of this variable-order function α(t) is provided in the left panel
of Figure 4 for β = 0.7 and c = 2.0. Clearly, the transition presented in Section 4.1 is
just a particular case of the one presented here since ex = E1(x).

It is now fairly easy to compute the LT of α(t), that reads [22]

A(s) =

∫

∞

0

e−stα(t)dt =
α2c+ α1s

β

s(c+ sβ)

and, hence,

Φα(s) = ssA(s)−1 = s
(α2−1)c+(α1−1)sβ

c+sβ , Ψα(s) = s−sA(s) = s
−

α2c+α1s
β

c+sβ ,

and also in this case the corresponding kernels φα(t) and ψα(t) match the kernels of
the standard fractional operators of order α1 and α2 in the limitig cases of the model,
as shown in Figures 5 and 6.

Note that the parameter β, similarly to the parameter c in the previous case, alters
the way in which this transition happens without affecting the initial and final values
of the order.

In Figure 7 we compare the behaviour of α(t) and ψα(t) for the decay of ML-type as
we vary the parameter β. Observe that the case β = 1.0 corresponds to the exponential
decay case, as anticipated.



VARIABLE-ORDER FRACTIONAL CALCULUS 11

0 1 2 3 4 5
0.6

0.65

0.7

0.75

0.8

Figure 4. Plot of α(t) for order transition of ML type (c = 2.0 and
β = 0.7) from α1 = 0.6 to α2 = 0.8.
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Figure 5. Plot of kernels φα(t) (left plot) and ψα(t) (right plot) for
order transition of ML type (c = 2.0 and β = 0.7) from α1 = 0.6 to
α2 = 0.8.
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Figure 6. Plot of kernels φα(t) (left plot) and ψα(t) (right plot) for
order transition of ML type (c = 2.0 and β = 0.7) from α1 = 0.6 to
α2 = 0.8 (logarithmic scale).

4.3. Example 3: Order transition of erf type. Consider now for 0 < α1 < α2 < 1
and c > 0 the function

α(t) = α1 + (α2 − α1) erf(
√
ct)

representing a variable order which rapidly increases from α1 to α2 as shown in Figure 8.
Observe that this function can be considered, in some sense, as a further generalization
of the variable-order function α(t) based on the ML function since

erf(
√
ct) =

√
ct

1
2E

1
2

1, 3
2

(−tc)
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Figure 7. Plot of α(t) (left plot) and ψα(t) (right plot) for the variable
order with decay of ML type with α1 = 0.6, α2 = 0.8, c = 2.0 and
different values of β.

with Eγ
α,β(z) the three-parameter ML function, also known as Prabhakar function (see,

e.g., [14; 20; 22; 47]).
The Laplace transform of α(t) is

A(s) =
α1

s
+ (α2 − α1)

√
c

s
√
s+ c

=
α2

√
c+ α1

(√
s+ c−√

c
)

s
√
s+ c

and the corresponding function φα(t) and ψα(t) are depicted in Figures 9 and 10.

0 1 2 3
0.6

0.65

0.7

0.75

0.8

Figure 8. Plot of α(t) for order transition of erf type (c = 2.0) from
α1 = 0.6 to α2 = 0.8.
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Figure 9. Plot of kernels φα(t) (left plot) and ψα(t) (right plot) for
order transition of erf type (c = 2.0) from α1 = 0.6 to α2 = 0.8.
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Figure 10. Plot of kernels φα(t) (left plot) and ψα(t) (right plot) for
order transition of erf type (c = 2.0) from α1 = 0.6 to α2 = 0.8 (loga-
rithmic scale).

5. Fractional relaxation equation with Scarpi derivative

The aim of this Section is to provide a preliminary investigation of the variable-order
fractional relaxation equation

(19)

{

SD
α(t)
0 y(t) = −λy(t)

y(0) = y0
,

where SD
α(t)
0 is the Scarpi variable-order fractional derivative introduced in Definition

2.1 and λ > 0 a real parameter.
Finding analytical solutions for the initial value problem (19) does not seem in

general possible since the absence of an explicit representation of the kernel φα(t)

of SD
α(t)
0 . Therefore, tackling this problem from a numerical perspective becomes

unavoidable and necessary.
Since the linear nature of (19), a simple approach consists in exploiting the LT and

its numerical inversion. Indeed, by applying the LT to both sides of (19), and recalling
Eq. (12), one finds

ssA(s)Y (s) − ssA(s)−1y0 = −λY (s),

with Y (s) the LT of the solution y(t). Therefore, an algebraic manipulation leads to

(20) Y (s) =
y0

s
(

1 + λΨα(s)
)

and hence it is possible to evaluate the solution y(t) = L−1
(

Y (s) ; t
)

in the time
domain by applying again one of the methods for the numerical inversion of the LT as
the one described in the A.

To this end we present the solutions y(t) of the relaxation equation (19) with the
other transition functions α(t) introduced in Section 4. In the various plots, together
with the solution y(t), we also offer a comparison of y(t) with the solutions y1(t) and
y2(t) of the same relaxation equation with the standard Caputo derivative of order α1

and α2, respectively.
In the first case, see Figure 11, the exponential transition α(t) = α2 + (α1 − α2)e

−ct

(with α1 = 0.6, α2 = 0.8 and c = 2) is considered.
The numerical results show how well the solution with the Scarpi derivative matches

the solution of the Caputo relaxation equation of order α1 close to the origin and of
the Caputo relaxation equation of order α2 for large t. The box in each figure offers a
closer look of the solutions near to the origin.
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Figure 11. Plot of the solution y(t) of the relaxation equation (19),
with λ = 1 and y0 = 1, for variable-order transition α(t) = α2 + (α1 −
α2)e

−ct, with α1 = 0.6, α2 = 0.8 and c = 2, and comparison with
solutions y1(t) and y2(t) of the standard fractional relaxation equations
of order α1 and α2.

Similar results are obtained with the transition function α(t) = α2+(α1−α2)Eβ(−ctβ)
(with α1 = 0.6, α2 = 0.8, c = 2.0 and β = 0.7) shown in Figure 12, as well as with the
transition function α(t) = α1 + (α2 − α1) erf(

√
ct) (with α1 = 0.6, α2 = 0.8, c = 2.0)

depicted in Figure 13.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1

0.8

0.9

1

Figure 12. Plot of the solution y(t) of the relaxation equation (19),
with λ = 1 and y0 = 1, for variable-order transition α(t) = α2 + (α1 −
α2)Eβ(−ctβ), with α1 = 0.6, α2 = 0.8, c = 2.0 and β = 0.7, and compar-
ison with solutions y1(t) and y2(t) of the standard fractional relaxation
equations of order α1 and α2.

Alternatively, one can solve the initial value problem in (19) by using the integral
formulation of the problem

(21) y(t) = y0 − λSI
α(t)
0 y(t) = y0 − λ

∫ t

0

ψα(t− τ)y(τ)dτ,

and then apply the convolution quadrature rules devised and studied by Lubich in
[35; 36]. These rules have the great advantage of providing accurate approximations
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Figure 13. Plot of the solution y(t) of the relaxation equation (19),
with λ = 1 and y0 = 1, for variable-order transition α(t) = α1 + (α2 −
α1) erf(

√
ct), with α1 = 0.6, α2 = 0.8, c = 2.0, and comparison with

solutions y1(t) and y2(t) of the standard fractional relaxation equations
of order α1 and α2.

of convolution integrals like the one in (21) for which the kernel φ(t) is known only
through its LT Φ(s), as it is for the Scarpi integral. Hence, this scheme looks rather
promising for handling general fractional differential equations, in special way of non-
linear type, involving the Scarpi derivative.

Remark 5.1. We have confined our discussion to relaxation equations (namely, when
λ > 0) but studying the effect of variable-order operators on growth equations (i.e.,
λ < 0) can be of interest, especially for applications to growth models with memory in
macroeconomics [65; 64; 66]. An extension of the theory of GFC to growth equations is
discussed in [32]. The general theory developed here clearly applies to growth equations
as well. However, numerical difficulties may arise in the inversion of the LT due to
singularities in (20) when λ < 0.

6. Higher-order operators

Up to this point the presented analysis has been confined to derivatives and integrals
of order 0 < α(t) < 1. Defining variable-order operators with transition functions α(t)
with values spanning a wider range requires some care. Here we shall explore some
preliminary ideas in this direction.

Consider Example 1 from Section 4 with the exponential transition function

α(t) = α2 + (α1 − α2)e
−ct, c > 0,

and where now, for some integer n ≥ 1, we assume n− 1 < α1 < α2 < n. By following
the same reasoning presented in Section 3, we observe that assuming Φα(s) = ssA(s)−1

leads now to Φα(s) → ∞ as s→ ∞ when n ≥ 2 and hence Φα(s) cannot be the LT of
any function φα(t).

Therefore, one has to consider an alternative form of Φα(s), when n ≥ 2, so that
φα(t) and ψα(t) exist and form a Sonine pair. Yet again, the theory in [38; 39] can
provide some guidance.

Let α(t) : [0, T ] → (n − 1, n), n ∈ N, and consider the integral SI
α(t)
0 introduced in

(15). In order to find a derivative SD
α(t)
0 acting as the left-inverse of SI

α(t)
0 one has to
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build a kernel φα,n(t) satisfying a generalized Sonine equation [38, Eq. (35)]
∫ t

0

φα,n(t− τ)ψα(τ)dτ =
tn−1

(n− 1)!
, t > 0,

that in the Laplace domain simply reads

Φα,n(s)s−sA(s) = s−n .

Then, the derivative kernel is simply obtained as

φα,n(t) := L−1
(

Φα,n(s) ; s
)

, Φα,n(s) = ssA(s)−n ,

where one can clearly see that the necessary condition Φα,n(s) → 0, as s → ∞, is
fulfilled.

Remark 6.1. Note that setting n = 1 the entire discussion transposes into the analysis
presented in the previous section for 0 < α(t) < 1.

Therefore a more general variable-order derivative for n− 1 < α(t) < n is obtained
as (see [38, Definition 3.2])

SD
α(t)
0 f(t) :=

dn

dtn

∫ t

0

φα,n(t− τ)f(τ)dτ −
n−1
∑

j=0

f (j)(0)φα,j(t), t ∈ [0, T ],

where, for j = 0, 1, . . . , n− 1, one has that

φα,j(t) =
dn

dtn

∫ t

0

φα,n(t− τ)
τ j

j!
dτ =

dn−j−1

dtn−j−1
φα,n(t).

However, a more practical way of computing the functions φα,j(t) relies on noting that
φα,j(t) := L−1

(

sn−j−1Φα,n(s) ; s
)

.

It is also possible to provide a different characterization of SD
α(t)
0 f(t) if f(t) is suffi-

ciently regular. Indeed, by iterating the procedure in Proposition 2.1, one can conclude
that if f(t) is differentiable n− 1 times in [0, T ] with f (n−1) ∈ AC[0, T ], then

SD
α(t)
0 f(t) =

∫ t

0

φα,n(t− τ)f (n)(τ)dτ, t ∈ [0, T ] ,

see [39, Theorem 5] for details.

7. Concluding remarks

This paper aims at making the first step toward reviving Scarpi’s ideas on variable-
order fractional calculus. We have framed these ideas in terms of the recently developed
theory of generalized fractional calculus [39; 38; 29; 37] and we have shown one of the
possible numerical approaches needed for handling these derivatives and related initial
value problems.

There are still many open problems that need to be addressed. For instance, de-
spite the analysis presented here, an exact characterization of the proprieties that the
transition function α(t) must satisfy in order to generate a pair of suitable Scarpi’s
operators {SIα0 , SDα

0 } remains an issue requiring some attention. Further, the discus-
sion presented in this work was limited to transition functions with values in either
(0, 1) or (n − 1, n), however, considering transitions in (0, n) could be of interest for
some physical applications. Additionally, a precise investigation of the general struc-
ture of the eigenfunctions of the relaxation equation (19), and of their asymptotic
properties, would prove invaluable for further physical applications. Lastly in our
(incomplete) collection of open questions in Scarpi’s theory, further efforts should be
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devoted to designing efficient numerical methods to solve more general fractional dif-
ferential equations involving the these operators.

To conclude, Scarpi’s theory offers a brand new way of looking at variable-order
processes in fractional calculus with a limitless potential for applications in physics,
engineering, and other natural sciences.

Appendix A. A numerical method for the inversion of the LT

In this Appendix we provide a detailed description of the method employed in the
previous Sections to numerically invert the LT of the kernels φα(t) and ψα(t) and of
the solution of the relaxation equation (19).

The method is based on the main idea by Talbot [63] consisting in deforming, in
the formula for the inversion of the LT F (s) of a function f(t)

(22) f(t) =
1

2πi

∫ σ+i∞

σ−i∞

estF (s)ds,

the Bromwich line (σ − i∞, σ + i∞) into a different contour C beginning and ending
in the left complex half-plane. In this way it is possible to obtain an accurate approx-
imation of the function f(t) after applying a suitably chosen quadrature rule along C,
since the strong oscillations of the exponential, and the resulting numerical instability,
are avoided.

This approach was successively refined by Weidemann and Trefethen [71] who pro-
vided a detailed error analysis allowing to properly select the geometry of the contour
C and the quadrature parameters in order to achieve any prescribed accuracy ε > 0
(a tailored analysis for the ML function was successively proposed in [16] and applied
in the context of ML with matrix arguments [17] as well). A further improvement
was introduced in [15] with the aim o better handling LTs F (s) with one or more
singularities scattered in the complex plane. However. since in our examples we are
faced with LTs F (s) having just singularities at the origin or on the branch-cut, the
original algorithm introduced in [71] turns out to be good enough.

One of the most useful contours used to replace the Bromwich line in (22) is a
parabolic-shaped contour described by the equation

z(u) = µ(iu+ 1)2, −∞ < u <∞,

where µ > 0 is a parameter determining the abscissa where the parabola crosses the
real axis and the concavity of the parabola. Although more efficient contours are
available (with these regards we refer to the analysis in [69]), parabolas present the
major advantage of a very simple representation, depending on just one parameter,
which simplifies the error analysis.

After deforming the Bromwich line into the parabolic contour z(u), suitably chosen
to encompass any possible singularity of F (s), one obtains the equivalent formulation

(23) f(t) =
1

2πi

∫ +∞

−∞

ez(u)tF (z(u))z′(u)du.

Hence, the application of a trapezoidal rule with step-size h on a sufficiently large
truncated interval [−hN, hN ] leads to the approximation

(24) fh,N(t) =
h

2πi

N
∑

k=−N

ez(uk)tF (z(uk))z′(uk), uk = hk.

The choice of the three parameters µ, h and N is essential to achieve an accurate
approximation of f(t) and it is driven by a detailed analysis of the error |f(t)−fh,N(t)|.
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This in turn consists of two main components: the discretization error (DE) and the
truncation error (TE). By following the analysis in [71], in absence of singularities of
F (s) (except for the branch-point singularity at the origin and the branch-cut placed,
for convenience, on the negative real semi-axis) one can find that

|DE| = O
(

e−2π/h
)

+ O
(

e−π2/(µth2)+2π/h
)

, h→ 0,

|TE| = O
(

eµt
(

1−(hN)2
)

)

, h→ 0

A more accurate analysis takes into account the round-off error (RE) as well, for

which (after exploiting |z′(u)| = 2
√
µ
√

|z(u))|) the following estimates hold [70]

|RE| ≤ ǫh

π
eµt

N
∑

k=0

|F (z(uk))||z′(uk)| =
2ǫ
√
µh

π
eµt

N
∑

k=0

|F̂ (z(uk))|

≈ ǫeµt
2
√
µ

π

∫ Nh

0

|F̂ (s)|ds,

where ǫ is the precision machine and F̂ (s) = F (s)s
1
2 . Obviously, the analysis needs to

be customized according to the specific LT F (s) which must be inverted. If F̂ (s) is
assumed to have a moderate growth and Nh is in general not large (in practice very
often it is h = O

(

N−1
)

one can neglect the integral in the estimate of RE (as well as
the 2

√
µ/π term) and just assume |RE| ≈ ǫeµt.

Optimal parameters µ, h and N can be now obtained after balancing the three
different errors and imposing that they are proportional to a given prescribed accuracy
which, to simplify the analysis and at the same time ensure accurate results, we select
at the same level of the precision machine ǫ ≈ 2.22× 10−16. Therefore, after imposing
that |DE| ≈ |TE| ≈ |RE| ≈ ε asymptotically as h → 0, and denoting L = − log ǫ,
the balancing of the three errors leads to

N =
4L

3π
, µ =

L3

4tπ2N2
, h =

2π

L
+

L

2πN2
.

Remark A.1. In the above analysis we have assumed a moderate growth of F̂ (s) as
s→ ∞. With respect to the transition α(t) considered in our examples this assumption
is truly reasonable in order to compute ψα(t) or the solution y(t) of the relaxation
equation (19) but could be too much optimistic for the evaluation of φα(t) which is
expected to have a more sustained growth. Although we have obtained reasonable
results the same, we think that a more detailed analysis is necessary if one aims to
compute φα(t) with high accuracy.

In the following we report the few lines of a Matlab code for the numerical inversion
of the LT F (s) on a vector of points t. The code is optimized to evaluate just functions
f(t) with real values. The LT F (s) is assumed not to have singularities except a
possible one at the origin.

Acknowledgments

The work of R.Garrappa is supported by INdAM under a GNCS-Project 2020.
The work of A.Giusti is supported by the Natural Sciences and Engineering Research
Council of Canada (Grant No. 2016-03803 to V. Faraoni) and by Bishop’s University.
The work of A.Giusti and F.Mainardi has been carried out in the framework of the



VARIABLE-ORDER FRACTIONAL CALCULUS 19

L = -log(eps) ;

N = ceil (4*L/3/pi) ;

h = 2*pi/L + L/2/pi/N^2 ;

p = L^3/4/pi^2/N^2 ;

u = (0:N)*h ;

f = zeros(size(t)) ;

for n = 1 : length(t)

mu = p/t(n) ;

z = mu*(u*1i+1).^2 ; z1 = 2*mu*(1i-u) ;

G = exp(z*t(n)).*F(z).*z1 ;

f(n) = (imag(G(1))/2+sum(imag(G(2:N+1))))*h/pi ;

end
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