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Abstract. We study nonsymmetric second order elliptic operators with Wentzell
boundary conditions in general domains with sufficiently smooth boundary. The
ambient space is a space of Lp- type, 1 ≤ p ≤ ∞. We prove the existence of analytic
quasicontractive (C0)-semigroups generated by the closures of such operators, for
any 1 < p < ∞. Moreover, we extend a previous result concerning the continuous
dependence of these semigroups on the coefficients of the boundary condition. We
also specify precisely the domains of the generators explicitly in the case of bounded
domains and 1 < p < ∞, when all the ingredients of the problem, including the
boundary of the domain, the coefficients, and the initial condition, are of class C∞.

1. Introduction

In the recent years, after the paper [10], much attention was devoted to the study
of symmetric elliptic operators of the type

M0u =

N∑
i,j=1

∂i(aij(x)∂ju)

with Wentzell boundary condition

(WBC)0 M0u+ β∂Aν u+ γu = 0 on ∂Ω,

as generators of analytic semigroups on spaces of Lp type, or on C(Ω), defined in
a bounded domain Ω of RN with sufficiently smooth boundary ∂Ω, see e.g. [2],
[3], [8], [12], [16]. Here A(·) is the N ×N matrix (aij(·)), ∂Aν u = (A∇u) · ν is the
conormal derivative of u with respect to A, 0 < β and γ are real-valued and all
these functions are sufficiently regular. In [11] we discovered that generation results
can be also obtained for some classes of nonsymmetric operators of the type

Mu =

N∑
i,j=1

∂i(aij(x)∂ju) +

N∑
i=1

ci∂iu+ ru

having the coefficients cj , r sufficiently regular in Ω, with boundary condition

Mu+ β∂Aν u+ γu = 0 on ∂Ω.
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On the other hand, in [1] we dealt with the more general Wentzell boundary
condition

(WBC) Mu+ β∂Aν u+ γu− qβL∂u = 0 on ∂Ω,

where Ω is a general domain, 0 < β, 1
β and γ are bounded, q ∈ [0,∞) and L∂ is a

suitable generalization of the Laplace-Beltrami operator. Thus, a natural question
arises: Can existence and analyticity results be stated in a more general setting
concerning the domain (possibly unbounded domain) and, at the same time, the
operator (nonsymmetric operator)? Here we give a positive answer under suit-
able assumptions on the operator and the boundary condition. Indeed, we prove
existence and analyticity of the (C0) semigroup generated by the closure of the non-
symmetric elliptic operator M equipped with Wentzell boundary condition (WBC)
on the space Xp(Ω), 1 < p <∞. For the definition of the spaces Xp(Ω), as well as
the general notation and assumptions, we refer to Section 2. The main results are
proved in Section 3. In this framework, the continuous dependence on the coeffi-
cients of the boundary condition holds, as an extension of [4, Theorem 3.1] and [1,
Section 2]. See Section 4. Finally, in the case of bounded domains, under suitable
additional assumptions, an explicit representation of the domain of the generator
is given, for 1 < p <∞. See Section 5.

2. Notation and Main Assumptions

In the following Ω will be a domain of RN having its nonempty boundary ∂Ω
consisting of sufficiently smooth (N−1) dimensional manifolds. Sufficiently smooth
means that the divergence theorem can be used in Ω, Stokes’ theorem can be used
on ∂Ω, and the usual trace theorems for Sobolev classes hold. The assumption that
∂Ω is of class C2+δ for some δ > 0 is more than enough.

In addition, let us assume that

(A1) A(x) = (aij(x)), i, j = 1, ..., N is an N ×N real Hermitian matrix func-

tion on Ω such that aij ∈ C1+ε(Ω,R) ∩ L∞(Ω,R), for some ε > 0, for all i, j and
there exist 0 < α0 ≤ α1 <∞ such that

(2.1) α0|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ α1|ξ|2, x ∈ Ω, ξ ∈ RN , ξ = (ξ1, .., ξN ).

(A2) c = (ci)1≤i≤N ∈ C1+ε(Ω,RN ) ∩ L∞(Ω,RN ), for some ε > 0, r ∈
Cε(Ω,R) ∩ L∞(Ω,R) for some ε > 0.

(A3) B(x) = (bij(x)), i, j = 1, ..., N − 1 is an (N − 1)× (N − 1) real Hermitian
matrix function on ∂Ω such that bij ∈ C1+ε(∂Ω,R) ∩ L∞(∂Ω,R) for some ε > 0,
for all i, j, and

(2.2) α0|ξ|2 ≤
N−1∑
i,j=1

bij(x)ξiξj ≤ α1|ξ|2, x ∈ ∂Ω, ξ ∈ RN−1, ξ = (ξ1, .., ξN−1).
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(A4) β, γ ∈ C1+ε(∂Ω,R) ∩ L∞(∂Ω,R), for some ε > 0, q ∈ [0,∞), and there
exists δ > 0 such that

0 < δ < β(x) <
1

δ
, |γ(x)| < 1

δ

for all x ∈ ∂Ω.

We associate with A, c, r the formal differential operator M defined by

(2.3) Mu =

N∑
i,j=1

∂i(aij(x)∂ju) +

N∑
i=1

ci∂iu+ ru, x ∈ Ω

and we denote by M0 the ’homogeneous symmetric version’ of M corresponding to
replacing each of ci, r by zero, i.e.,

M0u =

N∑
i,j=1

∂i(aij(x)∂ju).

We associate with B the operator L∂ , given by

(2.4) L∂u = ∇τ · (B(x)∇τu), x ∈ ∂Ω.

Here ∇τ is the tangential gradient on ∂Ω. The operator L∂ becomes the Laplace-
Beltrami operator ∆LB when B = I, the identity matrix.

We consider the boundary conditions of Wentzell-type as follows,

(WBC)0 M0u+ β∂Aν u+ γu− qβL∂u+ qã · ∇τu+ r̃u = 0 on ∂Ω,

and

(WBC) Mu+ β∂Aν u+ γu− qβL∂u+ qã · ∇τu+ r̃u = 0 on ∂Ω,

where ν is the unit outer normal on ∂Ω and ∂Aν u = (A∇u) · ν is the conormal
derivative of u with respect to A, r̃ ∈ L∞(∂Ω,R), and

(2.5) ã ∈ (W 1,∞(∂Ω,R))N .

(A5) The initial value problem

∂w

∂t
= ã · ∇τw, w(0, x) = h(x), x ∈ ∂Ω, t ≥ 0

is governed by a generalized translation semigroup S = (S(t))t≥0, w(t, x) = (S(t)h)(x) =
h(δ(x, t)) for a suitable δ : ∂Ω×R+ → ∂Ω which can be obtained using the theory
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of characteristics. We assume that S is a (C0) semigroup on Yp := Lp(∂Ω, dSβ ) for

each 1 < p <∞. It follows that

‖S(t)‖ ≤ Kpe
ωpt

for all t ≥ 0 and some constants Kp, ωp.

If ã has compact support, then S is of class (C0) on each Yp. If, say, Ω = Ω1 \Ω2,
where Ω1 is a half space,

Ω1 = {x = (x1, · · · , xN ) ∈ RN : xN > 0}

and Ω2 is a ball whose closure is in the interior of Ω1, then

∂Ω1 = {x = (x1, · · · , xN ) ∈ RN : xN = 0}

(which can be viewed as RN−1), and ∂Ω2 is bounded. Then, for any ã satisfying
(2.5), S is of class (C0) on Yp for all 1 < p < ∞. But when the part of ∂Ω near
infinity is curved, it is not clear that S will be of class (C0) on Yp, thus we assume
this is as in (A5).

The purpose of (A5) is to allow the boundary conditions (WBC)0 and (WBC) to
be nonsymmetric, due to the presence of the first order terms involving ã. Condition
(A5) allows for these terms to determine a Kato perturbation of the basic symmetric
operator. But the full semigroup governed by M and its boundary conditions need
not be quasicontractive. Therefore we delay the use of (A5) until Theorem 3.5.

Following [10] and [8], let us introduce some notation and spaces. We identify
every u ∈ C(Ω) with U = (u|Ω, u|∂Ω) and define Xp(Ω), or simply Xp, to be the

completion of {u ∈ C(Ω) : ‖u‖Xp <∞} where the norm || · ||Xp is given by

(2.7) ||U ||Xp :=

(∫
Ω

|u|p dx+

∫
∂Ω

|u|p dS
β

) 1
p

, 1 ≤ p <∞,

or, for p =∞,
X∞(Ω) := C(Ω)

if Ω is bounded, or
X∞(Ω) := C0(Ω)

if Ω is unbounded, where C0(Ω) is the space of all continuous functions on Ω
vanishing at infinity. In any case, X∞(Ω), or briefly X∞, is equipped with the sup
norm

||U ||X∞ := ||u||∞,

where ||u||∞ = sup
x∈Ω

|u(x)|. In general, a member of Xp is H = (f, g), where f ∈

Lp(Ω), g ∈ Lp(∂Ω, dSβ ). Here dS
β denotes the natural surface measure dS on ∂Ω

with weight 1
β . Note that, for p <∞, f may not have a trace on ∂Ω, and even if f

does, this trace needs not equal g. For p = 2, X2 is a Hilbert space equipped with
the inner product

< H1, H2 >X2
:=< f1, f2 >L2(Ω) + < g1, g2 >L2(∂Ω, dSβ ),
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Hi = (fi, gi) ∈ X2, i = 1, 2.

Remark 2.1 Let ε ≥ 0 and define

C2+ε
c (Ω) :={h ∈ C2+ε(Ω) : There is anR = Rh > 0

such thath(x) = 0 for x ∈ Ω, |x| > R}.

Observe that for ε ≥ 0, the subspace C2+ε
c (Ω) is dense in Xp, 1 ≤ p ≤ ∞. Note

that if ∂Ω is bounded, then h ∈ C2+ε
c (Ω) need not vanish anywhere on ∂Ω.

3. Nonsymmetric Operators in General Domains

The following theorem is proved in detail in [10], [8, Section 3] in the case of
bounded domains, provided that in [8] we replace the Laplace-Beltrami operator
by L∂ . The extension to general domains in the X2 case is done in [1]. Combining
the arguments of these papers proves the more general and more comprehensive
statement of it. We point out that the analyticity holds in Xp, for 1 < p <∞, by
the Stein interpolation theorem, as discussed in [8].

Theorem 3.1. Suppose that r = 0, ci = 0, for any 1 ≤ i ≤ N , ã = 0, r̃ = 0
and the assumptions (A1)-(A4) hold. For any 1 ≤ p ≤ ∞, denote by M0,p the
realization of M0 in Xp with domain

D(M0,p) = {U = (u|Ω, u|∂Ω) ∈ Xp : u ∈ C2
c (Ω), (WBC)0 holds}.

Then, for any 1 ≤ p ≤ ∞, the closure Gp of M0,p is quasi-m-dissipative on Xp.
Moreover, the semigroup generated by Gp is analytic for any 1 < p <∞.

Remark 3.2. (i) According to [8, Theorem 3.2], if Ω is bounded and q = 0,
the analyticity of the semigroup holds on X1 and X∞ provided ∂Ω and all the
coefficients are of class C∞.
(ii) If Ω is bounded and q > 0, the analyticity of the semigroup holds on X1 and
X∞ by the results in [13].

In the following, we shall consider an unbounded domain Ω which satisfies the
assumptions stated at the beginning of Section 2. For this kind of Ω, by [1, Section 2]
and similar arguments as in [8], analogous results as in Theorem 3.1 hold, provided
that the assumptions (A1)-(A4) remain true.

Now, let us focus on the main results of the paper concerning the nonsymmetric
operator M in general domains as above. We will need some preliminary results.

Lemma 3.3. According to the notation introduced in Section 2, we have
(i) X1 ∩X∞ is dense in Xp for any p ∈ [1,∞].
(ii) Let (Λ,Σ, λ) be a σ-finite measure space and denote Lp = Lp(Λ,Σ, λ).
If

(3.1) f ∈
⋂

1<p≤∞

Lp and sup
1<p≤∞

‖f‖p ≤ k <∞,

then
f ∈ L1 and ‖f‖L1 ≤ k.
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Proof. The statement (i) follows from the definition of the spaces Xp, 1 ≤ p ≤ ∞.
In order to prove (ii), let (Λn)n≥1 be an increasing sequence in Σ such that for each
n ≥ 1,

λ(Λn) <∞ and
⋃
n≥1

Λn = Ω.

Let f satisfy (3.1). Let us define fn := fχΛn , where χΛn is the characteristic
function of Λn, n ≥ 1. Since

|fn| ≤ ‖f‖∞
the sequence |fn|1+ 1

m → |fn| a.e. as m→∞ and |fn|1+ 1
m ≤ max{‖f‖2∞, ‖f‖∞} on

Λn for any m ≥ 1. By the dominated convergence theorem,

fn ∈ L1 and ‖fn‖1 = lim
p→1+

‖fn‖p ≤ k.

Thus it follows that fn → f a.e., f ∈ L1(Λ) and ‖f‖1 ≤ k.

Theorem 3.4. Assume that ã = 0RN , r̃ = 0 and that (A1)-(A4) hold. Let
1 ≤ p ≤ ∞ and Mp be the realization of the operator M in Xp with domain

D(Mp) = {U = (u|Ω, u|∂Ω) ∈ Xp : u ∈ C2
c (Ω), (WBC) holds}.

Then, for 1 ≤ p ≤ ∞, the operator Mp − ωI is dissipative on Xp for some ω ∈ R,
and the closure Np of Mp is quasi-m-dissipative on Xp.

Proof. Let us consider the case p = 2. Let U, V ∈ D(M2), U = (u|Ω, u|∂Ω), V =
(v|Ω, v|∂Ω) and compute

< M2U, V >X2
=

∫
Ω

(Mu)v dx+

∫
∂Ω

(Mu)v
dS

β

= −
N∑

i,j=1

∫
Ω

aij∂ju∂iv dx−
∫
∂Ω

γuv
dS

β

+

∫
∂Ω

q(Lθu)v dS +

∫
Ω

(

N∑
i=1

ci∂iu+ ru)v dx

= −
N∑

i,j=1

∫
Ω

aij∂ju∂iv dx−
∫
∂Ω

γuv
dS

β

−
∫
∂Ω

q(B∇τu) · ∇τvdS +

∫
Ω

(

N∑
i=1

ci∂iu+ ru)v dx,

by the divergence theorem, the boundary condition and Stokes’ theorem on ∂Ω.
Moreover, we use the fact that each u in the domain is in C2

c (Ω).
In particular, for all U = (u|Ω, u|∂Ω) ∈ D(M2) we deduce that

Re < M2U,U >X2
≤− α0

∫
Ω

|∇u|2 dx

−
∫
∂Ω

γ|u|2 dS
β
− α0

∫
∂Ω

q|∇τu|2 dS

+Re

∫
Ω

(c · ∇u)u dx+

∫
Ω

r|u|2 dx.(3.2)
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Now, for any ε > 0,

Re

∫
Ω

(c · ∇u)u dx ≤‖c‖‖∇u‖L2(Ω)‖u‖L2(Ω)

≤‖c‖
(
ε‖∇u‖2L2(Ω) +

1

4ε
‖u‖2L2(Ω)

)
,

where ‖c‖ = sup1≤i≤N ‖ci‖∞.
Consequently

Re < M2U,U >X2
≤(−α0 + ε‖c‖)‖∇u‖2L2(Ω)

+ ‖γ−‖∞‖u‖2L2(∂Ω, dSβ )
+
‖c‖
4ε
‖u‖2L2(Ω)

+ ‖r+‖∞‖u‖2L2(Ω),

where γ− (resp. r+) denotes the negative part of γ (resp. the positive part of r).
Assume ε > 0 is such that

ε‖c‖ ≤ α0

2
,

and define

k = ‖γ−‖∞ + ‖r+‖∞ +
‖c‖
4ε

.

It follows that

Re < M2U,U >X2
≤ −α0

2
‖∇u‖2L2(Ω) + k‖u‖2X2

.

Hence M2 is quasi-dissipative on X2 and thus its closure N2 is also quasi-
dissipative. In order to prove the range condition for N2, we consider Reλ >
‖c‖+ ‖r+‖∞ + ‖γ−‖∞. We must solve the equation

(3.3) λU −N2U = H,

for all H in a dense subspace of X2. Let us take h : Ω→ C, h sufficiently smooth
on Ω such that H = (h|Ω, h|∂Ω) ∈ X1 ∩X∞. For each U ∈ D(M2) let us evaluate
the inner product of both hand sides of (3.3) by V ∈ D(M2). By using similar
arguments as above we find that

(3.4)

∫
Ω

(A∇u) · ∇v dx+

∫
Ω

λuv dx+

∫
∂Ω

[
(γ + λ)

β
uv + q(B∇τu) · ∇τv] dS

+

∫
Ω

(

N∑
i=1

ci∂iu+ ru)v dx =

∫
Ω

hv dx+

∫
∂Ω

hv
dS

β
.

Define the sesquilinear form Bλ(U, V ) as the left hand side of (3.4) and define as
C(V ) the right hand side. For q ≥ 0, let us introduce Vq as

V0 : = H1(Ω) for q = 0,

Vq : = {u ∈ V0 : u|∂Ω ∈ H1(∂Ω,
dS

β
)} for q > 0.
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The norm defined by

‖V ‖2Vq := ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω) + ‖v‖2
L2(∂Ω, dSβ )

+ ‖√q∇τv‖2L2(∂Ω,dS)

for V = (v|Ω, v|∂Ω), makes Vq a Hilbert space continuously embedded into X2. Then
for q ≥ 0, according to our previous calculations, Bλ(·, ·) is a sesquilinear form on
Vq which is bounded and coercive and C(·) is a bounded linear functional on Vq.
Let H be such that h ∈ C2+ε

c (Ω). Hence the Lax-Milgram Lemma (see e.g. [15,
Theorem 6, p.57]) implies that there exists a unique weak solution U of (3.3) for all
H such that h ∈ Vq. If h ∈ C2+ε(Ω), then a standard elliptic regularity argument

shows that u ∈ C2+ε(Ω) and satisfies the elliptic equation a.e. Furthermore, since
u|∂Ω ∈ H1(∂Ω, dSβ ) (when q > 0), it is possible to apply the divergence theorem

obtaining that N2U ∈ X2. Thus the assertion follows for p = 2.
Now let us show that Mp is quasidissipative on Xp, for all p ∈ [1,∞). We

start with the case p > 2. Let JU := |U |p−2Uχ{U 6=0} be the duality map of Xp

(modulo a positive constant multiple which depends on ||U ||Xp , for U 6= 0). Take
0 6= U = (u|Ω, u|∂Ω) ∈ D(Mp). We have

< MpU, JU > =

∫
Ω

Mpu(|u|p−2u)χ{u 6=0} dx+

∫
∂Ω

Mpu(|u|p−2u)χ{u6=0}
dS

β

=

∫
Ω

Mpu(|u|p−2u)χ{u 6=0} dx−
∫
∂Ω

β∂Aν u|u|p−2uχ{u6=0}
dS

β

−
∫
∂Ω

γu|u|p−2uχ{u 6=0}
dS

β
+

∫
∂Ω

qB(∇τu) · (∇τ (|u|p−2u)χ{u 6=0} dS

= −
N∑

i,j=1

∫
Ω

aij∂ju∂i(|u|p−2u)χ{u 6=0} dx

+

∫
Ω

N∑
I=1

ci∂iu|u|p−2uχ{u6=0}dx+

∫
Ω

ru|u|p−2uχ{u6=0}dx

−
∫
∂Ω

qB(∇τu) · (∇τ (|u|p−2u)χ{u 6=0} dS −
∫
∂Ω

γ|u|p dS
β

by the divergence theorem, the boundary condition and Stokes’ theorem. Observe
that, if we call

Z :=

N∑
i,j=1

∫
Ω

aij∂ju∂i(|u|p−2u)χ{u 6=0} dx,

then ReZ ≥ 0. Indeed

Z =

∫
Ω

N∑
i,j=1

aij∂ju∂i(u)(|u|p−2)χ{u 6=0} dx

+

∫
Ω

N∑
i,j=1

aij∂juu(p− 2)|u|p−4Re (u∂iu)χ{u6=0} dx,

since

∂j |u|q = ∂j

[
(|u|2)

q
2

]
=
q

2
|u|2( q2−1) [u∂ju+ (∂ju)u)]

= q|u|q−2Re (u∂ju),
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where |u|2 = uu 6= 0. From

Re (u∂iu)Re (u∂iu) = [Re (u∂iu)]2 ≥ 0

and the positive definiteness of A(x), it follows that ReZ ≥ 0. Arguing in a similar
way, one can also deduce that

Re

∫
∂Ω

qB(∇τu) · (∇τ (|u|p−2u)χ{u6=0} dS ≥ 0.

Thus, taking into account that all ci and r+ are essentially bounded, we deduce
that

Re < MpU − (‖c‖+ ‖r+‖∞ + ‖γ−‖∞)U, JU > ≤ 0.

Hence Mp is quasidissipative for p > 2. The same result holds for p ∈ [1, 2)
according, for instance, to the proof of [7, Lemma 4.4.3]. Hence, for any p ∈
[1,∞), Mp is quasi-dissipative. Now, Mp quasi-dissipative implies

(3.5) ‖(λ−Mp)
−1‖ ≤ 1

Reλ− (‖c‖+ ‖r+‖∞ + ‖γ−‖∞)

for Reλ > ‖c‖ + ‖r+‖∞ + ‖γ−‖∞. Hence the range of λ − Np is closed, where

Np = Mp. Let us show that it is dense, too. Let H ∈ Xp for p ∈ (1,∞). We can

argue for any H = (h|Ω, h|∂Ω), where h ∈ C2+ε
c (Ω), ε > 0, sufficiently small. Then,

by the previous case, there exists U ∈ D(N2), U = (u|Ω, u|∂Ω) such that

(λ−N2)U = H

for Reλ sufficiently large and

∇ · A∇u+ c · ∇u+ ru = h.

By elliptic regularity for the Wentzell problem in bounded domains (see [8]), we
have that there exists u ∈ D(Np) such that

‖u‖W 2,p(Ω) ≤ Kp,R‖h‖Lp(Ω)

if h ∈ C2+ε
c (Ω). Since C2+ε

c (Ω) is dense on each Xp, then Np is quasi-m-dissipative

on Xp, 1 < p <∞. In the case p = 1, let h ∈ C2+ε
c (Ω) and λ sufficiently large, say

λ > ω. Then, for any p ∈ (1,∞) there exists a unique U ∈ D(Np) such that

λU −NpU = h

for any p ∈ (1,∞). Moreover,

‖U‖Xp ≤
1

λ− ω
‖h‖Xp ≤

1

λ− ω
max{‖h‖Xp , ‖h‖∞} := k.

By Lemma 3.1, we deduce that U ∈ X1 and ‖U‖X1
≤ k. Hence N1, the closure

of M1, is quasi-m-dissipative on X1. Finally, let M∞ be the realization of M in
X∞ with domain D(M∞), obtained by replacing Xp by X∞ in the definition of
D(Mp) and let N∞ be the closure of M∞ on X∞. Then, as a consequence of
(3.5), as p → ∞ we deduce that M∞, and hence, N∞, is quasidissipative on X∞.
Moreover, since the range condition for each Np is essentially p-independent, N∞
is quasi-m-dissipative on X∞. �
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Theorem 3.5. Suppose that the assumptions (A1)-(A5) hold. For any 1 < p <∞,

let M̂p be the realization of the operator M in Xp with domain D(Mp) as in Theorem

3.4.We use M̂p and not Mp because at this time we include the tangential gradient

term. Then, the closure N̂p of M̂p generates an analytic semigroup on Xp.

We shall show that N̂p is a Kato perturbation of the operator Np in Theorem
3.4 in Xp, for 1 < p <∞. The proof will require an extension of the Kallman-Rota
inequality, which we present now.

Lemma 3.6. Let G generate a uniformly bounded (by k > 0) (C0) semigroup
W = (W (t))t≥0 on a Banach space E. Then, for all f ∈ D(G2) we have

(3.6) ‖Gf‖2 ≤ 2k(k + 1)‖G2f‖ ‖f‖.

Proof. The classical Kallman-Rota inequality is for the case of k = 1, in which case
the constant in (3.6) is 4. Let f ∈ D(G2), t > 0. By Taylor’s formula,

W (t)f − f =

∫ t

0

d

ds
W (s)f ds =

∫ t

0

GW (s)f ds

=

∫ t

0

G

[
f +

∫ s

0

d

dr
W (r)Gf dr

]
ds

=tGf +

∫ t

0

(∫ t

r

W (r)G2f ds

)
dr

=tGf +

∫ t

0

(t− r)W (r)G2f dr,

whence

tGf = (W (t)f − f)−
∫ t

0

sW (t− s)G2f ds.

It follows that

t‖Gf‖ ≤(k + 1)‖f‖+

∫ t

0

sk‖G2f‖ ds

=(k + 1)‖f‖+
t2

2
k‖G2f‖.(3.7)

If G2f = 0, letting t→∞ shows Gf = 0 and there is nothing to prove. If G2f 6= 0,
let us consider the polynomial in t,

P (t) =
t2

2
k‖G2f‖ − t‖Gf‖+ (k + 1)‖f‖.

Due to (3.7) we have that P (t) ≥ 0 for all t ∈ R. Hence

‖Gf‖2 − 2k(k + 1)‖G2f‖‖f‖ ≤ 0

and (3.6) follows.
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Remark 3.7.

As a consequence of the previous Lemma, for any ε > 0,

‖Gf‖ ≤ ε‖G2f‖+
2k(k + 1)

ε
‖f‖.

Thus if B is any closable operator with D(G) ⊂ D(B), then (by the closed graph
theorem) B is a Kato perturbaion of G2 (see [14, Corollary 6.9]). Now, let us return
to the proof of Theorem 3.5.

Proof of Theorem 3.5. We can interpret M̂p as the operator matrix(
M0,p 0

−β ∂
A

∂ν −γ + qβL∂ + qã∇τ + r̃

)
+

(
P1 0
0 0

)
+

(
0 0
0 P2

)
,

where P1 (resp. P2) represents the lower order terms of the operator M̂p acting on
Ω (resp. ∂Ω). Now M0,p includes the terms with ã and r̃ described in (A5).

Observe that, by [1, Section 2], the closure G2 of M0,2 generates an analytic
semigroup which is analytic in the sector

Σ(θ) = {z ∈ C : Rez > 0, |arg z| < θ}

with θ = π
2 . Similar arguments as in [10, 8] allow us to obtain that Gp generates a

semigroup analytic in the sector Σ(θp) = Σ(θp′) where for 2 ≤ p < ∞, θp = π
p and

1
p + 1

p′ = 1. Alternatively, Neuberger’s theorem could be used here (cf. [14]).

When q = 0, P2 is a bounded operator and then P =

(
P1 0
0 0

)
+

(
0 0
0 P2

)
is a Kato perturbation of M0,p and it follows that N̂p generates a (C0) semigroup
analytic in Σ(θp), 1 < p <∞. When q > 0 and ã is nonzero, the argument following
the proof of Lemma 3.4 shows that P is a Kato perturbation of M0,p, but the

quasidissipativity of N̂p need not be valid in this case. Still, N̂p generates a (C0)
semigroup analytic in Σ(θp), 1 < p <∞. The theorem is now proved. �

4. Continuous Dependence

As a consequence of the Trotter-Neveu-Kato approximation theorem (see e.g.
[14, Theorem 7.3]) and according to the results in [4] and [1], one can easily deduce
the following theorem.

Theorem 4.1. Let N0 = {0, 1, 2, ..}, and Ω, Mk, Lk,Ak,Bk satisfy the assump-
tions (A1)-(A4) and assume that in (WBC) the functions ã, r̃ vanish. Then
the solution of our problem associated with Mp and (WBC) depends continu-
ously on (β, γ, q) in Xp in the following sense. Let βk, γk ∈ C1(∂Ω) be real for
k ∈ N0 = {0, 1, 2, ..} and suppose that

sup{|γk(x)|+ 1

|γk(x)|
: k ∈ N0, x ∈ ∂Ω} <∞,
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sup{βk(x) +
1

βk(x)
: k ∈ N0, x ∈ ∂Ω} <∞,

βk → β0, γk → γ0

uniformly as k →∞ with βk(x) > 0 for all k and x. Let qk ∈ (0,∞) for k ∈ N0 or
qk = 0 for k ∈ N0 with qk → q0 and

Xkp = Lp(Ω, dx)⊕ Lp(∂Ω,
dS

βk
), 1 ≤ p ≤ ∞,

Let Nkp be the corresponding Np for each k ∈ N0, p ∈ [1,∞]. Note that Xkp and
X0p are equal as sets and have uniformly equivalent norms. Let Tk = (Tk(t))t≥0,
k ∈ N0, be the semigroup generated by Nkp on Xkp.

Then, for all 1 ≤ p ≤ ∞, for any f ∈ X0p, Tk(t)f → T0(t)f for all t ≥ 0,
uniformly for t in bounded intervals.

5. Domain Characterization

Let Ω be a bounded domain and assume that ã, r̃ vanish and ∂Ω, all the co-
efficients (aij), (bij), ci, r, β, γ and the initial function u(0, x) = f(x) are all of

class C∞, either on Ω and on ∂Ω. In the symmetric case, we showed under these
hypotheses that

D(G2) = H2(Ω) if q = 0

and

D(G2) = {u ∈ H2(Ω) : tr(u) ∈ H2(∂Ω)} if q > 0.

We proved this in [4] for p = 2 and the symmetric case because we were focussing
on hyperbolic problems such as the wave and telegraph equations. The proof was
based on the theory of (uniformly) elliptic boundary value problems, developed by
Agmon, Douglis, Nirenberg, Lions and others, and extended by Triebel and others
for 1 < p < ∞. This is explained in detail in H. Triebel’s book [18]. The context
was that of a bounded domain, with the boundary and all functions appearing in
the problem being of class C∞ on their maximal domains. The proof was based on
pseudodifferential operator theory, which requires everything to be C∞.

But now we are considering parabolic problems in the Lp context. The theory
in Triebel’s book works for Ω bounded, 1 < p <∞ and M nonsymmetric (but still
uniformly elliptic) and everything being C∞. Thus with much work on the con-
siderable technical details, we mimicked the proof in [4] and obtained the following
result.

Theorem 5.1. Let Ω be a bounded domain and suppose ã, r̃ vanish, ∂Ω and all
the coefficients (aij), (bij), ci, r, β, γ are of class C∞ on Ω and on ∂Ω.

Then for 1 < p <∞,

D(Np) = W 2,p(Ω) if q = 0

and

D(Np) = {u ∈W 2,p(Ω) : tr(u) ∈W 2,p(∂Ω)} if q > 0.
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