
Journal of Intelligent Information Systems (2018) 51: 647–672
https://doi.org/10.1007/s10844-018-0531-6

Extending expressivity and flexibility of abductive logic
programming

Stefano Ferilli1,2

Received: 6 July 2017 / Revised: 29 August 2018 / Accepted: 26 September 2018 /
Published online: 9 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Real-world problems often require purely deductive reasoning to be supported by other
techniques that can cope with noise in the form of incomplete and uncertain data. Abduc-
tive inference tackles incompleteness by guessing unknown information, provided that it
is compliant with given constraints. Probabilistic reasoning tackles uncertainty by weak-
ening the sharp logical approach. This work aims at bringing both together and at further
extending the expressive power of the resulting framework, called Probabilistic Expressive
Abductive Logic Programming (PEALP). It adopts a Logic Programming perspective, intro-
ducing several kinds of constraints and allowing to set a degree of strength on their validity.
Procedures to handle both extensions, compatibly with standard abductive and probabilistic
frameworks, are also provided.

Keywords Abductive logic programming · Probability · Constraints

1 Introduction

Two, different and complementary, directions have traditionally characterized research
in Artificial Intelligence (AI): the numerical/statistical one, on one hand, and the sym-
bolic/logic one, on the other. The former is efficient and tolerant to noise, but unable to
capture the complex network of relationships among different events and objects. The latter,
using the First-Order Logic (FOL) setting, allows one to handle relational representations
of the data, but requires that data are certain and, for purely deductive inference, complete.
Unfortunately, the real world often involves, among others, two kinds of noise in the avail-
able information: incompleteness and uncertainty. So, reasoning in these contexts requires

� Stefano Ferilli
stefano.ferilli@uniba.it

1 Dipartimento di Informatica – Università di Bari, Bari, Italy
2 Centro Interdipartimentale per la Logica e sue Applicazioni – Università di Bari, Bari, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-018-0531-6&domain=pdf
http://orcid.org/0000-0003-1118-0601
mailto: stefano.ferilli@uniba.it


648 Journal of Intelligent Information Systems (2018) 51:647–672

purely deductive reasoning to be supported by techniques that can cope with them. Specif-
ically, the former is the domain of abductive reasoning, classically intended as a purely
logical approach, while the latter is the domain of probabilistic reasoning, for which several
solutions have been proposed in the literature.

As regards uncertainty, since several decades now (Nilsson 1986), much research has
been carried out to put together logical and statistical inference, so that the former pro-
vides the representation language and high-level reasoning strategies, and the latter enforces
robustness. In particular, many works have considered the Probabilistic Logic Programming
(PLP) setting (De Raedt and Kersting 2008) for the logic side, while others have adopted
the Statistical Relational Learning (SRL) setting (Getoor 2002).

On the other hand, abductive inference can tackle incompleteness in the data by allow-
ing to guess information that has not been observed. Using a classical example, if someone
enters in our room and his shoes are wet, we might guess that it’s raining outside. How-
ever, there may be many other plausible explanations for this event (e.g., he crossed a lawn
while the sprinkler was on), and thus that inference provides no certainty on the real cause
of the ‘wet shoes’ event. While humans are able to distinguish explanations that are con-
sistent with their previous knowledge and discard the others, embedding this capability in
machines is not easy. One proposal is known as the Abductive Logic Programming (ALP)
framework (Kakas et al. 1992).

This paper builds upon the ALP framework, both because it provides a direct and explicit
way of having abductive reasoning and explanations, and because Kakas et al. (1992) pro-
vide relevant justifications for which ALP is profitable, and show it has several advantages.
Specifically, this work provides two original contributions to ALP:

1. it extends the expressiveness of the framework, by allowing one to use several kinds of
integrity constraints and to express a degree of uncertainty on them;

2. it provides suitable procedures to carry out abductive reasoning and to handle uncer-
tainty in both the basic and the extended framework.

While the extensions concerning generalized constraints and uncertainty are independent
from each other, and might be introduced separately, an added value of this work is to pro-
vide an integrated framework that, leveraging their cooperation, allows the representation
and handling of more complex cases.

In the integrated approach, the uncertainty handling part is used to assign a degree of con-
fidence to the alternative abductive explanations of a given goal obtained by the abductive
part, and in case to choose the more reliable one(s). The integrated reasoning approach is
compatible with other non-probabilistic approaches to abductive reasoning and probabilis-
tic approaches to deductive reasoning. I.e., removing the probabilities and/or the constraints
from our framework, and applying the proposed approach, we obtain the same results as
other existing frameworks in the literature.

The paper is organized as follows. The next section introduces the basic ALP framework
and reviews related work, especially focusing on past attempts to join abductive and prob-
abilistic reasoning. Then, Section 3 proposes an extension of the framework by means of
generalized integrity constraints. Section 4 further extends the framework in order to deal
with uncertainty. Finally, Section 5 concludes the paper.



Journal of Intelligent Information Systems (2018) 51:647–672 649

2 (Probabilistic) abductive logic programming

Abduction is the inference strategy devoted to cope with missing information. For our
purposes, we adopt the Logic Programming setting (Lloyd 1987), which is the traditional
machinable fragment of FOL.

2.1 Logic programming basics

This section recalls the basics of Logic Programming that are needed for this work. For
more details, abbreviations and theoretical results the reader is referred to Lloyd (1987).

Logic programs consist of Horn clauses, i.e. logic formulas of the form l0 ← l1, . . . , ln,
denoting implications l1 ∧ · · · ∧ ln ⇒ l0. In FOL all variables appearing in a clause are
universally quantified. l0 is called the head of the clause, and l1, . . . , ln is called the body
of the clause. A clause having both the head and the body is a rule; a clause l0 having only
the head is a fact; a clause ← l1, . . . , ln having only the body is a goal; the empty clause

, having no head nor body, denotes a contradiction. The li’s (i = 0, . . . , n) are literals,
i.e. atoms or negated atoms (the negation of an atom a will be denoted, in the following,
by ¬a or by a). In turn, an atom is a predicate applied to terms as arguments. While in
FOL, in general, terms may be constants, variables, or n-ary function symbols applied to n

terms as arguments, here we will focus on Datalog, a fragment of Horn clause logic where
terms can be only constants or variables. Specifically, in the following, variables will be
denoted by uppercase symbols, while constants (and predicate names) will be denoted by
lowercase symbols. An atom, literal or clause is ground if it contains only constants as
terms.

Example 1 A logic program in the domain of family relationships might be:

P = { R1 : son(X, Y ) ← parent(Y,X), male(X)

R2 : daughter(X, Y ) ← parent(Y,X), female(X)

F1 : parent(carl,steve)
F2 : parent(ann,steve)
F3 : parent(john,ann)
F4 : male(steve)}

where the Ri’s are rules, and the Fj ’s are facts.

Deductive inference in Logic Programming is carried out based on the SLD-resolution
inference rule. In a nutshell, given two clauses C′ : l′0 ← l′1, . . . , l′n and C′′ : l′′0 ←
l′′1 , . . . , l′′m and a substitution (i.e., a mapping from variables to terms) θ such that l′iθ = l′′0 θ

for some i ∈ {1, . . . , n}, then the clause C : (l′0 ← l′1, . . . , l′i−1, l
′′
1 , . . . , l′′m, l′i+1, . . . , l

′
n)θ ,

obtained by “resolving C′ on literal l′i”, is a logical consequence of C′ and C′′ (where apply-
ing a substitution θ to a logic formula means simultaneously replacing each variable in the
formula with the corresponding term in θ , if any). C is called the resolvent of C′ and C′′.
More specifically, proofs proceed by refutation: given an existentially quantified conjunc-
tion of atoms to be proved l1 ∧ · · · ∧ ln (n > 0), it is negated, obtaining a goal ← l1, . . . , ln;
if adding this goal to a program P one may obtain the empty clause by repeated application
of SLD-resolution steps, then the conjunction is proved in P . In such a case, the cumula-



650 Journal of Intelligent Information Systems (2018) 51:647–672

tive substitution obtained by composing the substitutions obtained in each resolution step
is called a computed answer substitution, and determines a (set of) instance(s) for which
the conjunction is true. The case in which negated atoms appear in the body of clauses is
the domain of general logic programs. To prove such negated atoms, in this paper we use
the Negation as Failure (NAF) rule (Clark 1978) (if an atom cannot be proven by refuta-
tion, then its negation is considered true), and the corresponding proof procedure (known as
SLD-NF resolution).

Example 2 In Example 1, son(steve,carl) can be proven as follows:

← son(steve,carl) resolved with R1 yields, by θ = {steve/X, carl/Y }
← parent(carl,steve), male(steve) that, resolved with F1 yields, by the empty substitution ε =

{},
← male(steve) that, resolved with F4 yields, by the empty substitution ε = {},

, the empty clause, which proves the initial goal.

Conversely, due to the missing fact female(ann), the goal daughter(ann,john) cannot be
proven, and thus is considered false by NAF.

2.2 Abductive logic programming framework

Abductive Logic Programming (Kakas and Mancarella 1990a, b), or ALP for short, is a
well-known framework for abductive reasoning based on Logic Programming. More pre-
cisely, it extends Logic Programming by considering some predicates, called abducibles, to
be only indirectly and partially defined by means of a set of constraints. Problem solving is
performed by allowing the reasoner to derive abductive hypotheses about instances of these
abducible predicates, as long as such hypotheses do not violate the given constraints. Prob-
lems can be observations that need to be explained (as in classical abduction) or goals to be
proven (as in standard Logic Programming).

Kakas et al. (1992) provide an extensive account of ALP, discussing several semantics
and proof procedures, and their connections to other related problems and tasks. In particu-
lar, they show how many approaches proposed in the literature for Knowledge Assimilation,
Truth Maintenance and, especially, Default Reasoning can be mapped onto ALP. A large
part of their discussion focuses on the role and manipulation of negation, introducing several
options among which NAF receives a particular emphasis.

Definition 1 (Abductive Logic Program) An abductive logic program (or abductive theory)
consists of a triple 〈P, A, I 〉, where:

P is a general logic program;
A (Abducible predicates) is a set of predicates;1

1By extension, according to foundational literature (Kakas et al. 1992), literals built on abducible predicates
are also called abducibles, meaning that they can be abduced. So, an abducible predicate is a kind of claims
that may be abduced, while an abducible literal is a specific claim of that kind that may be abduced.



Journal of Intelligent Information Systems (2018) 51:647–672 651

I (Integrity Constraints, ICs for short) is a set of formulas that must be satisfied by the
abductive hypotheses.2

Again, let us show this through a simple example.

Example 3 An abductive logic program in the family domain might be:
P : as in Example 1
A = {male/1, f emale/1}
I = {← male(X), f emale(X)} (i.e., any X cannot be both male and female)

The three components of an abductive theory are used to define abductive explanations.

Definition 2 (Abductive explanation) Given an abductive theory T = 〈P, A, I 〉 and a for-
mula G, an abductive explanation � for G is a set of ground literals of predicates in A s.t.
P ∪� |= G (� explains G) and P ∪� |= I (� is consistent). When it exists, T abductively
entails G, in symbols T |=A G.

Several proof procedures have been proposed in the literature to obtain abductive
explanations for abductive logic programs, also in the presence of negated literals in the
body (Denecker and Schreye 1992). Here we follow the one proposed by Kakas and Man-
carella (1990c). It takes ICs in the form of plain denials/nogoods, and interleaves abductive
and consistency derivations. An abductive derivation is the standard Logic Programming
derivation extended in order to consider abducibles. When an abducible literal δ has to be
proved, it is added to the current set of hypotheses, provided that no integrity constraint
involving δ is violated (i.e., that all such denials fail). To check this, a consistency deriva-
tion is started. In turn, consistency derivations use abductive derivations to solve their goals,
which may require/provide additional abductive hypotheses. We recall in the following
the two procedures, in a slightly modified version that preserves the same meaning and
behavior.

Definition 3 (Abductive derivation) An abductive derivation from (G1 �1) to (Gn �n) in
〈P, A, I 〉 is a sequence

(G1 �1), (G2 �2), ..., (Gn �n)

such that each Gi has the form ← l1, ..., lki
and (Gi+1�i+1) is obtained by selecting an lj

from Gi and applying one of the following rules:3

1. If lj is not abducible and Gi can be resolved on lj with some clause in P , obtaining C

as the resolvent, then Gi+1 = C and �i+1 = �i ;
2. If lj is abducible and lj ∈ �i , then Gi+1 =← l1, ..., lj−1, lj+1, ..., lk and �i+1 = �i ;

2While generally defining ICs as formulas, with a few exceptions the discussion in Kakas et al. (1992) only
considers ICs in the form of ‘plain’ denials or, using Truth Maintenance terminology, nogoods, i.e., nega-
tions of conjunctions of literals, possibly due to their straightforward representation as Logic Programming
goals (← l1, . . . , ln,¬ln+1, . . . ,¬ln+m). As such, since goals are clauses, and FOL clauses are universally
quantified, ICs are universally quantified in FOL, as well.
3The original framework requires that abducible predicates have no definition in P . This requirement may
be relaxed with a simple representational trick.



652 Journal of Intelligent Information Systems (2018) 51:647–672

3. If lj is a ground abducible, lj 
∈ �i and lj 
∈ �i and there exists a consistency derivation
from (lj �i) to (� �′) then Gi+1 =← l1, ..., lj−1, lj+1, ..., lk and �i+1 = �′

Rules (1) and (2) apply standard resolution, using (1) a clause in P or (2) a previ-
ous abductive hypothesis. Rule (3) extends the current set of hypotheses, provided that a
consistency check is passed.

Definition 4 (Consistency derivation) A consistency derivation for an abducible α from
(α,�0) to (Fn �n) in 〈P, A, I 〉 is a sequence

(α �0), (F1 �1), ..., (Fn �n)

where:

1. F1 is the set of all non-empty goals of the form ← l1, ..., ln obtained by resolving the
abducible α with the constraints in I , �1 = �0 ∪ {α};

2. for all i > 1 let Fi = {← l1, ..., lk} ∪ F ′
i with F ′

i = Fi \ {← l1, ..., lk}, then for some
j = 1, ..., k (Fi+1 �i+1) is obtained according to one of the following rules:

(a) If lj is not abducible, then Fi+1 = C′ ∪ F ′
i where C′ is the set of all resolvents

of clauses in P with ← l1, ..., lk on literal lj (none of which must be empty), and
�i+1 = �i

(b) If lj is abducible, lj ∈ �i and k > 1, then Fi+1 = {← l1, ..., , lj−1, lj+1, ..., lk} ∪
F ′

i and �i+1 = �i

(c) If lj is abducible, lj ∈ �i then Fi+1 = F ′
i and �i+1 = �i

(d) If lj is a ground abducible, lj 
∈ �i and lj 
∈ �i and there exists an abductive
derivation from (← lj �i) to (� �′) then Fi+1 = F ′

i and �i+1 = �′;
(e) If lj = a, with a a ground atom, and there exists an abductive derivation from

(← a �i) to (� �′) then Fi+1 = F ′
i and �i+1 = �′.

The first option (2a) replaces the current branch ← l1, ..., lk with all of its resolvents with
clauses in P on lj . If one such resolvent is the empty clause the whole check fails, because
the constraint was proved (i.e., the denial could not be falsified). The second option (2b) is
similar, but using an already abduced literal. In case (2c) the current branch is falsified on
li by the current hypotheses in �i , so it is dropped. The last two cases (2d) and (2e) try to
falsify (and drop) the current branch through abductive falsification of lj .

The above procedure returns the minimal abductive explanation set if any, otherwise
it fails. It requires the �s in the abductive explanations to be ground. Thus, non-ground
abducibles are resolved with a previously abduced literal, or, if this is not possible, they are
grounded using skolem constants.

A goal G can be abductively proven, using hypotheses �, if there exists an abductive
derivation from (G ∅) to (� �). Sometimes, an abductive proof must be consistent with a
set of previous abductions �I , in which case there must exist an abductive derivation from
(G �I ) to (� �). Let us define the following function, that returns the set of abductive
explanations and associated computed answer substitutions for a goal G in an abductive



Journal of Intelligent Information Systems (2018) 51:647–672 653

theory T , consistent with a set of previous abductions �I : abdT (G,�I ) → {(θ,�O)|
there exists an abductive derivation in T from (G �I ) to (� �O) with computed answer
substitution θ }

2.3 Related work

While the classical ALP framework considers integrity constraints that are denials, other
abductive frameworks proposed different kinds of integrity constraints. E.g., IFF (Fung
and Kowalski 1997) and its extensions are based on integrity constraints that are clauses
(i.e., implications with conjunctive premises and disjunctive conclusions). Compared to
them, here we define a wider set of kinds of integrity constraints, inspired by logical
operators.

Probabilistic reasoning has been embedded in logic in different ways in the litera-
ture. From a Logic Programming perspective, examples are Stochastic Logic Programs, or
SLPs (Muggleton 1996), Logic Programs with Annotated Disjunctions, or LPADs (Ven-
nekens et al. 2004), and ProbLog (De Raedt et al. 2007). Some works explicitly addressed
abductive reasoning.

One of the earliest approaches (Poole 1993) focuses on the representation language. A
program contains non-probabilistic definite clauses and a set of probabilistic disjoint dec-
larations {hi : pi}i=1,...,n meaning that an abducible atom hi is true with probability pi . It
has several shortcomings: no structured constraints (just disjoint declarations); no integrated
logic-based abductive proof procedure with statistical learning; no probabilities assigned to
constraints (just to ground literals).

PRISM (Sato 2002) is a system based on logic programming with multivalued random
variables. It provides no support for integrity constraints but includes a variety of top-level
predicates which can generate abductive explanations. Introducing a probability distribu-
tion over abducibles, it chooses the best explanation using a generalized Viterbi algorithm.
Interestingly, PRISM can learn probabilities from training data.

Two approaches have merged directed and undirected graphical models with logic. The
former, by Raghavan (2011), exploits Bayesian Logic Programs (BLPs) (De Raedt and Ker-
sting 2008) as a representation language for abductive reasoning and uses the Expectation
Maximization algorithm to learn the parameters associated to the model. The latter, by Kate
and Mooney (2009), exploits Markov Logic Networks (MLN) (Richardson and Domingos
2006). Since MLNs provide only deductive inference, abduction is carried out by adding
reverse implications for each rule in the knowledge base, this way increasing the size and
complexity of the model, and its computational expensiveness. Like MLNs, most SRL for-
malisms use deduction for logical inference, and so they cannot be used effectively for
abductive reasoning.

In some solutions, the cooperation between the two approaches aimed at ranking all
possible explanations in order to choose the best one.

An approach for probabilistic abductive logic programming with Constraint Handling
Rules was proposed by Christiansen (2008). Differently from other approaches to proba-
bilistic logic programming, it provides both interaction with external constraint solvers and
integrity constraints. Unfortunately, to optimize the search for explanations using Dijkstra’s
shortest path algorithm, it always explores the most probable direction, so that the investiga-
tion of less probable alternatives is suppressed or postponed. It also has other shortcomings.



654 Journal of Intelligent Information Systems (2018) 51:647–672

First, it cannot handle negation, that must be simulated by normal predicate symbols
(e.g., not p(X) for ¬p(X)). As a consequence, the definition of the constraints might be
tricky.

Arvanitis et al. (2006) adopt SLPs, considering a number of possible worlds. Abduc-
tive reasoning is carried out by reversing the deductive flow of proof and collecting the
probabilities associated to the involved clauses. Although this approach is probabilistically
consistent with the SLP language, it is quite hazardous because abductive reasoning by
means of deduction without constraints may lead to wrong conclusions.

cProbLog (Fierens et al. 2012) extends regular ProbLog logic programs, where facts
in the program can be associated to (independent) probabilities, to consider integrity con-
straints. It comes with a formal semantics and computational procedures, resulting in a
powerful framework that encompasses PLP (ProbLog) and SRL (MLNs), taking the best
of both. Since in cProbLog constraints are sharp, it adopts the same probability count as
ProbLog, but ignoring all worlds that do not satisfy the constraints.

More recently, the idea of probabilistic integrity constraints is present in the work
by Alberti et al. (2016), that also proposes an associated distribution semantics. However,
they adopt the same kind of integrity constraints as IFF (i.e., clauses), and consider theories
made up of constraints only, while here we still work on logic programs.

The approach proposed in this paper advances the state-of-the-art because it has the
following main features, that are never present altogether in the proposals discussed above:

1. it allows to express new and intuitive kinds of integrity constraints, allowing to better
specify and enforce domain properties;

2. it computes explanations using purely abductive procedures, in a true (extended) ALP
framework;

3. it attaches probabilities also to abducibles and integrity constraints (as well as rules and
facts);

4. it computes the most likely abductive explanation based on such probabilities;
5. it is also compatible with established frameworks (standard ALP, standard ProbLog) if

removing the probabilities and/or the generalized constraints, respectively.

Very preliminary ideas for this paper appeared in Rotella and Ferilli (2013). However, com-
pared to that paper, this work is completely new. Its novel contributions include a further
extension of ALP with 4 additional kinds of generalized integrity constraints, the formal
definition of a corrected and refined purely logical proof procedure for the extended frame-
work, some theoretical results about the new framework, and a full account of the extension
to the probabilistic setting.

3 Expressive abductive logic programming

As a first extension of the traditional ALP framework, we propose the introduction of several
kinds of integrity constraints. This would allow one to (comfortably and easily) express
knowledge about the domain that the traditional framework cannot handle, but that can be
determinant for finding an appropriate abductive explanation. We will call the new setting
Expressive Abductive Logic Programming (EALP).



Journal of Intelligent Information Systems (2018) 51:647–672 655

3.1 Generalized integrity constraints

The integrity constraints used in traditional ALP are in the form of denials, due to their
straightforward mapping onto goals in Logic Programming. As such, they express the nega-
tion of a conjunction of literals, or, more technically, the nand logical operation applied to
the set of literals in the body. Inspired by this consideration, by extension we propose to
consider additional operators, and to define a different kind of integrity constraint after each
of them.

The behavior of each kind of constraint directly follows from the definition of the logical
operator after which it is named, and specifically:

nand([l1,...,ln]) at least one among literals l1,. . . ,ln must be false (the classical
denials considered in ALP);

xor([l1,...,ln]) exactly one among literals l1,. . . ,ln must be true;
or([l1,...,ln]) at least one among literals l1,. . . ,ln must be true;
if([l′1,...,l′n],[l′′1,...,l′′m]) if all literals l′1,. . . ,l′n are true, then all literals

l′′1 ,. . . ,l′′m must also be true (modus ponens); alternatively, if any literal among l′′1 ,. . . ,l′′m is
false, then at least one literal among l′1,. . . ,l′n must also be false (modus tollens);

iff([l′1,...,l′n],[l′′1,...,l′′m]) either all literals l′1,. . . ,l′n and l′′1 ,. . . ,l′′m are true, or
at least one literal among l′1,. . . ,l′n and at least one literal among l′′1 ,. . . ,l′′m are false;

and([l1,...,ln]) all literals l1,. . . ,ln must be true;
nor([l1,...,ln]) all literals l1,. . . ,ln must be false.

The intuition behind these kinds of constraints is clear for nand, xor and or operators.
Somehow less intuitive may be the others. The following simple examples should help to
clarify their meaning and usefulness.

Example 4 Some generalized integrity constraints in the family relationships domain might
be:

nand([father(X),mother(X)]) X cannot be both a father and a mother (but it can be
neither);

xor([male(X),female(X)]) X must be either male or female (and it cannot be neither);
or([unemployed(X),employee(X),consultant(X),retired(X)]) X must be an unemployed

person, an employee, a consultant or a retired person, and can be more than one of these
(e.g., be retired and work as a consultant);

and([parent(X, Y ),child(Y,X)]) whenever X is a parent of Y , it must also hold that Y is
a child of X, and vice versa.

nor([¬parent(X,Y ),¬child(Y, X)]) if X is a parent of Y , then Y must be a child of X; if
Y is a child of X, then X must be a parent of Y .

if([mother(X)],[female(X)]) if X is a mother, then it must be also female; if X is not
female, then it cannot be a mother;

iff([parent(X, Y ),male(Y)],[son(Y,X)]) if X is a parent of Y and Y is male, then Y must
be a son of X; if Y is a son of X, then X must be a parent of Y and Y must be male; if X

is not a parent of Y or Y is not male, then Y cannot be a son of X; if Y is not a son of X,
then X must not be a parent of Y or Y must not be male.



656 Journal of Intelligent Information Systems (2018) 51:647–672

Note that, while in simple cases some constraints may be expressed using different
kinds, this is not true in general. E.g.: if([mother(X)],[female(X)]) can be expressed as
or([¬mother(X),female(X)]), but

if(father(X,Y),married(X,Z)],[male(X),female(Z)])
which in usual logic notation is

father(X,Y)∧married(X,Z)⇒male(X)∧female(Z),
would yield, by standard logistic manipulation,

¬father(X,Y)∨¬married(X,Z)∨(male(X)∧female(Z))
which cannot be expressed by flat constraints as above.

When working in a FOL setting, constraints may involve variables, and their quantifica-
tion becomes relevant. The quantification approach we propose is based on the following
constraint checking procedure.

A constraint is activated when a literal, whose abduction is under consideration, matches
one of its components. In such a case, an instance of the constraint is created with the
remaining components and checked for consistency, in which the variables of the matching
component have been bound to the constants of the literal being abduced. Two cases may
take place:

1. all variables in the constraint are bound, so there is no variable left. The con-
straint must be proven for the specified values. E.g., by activating constraint
nand([father(X),mother(X)]) with father(joe), the consistency procedure must prove the
constraint instance nand([mother(joe)]), which involves no variables.

2. only some variables in the constraint are bound, in which case the procedure gener-
ates a constraint instance involving unbound variables. E.g., by activating constraint
and([p(X,Y),p(Y,Z),q(Z)]) with p(a,b), the consistency procedure must prove the con-
straint instance and([p(b,Z),q(Z)]).

In case 2, the unbound variables in the activated constraint are quantified according to
Table 1: basically, constraints involving negation (nand and nor) must be checked for all
possible instantiations, while constraints of kind and, or and xor must be checked for
at least one instantiation; constraints of kind if and iff reduce to other kinds of con-
straints, and thus follow the corresponding quantification rules. We show the rationale for
these choices by means of some examples.

Example 5 Let us consider some cases of constraints and show how they are processed and
interpreted.

nand([player(P,T),coach(P,U),president(P,V)]) “a person P cannot be at the same time
the player of a team T , the coach of a team U and the president of a team V ”. Suppose it

Table 1 Quantification of
activated constraints nand nor and or xor if iff

∀ ∀ ∃ ∃ ∃ see nand, and see if



Journal of Intelligent Information Systems (2018) 51:647–672 657

is activated by player(steve,lakers); then, steve cannot be also the coach and the president
of other teams, i.e.:


 ∃U,V : coach(steve, U) ∧ president(steve, V ) ≡
≡ ∀U,V : ¬(coach(steve, U) ∧ president(steve, V ))

or, using the IC formalism:
∀U,V : nand([coach(steve,U),president(steve,V)])
(as for denials in the standard ALP framework).

xor([rent(P,O,Q,X),buy(P,O,Q,Y),know(P,O,Q,R)]) “either a person P rents an object O

from another person Q at price X, or P buys it from Q at price Y , or both P and the owner
Q of O know another person R”. Suppose it is activated by rent(steve,car,john,100);
then, this must be the only true literal in the constraint, and the remaining instantiated
constraint instance must be false in all possible cases, i.e.:


 ∃Y,R : buy(steve, car, john, Y ) ∨ know(steve, car, john, R) ≡
≡ ∀Y,R : ¬(buy(steve, car, john, Y ) ∨ know(steve, car, john, R))

or, using the IC formalism:
∀Y,R : nor([buy(steve,car,john,Y),know(steve,car,john,R)])

and([red(P,R),green(P,G),blue(P,B)]) “a pixel P must have a value for all basic color
components (R for red, G for green, and B for blue)”. Suppose it is activated by
red(p,127); then, pixel p must have values for color components green and blue, as well,
i.e.:

∃G,B : green(p,G) ∧ blue(p, B)

or, using the IC formalism:
∃G,B : and([green(p,G),blue(p,B)])

Indeed, were the remaining constraint universally quantified, i.e.:

∀G,B : green(p,G) ∧ blue(p, B)

pixel p should have all possible values for both color component green and color
component blue, which is clearly impossible.

or([black white(I),gray levels(I,G),colors(I,C)]) “an image I must be in black and white,
or use a number G of gray levels, or use a number C of colors (but it may have parts that
are just black and white, parts which use gray levels only, and parts which use colors)”.
Suppose it is activated by ¬black white(i); then, there must be parts of the image that use
gray levels and/or colors, i.e.:

∃G,C : gray levels(i,G) ∨ colors(i, C)

or, using the IC formalism:
∃G,C : or([gray levels(i,G),colors(i,C)])

Indeed, were the remaining constraint universally quantified, i.e.:

∀G,C : gray levels(i, G) ∨ colors(i, C)

image i should use many different numbers of gray values and/or of colors, which is
clearly impossible.



658 Journal of Intelligent Information Systems (2018) 51:647–672

xor([rent(P,O,Q),buy(P,O,Q),know(P,O,Q,R)]) “either a person P rents an object O from
another person Q, or P buys it from Q, or both P and the owner Q of O know another
person R”. Suppose it is activated by ¬rent(steve,car,john); then, either steve bought
the car from john or both steve and john know another person. Now, if this claim were
universally quantified, i.e.:

∀R : buy(steve, car, john) ⊕ know(steve, car, john, R)

if both steve and john know paul, but they do not both know mark, due to the former
buy(steve,car,john) should be false, but due to the latter it should be true, which would
be an inconsistency. So, there must necessarily be an existential quantification:

∃R : buy(steve, car, john) ⊕ know(steve, car, john, R)

or, using the IC formalism:
∃R : xor([buy(steve,car,john),know(steve,car,john,R)])

3.2 Extended abductive procedure

While the definition of abductive explanations is the same as in the standard setting, exploit-
ing the generalized constraints requires some changes in the abductive procedure. Indeed,
while in the original procedure denials must be proved false, now constraints must be
proved true according to the meaning of their kind. E.g., for nand at least one literal must
be false, for xor exactly one literal must be true, etc. Specifically, the abductive derivation
is the same as in the standard framework, while the consistency derivation is changed as
follows.

Definition 5 ((Extended) Consistency derivation) An (extended) consistency derivation for
an abducible α from (α,�0) to (Fn �n) in 〈P, A, I 〉 is a sequence

(α �0), (F1 �1), ..., (Fn �n)

where F1 and �1 are C and � as initialized by Algorithm 1 just before the while loop, and
for all i > 1, Fi and �i are the C and �O obtained by Algorithm 2 at the end of the i-th run
of the while loop in Algorithm 1.



Journal of Intelligent Information Systems (2018) 51:647–672 659



660 Journal of Intelligent Information Systems (2018) 51:647–672

Algorithm 1 takes an abducible literal α and a set of previous abductive assumptions �I ,
and returns a minimal extended set of abductive assumptions needed to prove the abducible
literal in an expressive abductive theory T while satisfying the constraints, or fails if at least
one constraint cannot be satisfied. It works by collecting the set C of all constraint instances
involving α, and then suitably selecting and processing them in turn.

Albeit the given constraints can be checked in any order by the abductive proof pro-
cedure, efficiency considerations suggest some priorities in their evaluation. and and nor
constraints are to be checked first, since they force the verification (and possible abduction)
of some literals, and thus evaluating them first allows to determine the necessary abductions
that will bias all subsequent reasoning. Then, xor, if and iff constraints must be checked,
since they have a limited set of options about what can be true and what can be false.
Finally, nand and or constraints must be checked last, in order to ensure minimality of the
abductive explanation. Indeed, differently from the previous kinds of constraints/operators,
they are satisfied by any subset of their arguments being false or true, respectively. Check-
ing them last ensures that all facts that must be true or false according to the other
constraints (and the background knowledge) have already been determined, and can be
brought to bear, preventing the abduction of additional (unnecessary) literals. So, constraints
are organized in a priority queue. Until the queue becomes empty (i.e., all constraints
have been satisfied), the constraint instance with highest priority is selected, removed and
processed.

Constraint instances are processed by procedure handle constraint(·, ·, ·, ·), based on
Algorithm 2. It selects the first literal in the constraint (smarter selection strategies might
be defined, but this is outside the scope of this paper) and checks it using the abductive
derivation procedure4 abdT (·, ·), returning the set �O of abductive assumptions and suitably
updating the constraints queue C. The specific behavior depends on the kind of constraint,
but as a general rule:

– if the literal proof agrees with the constraint, then it is removed from the constraint
and the rest of the constraint is enqueued for further processing, unless the constraint is
satisfied, in which case no action is required.

– if the literal proof disagrees with the constraint, if the constraint is violated, then the
procedure fails, otherwise the algorithm abductively proves the negation of the literal,
removes the literal from the constraint and enqueues the rest of the constraint for further
processing.

More specifically:

and constraints are satisfied when the list of literals becomes empty after all of its mem-
bers have been proven to be true; they fail as soon as one literal cannot be proved to be
true.

nor constraints are satisfied when the list of literals becomes empty after all of its mem-
bers have been proven to be false; they fail as soon as one literal cannot be proved to be
false.

4Note that the calls to the abductive derivation are meant to be executed non-deterministically; when suc-
cessful, they return a suitable partial �O which is combined to other partial �O ’s found in other derivation
steps to give the overall � returned by a successful run of the complete algorithm.



Journal of Intelligent Information Systems (2018) 51:647–672 661

xor constraints are satisfied when, after proving one literal to be true, the list of all
remaining literals is proved to be false (i.e., a nor constraint holds on it); they fail
when the list of literals becomes empty after all of its members have been proven to be
false.

iff constraints are checked as follows: the and of the premise is checked; if it succeeds
the and of the consequence is enqueued for checking; otherwise, as soon as the premise
fails, the nand of the consequence is enqueued for checking.

if constraints are checked based on the X ⇒ Y ≡ ¬X ∨ Y equivalence: the nand of the
premise is checked; if it succeeds nothing is done (the constraint is satisfied); otherwise,
after the nand fails (i.e., the and of the premise is satisfied), the and of the consequence
is enqueued for checking.

or constraints are satisfied as soon as one literal is proven to be true; they fail when the
list of literals becomes empty after proving all of its members to be false.

nand constraints are satisfied as soon as one literal is proven to be false; they fail when
the list of literals becomes empty after proving all of its members to be true.

Note that the case in which an abduced or known literal satisfies an or or nand constraint, but
it is not the first in the constraint, must be purposely checked before starting the constraint
evaluation, to prevent the abduction of unnecessary literals needed to prove the literals
before it in the constraint.

When processing a literal l of a universally quantified constraint, all possible instances
of l must be considered altogether, each of which will generate a new constraint instance to
be enqueued. For this purpose, given an expressive abductive theory T = 〈P, A, I 〉 and a
set of existing abductive assumptions �I , let us define the set of cumulative explanations
of l as follows:

ce(P, l,�I ) = {�O | ∀(θ,�) ∈ abdT (← l, �I ) : P ∪ �I ∪ �O |= lθ}

i.e., each member of ce(P, l,�I ) can explain all instances of l in T . Note that members
of ce(P, l, �I ) do not necessarily include all �’s that explain a given instance lθ . Indeed,
if many abductive explanations are available for an instance, including all of them would
cause redundancy. However, since we are looking for minimal explanations, we must use
only minimal members of this set. So, Algorithm 2 considers the set of minimal cumulative
explanations, defined as follows:

mce(P, l, �I ) = {�O ∈ ce(P, l,�I ) |
 ∃�′
O ∈ ce(P, l, �I ) �′ �′

O ⊂ �O}

Operationally, a minimal cumulative explanation can be obtained by sequentially prov-
ing the literal instances, feeding each proof with the partial cumulative explanation of the
previous ones.

3.3 Properties of EALP

Let us first show that the proposed set of generalized integrity constraints strictly extends
the expressiveness of the framework, because their meaning cannot be captured by the
traditional integrity constraints used in ALP.

Property 1 The proposed EALP framework is strictly more expressive than standard ALP.



662 Journal of Intelligent Information Systems (2018) 51:647–672

Proof To prove this claim, it is sufficient to show that there exist at least one kind of
constraint in EALP that cannot be expressed as a (set of) denial(s). Consider the XOR
constraint: xor([p, q]) ≡ p ⊕ q. By applying standard logistic manipulation we have:

p ⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q) ≡ ¬(¬(p ∧ ¬q) ∧ ¬(¬p ∧ q))

which is clearly not a plain denial. Indeed, albeit the nand operator alone is functionally
complete, nested applications thereof are needed to express the other operator. But nand is
not associative, and thus the nestings cannot be flattened to plain denials.

Actually, some constraints in the extended set can be simulated by others, but were
introduced only for ease of specification and for efficiency of computation:

– and([a1, . . . , an]) ≡ nor([a1, . . . , an]) by De Morgan’s laws
– or([a1, . . . , an]) ≡ nand([a1, . . . , an]) by De Morgan’s laws
– xor([a1, . . . , an]) ≡

≡ {and([a1, a2, . . . , an]), and(a1, a2, a3 . . . , an), and(a1, . . . , an−1, an)}
– iff ([l′1, . . . , l′n], [l′′1 , . . . , l′′m]) ≡

≡ {if ([l′1, . . . , l′n], [l′′1 , . . . , l′′m]), if ([l′′1 , . . . , l′′m], [l′1, . . . , l′n])}

Let us then provide a (semi-formal) proof of the minimality of abductive explanations
computed by the proposed procedure.

Theorem 1 (Minimality) Any abductive explanation � associated to an abductive proof
obtained using the consistency derivation computed by Algorithm 1 in the abductive deriva-
tion computed as per Definition 3 is minimal, i.e., it does not contain unnecessary abduced
literals.

Proof First consider the set of integrity constraints C used to obtain �. Notice that integrity
constraints are considered by the proof procedure, and added to C, if and only if they involve
a literal that must be abduced. So, no integrity constraint in C is superfluous, and the only
way in which � might not be minimal is by abducing unneeded literals from the neces-
sary integrity constraints. Now, only the consistency derivation may add literals to � while
checking integrity constraints. The evaluation of each single literal is performed by call-
ing the abductive derivation, which succeeds without abducing new literals whenever the
literal is already known or abduced. So, a literal is abduced only when unknown and not
yet abduced. In particular, only integrity constraints that succeed add literals to �. Let us
analyze all possible cases:

1. for and constraints, all literals must be true, and thus none of them is unnecessary: all
literals already known or abduced to be true are skipped, and all remaining literals must
necessarily be abduced to be true;

2. for nor constraints, all literals must be false, and thus none of them is unnecessary:
all literals already known or abduced to be false are skipped, and all remaining literals
must necessarily be abduced to be false;

3. for xor constraints, all literals are necessary (exactly one must be true, and all the others
must be false): as soon as the procedure can prove one literal to be true, the constraint



Journal of Intelligent Information Systems (2018) 51:647–672 663

is dropped and a nor constraint is added for the remaining literals, whose minimality is
ensured by case (2);5

4. for or constraints, if at least one of the literals is already known or abduced to be true,
no further literal is abduced; otherwise, the procedure stops (i.e., it drops the constraint)
as soon as it can prove one literal to be true;

5. for nand constraints, if at least one of the literals is already known or abduced to be
false, no further literal is abduced; otherwise, the procedure stops (i.e., it drops the
constraint) as soon as it can prove one literal to be false;

6. for if constraints, evaluation boils down to evaluating either a nand constraint (for the
premises), in which case minimality is ensured by case (5) and the conclusions are
skipped (so no further unnecessary literal is abduced), or an and constraint (for the
conclusions), in which case minimality is ensured by case (1);

7. for iff constraints, evaluation boils down to evaluating two and constraints, in which
case minimality is ensured by case (1); or two nand constraints, in which case
minimality is ensured by case (5).

Note that minimal solutions are not necessarily minimum, i.e., it is possible that other
choices (of �O or of constraint orders) in the non-deterministic steps of the algorithm result
in a smaller but uncomparable set of abduced literals.

A further relevant consideration concerns the tractability of EALP, which is the same as
for standard ALP:

Property 2 The EALP proof procedure has the same computational complexity as standard
ALP, which is linear in the number of involved constraint instances and of literals in them.

Proof Let us first note that the EALP proof procedure differs from the standard ALP proof
procedure only in the consistency derivation step. Just like for standard ALP, this step must
consider and satisfy all constraint instances that come into play when trying to abduce a
literal, and just once each of them. So, the difference is actually in the way the extended
procedure proves the additional kinds of constraints other than nand. However, constraints
of kind and, nor, xor, and or just require scanning and satisfying a list of literals, just as
for nand. In particular, and, xor and nor require to scan and satisfy the whole list, while
for or the procedure may stop as soon as a true literal is found (just like for nand it may
stop as soon as a false literal is found). Constraints of kind if and iff have two ways each
of being satisfied. Each such way requires to scan just once the left-hand-side list of literals
and the right-hand-side one, so, again, the required effort is linear in the sum of the lengths
of these two lists (i.e., as stated by the thesis, in the number of literals that make up these
constraints).

Finally, albeit it is not a formal property, it may nevertheless be interesting to point out
that the realistic expectation of having good abductive inference in EALP is not less than in

5Actually, this behavior is inefficient: if any literal in the nor constraint (say, li ) was already known or
abduced to be true before starting the consistency check on the constraint, all proofs based on the previous
abduction of other literals lj with j < i would fail when encountering li , causing backtracking until the
turn of li itself comes in the consistency check. This might be optimized by first checking if any literal in
the xor constraint is already known or abduced to be true; if so and it is exactly one, then the constraint is
automatically satisfied without any further abduction; if there are several such literals, then the constraint
immediately fails; in the other cases the described procedure must be started. Anyway, as said, optimization
of the proposed approach is not the subject of this paper.



664 Journal of Intelligent Information Systems (2018) 51:647–672

standard ALP. Instead, it is possibly more than in ALP, because, having proved that EALP is
strictly more expressive, the additional kinds of constraints allow one to specify and enforce
domain properties that standard ALP cannot express and, thus, enforce.

4 Probabilistic expressive abductive logic programming

After extending the expressiveness of the purely logical abductive framework, we can add
flexibility to it by introducing probabilities in order to smooth the classical sharp approach
with a statistical one.

4.1 Probabilistic framework

While deductive reasoning is truth preserving (given true premises, the consequences of a
sound inference rule must necessarily be true), abductive reasoning is valid only to the extent
that the abductive explanation is valid. Thus, the idea of associating a degree of ‘validity’ (or
‘reliability’, or ‘likelihood’) to the explanation immediately comes to mind, in order to have
an indication of how trustworthy it is. This would also open new, interesting perspectives.
Indeed, one may consider an abductive explanation as shaping a possible world, in which
the assumptions it makes (abduced literals) are true. Having different sets of consistent
assumptions that explain a goal is like considering different possible worlds, in each of
which a different set of abduced facts holds. In principle, each of these worlds might be the
correct one, as far as we know. But while, from a strictly logical viewpoint, any consistent
explanation is as good as any other, once explanations are associated to a degree of validity,
some of them might turn out to be more or less likely than others. In such a case, of course,
we might prefer to choose the more likely ones.

Now, since the validity of abductive explanations is supported only by the integrity con-
straints they satisfy, it follows that the degree of their validity would be directly affected by
different degrees of ‘validity’ (or ‘reliability’, or ‘likelihood’) of those integrity constraints.
This perspective has been so far almost neglected by the literature, that focused on the logic
program part of the abductive framework. Instead, we posit that, in a truly and fully prob-
abilistic abductive setting, not only the clauses in P , but also the integrity constraints in I

must be probabilistic. In a sense, this is also reflected in the real world, where constraints
are not always sharp. Even when they express universally valid laws (such as temporal
or physical ones) they might have to be flexible to handle noise and uncertainty. Quite
often, they just represent domain-specific restrictions, that hold only to some degree of cer-
tainty, reflecting a degree of personal belief or confidence in their being true, or a statistical
frequency.

So, in our extended abductive framework we associate each integrity constraint to a
probabilistic value, that we call its strength, expressing its degree of validity in the given
domain.6

6We prefer calling it a ‘strength’, using a more neutral term than ‘likelihood’, because often these values
express an intuitive degree of validity of the constraint, rather than a theoretically founded computation of its
likelihood of being true. Indeed, as quite usual in the probabilistic logic programming setting, these values
are manually set by the programmers of the logic theory. Of course, it might be possible to devise procedures
that try to assess these values from the available data, but it is a line of research on its own and is outside of
the scope of this paper, which focuses instead on the exploitation of the given values.



Journal of Intelligent Information Systems (2018) 51:647–672 665

Definition 6 A Probabilistic Expressive Abductive Logic Program (PEALP for short)
consists of a 4-tuple 〈P, A, I, p〉, where:

P is a (standard or probabilistic) logic program;
A (Abducible predicates) is a set of predicates;
I (Integrity Constraints) is a set of generalized integrity constraints, as defined in

Section 3.1, that must be satisfied by abductive hypotheses;
p : P ∪ ground(A) ∪ I → [0, 1] is a function associating a likelihood to each element

in P , in I (called the strength of a constraint) and in the set ground(A) of ground literals
built on predicates in A.7

For the sake of compactness, in the following all items for which p(·) is not specified
will be assumed to have likelihood equal to 1.0.

As usual in the literature, we base our probabilistic approach on the notion of possible
worlds, re-defined as follows in the abductive setting.

Definition 7 Given a goal G and a PEALP T = 〈P,A, I, p〉, a (probabilistic) abductive
explanation of (or possible world for) G in T is a triple E = (L,�, C), where L, �

and C are, respectively, the set of clauses in P , the abductive explanation (i.e., the set of
ground literals abduced), and the set of instances of (probabilistic) integrity constraints in I ,
involved in an abductive proof of G in T . Specifically, we denote with C ∈ C the instances
of constraints that are satisfied by �, and by C ∈ C the instances of constraints that are
violated by �. We denote by WG the set of all possible worlds associated to G in T .

Differently from traditional explanations, probabilistic explanations must report the
involved integrity constraints, because the probability of these constraints affects the prob-
ability of the explanation, just like that of the program elements (L) or abduced literals (�).
Moreover, when integrity constraints are probabilistic, a world that violates them is not any-
more impossible, it is just differently probable. For this reason, also explanations that violate
constraints are valid, and the information about violated constraints must be reported in the
explanation, just like information about satisfied constraints. This information can be col-
lected and returned by Algorithm 1 with trivial modifications. Also note that, in a possible
world (L,�, C), � and/or C may be empty. When � = ∅ (in which case also C must be
empty), the explanation is deductive, and as such it is intrinsically minimal (and minimum).

4.2 Computational procedures

So, while the basic procedure returns one minimal abductive explanation of the goal (any
minimal explanation is as reliable as any other), in a probabilistic setting we need to generate
all different (minimal) abductive explanations, and extend the logical proof procedure given
in Algorithm 1 to consider all possible worlds. This means that, whenever the abductive
procedure has a choice, it must explore the worlds associated to all different options. One
such choice is in the abductive derivation, when different clauses can be applied to resolve
the selected literal (using different rules leads to different explanations, involving different

7The assessment of the likelihood p(δ) that abducible δ is true is outside the scope of this paper. E.g., as a
naive approach, one might assume that this is the a priori probability that the predicate on which δ is built is
true.



666 Journal of Intelligent Information Systems (2018) 51:647–672

abducibles and different constraints to be satisfied). Another choice is in the consistency
derivation, when it might abduce either a literal or its negation (all constraints, except and
and nor, admit different ways for being satisfied). The former branches the current world
in as many possible worlds as many clauses are applicable; the latter branches the current
world in two possible worlds (one where the literal is true and another where it is false). Each
of these choices leads to a different world, and acts as a bias for the abductive assumptions
that may be made next. Note that, since nand constraints (i.e., the classical denials) can
be satisfied in several ways, these considerations are applicable also to the standard ALP
setting.

The exploration of all possible worlds is associated to a tree in which nodes repre-
sent sets of possible worlds: the root is the set of all possible worlds; each branching
corresponds to a choice (as described above), whose offspring represents worlds that are
specializations of the parent node; internal nodes are sets of possible worlds associated to
partial abductive proofs; and leaves represent the worlds associated to abductive explana-
tions. Operationally, such a tree can be generated using a depth-first approach, collecting
the leaves when they are reached and forcing backtracking in all possible choice points until
all possible worlds associated to (minimal) abductive explanations have been explored. This
is the same as the backtracking provided for by the classical procedure to return all min-
imal abductive explanations. The choice points are in case (1) of the abductive derivation
(the selection of the clause in P for resolution), and in statements marked by (*) in Algo-
rithm 2 for the consistency derivation. It is important to note that failing branches, marked
by (**) in Algorithm 2, do not fail anymore, but collect the violated constraints to build
C and continue. So, case (1) of the abductive derivation collects the clauses in P to build
L, while (*) and (**) in the consistency derivation collect the instances of constraints to
build C.

Now, the probability of each possible world must be assessed. The solution in the liter-
ature that is closest to our needs is cProbLog. However, in cProbLog constraints are sharp,
while in our framework they are probabilistic, as well. So, we have to modify the cProbLog
approach for computing the likelihood of a world. It is beyond the scope of this paper dis-
cussing in details the underlying semantics that we use to cope with this. It suffices to say
that we must take into account the likelihood of the (satisfied or violated) constraints that
are involved in a possible world, and that, while cProbLog removes from the probability
count all worlds that do not satisfy the constraints, we must consider again all worlds (as in
ProbLog), because a world that violates a constraint is only less probable, not impossible.

Given a PEALP T = 〈P,A, I, p〉, where P is a probabilistic logic (ProbLog) program,
and a (probabilistic) abductive explanation E = (L,�, C) associated to a goal G, the
(absolute) likelihood of E is:

p(E) = p(L|P) ·
∏

δ∈�

p(δ) ·
∏

C∈C
p(C) (1)

=
∏

l∈L

p(l) ·
∏

l∈P \L
(1 − p(l)) ·

∏

δ∈�

p(δ) ·
∏

C∈C
p(C) (2)

where p(L|P) is as in ProbLog, and the rest of the formula throws in the computation the
likelihood assessment for the abduced literals (with the probability of a negated literal δ ∈ �

being equal to 1 −p(δ)) and constraints (with the probability of a violated constraint C ∈ C
being equal to 1 − p(C)) involved, respectively.



Journal of Intelligent Information Systems (2018) 51:647–672 667

Actually, for our purposes of comparing alternate abductive explanations, in order to
choose the most likely one(s), we may use just a pseudo-likelihood, based on a simpler
version of the formula:8

p(E) =
∏

l∈L

p(l) ·
∏

δ∈�

p(δ) ·
∏

C∈C
p(C) (3)

where the initial part expresses the likelihood that all program elements or abduced literals
in an explanation are true in that particular world, and the final part expresses the overall
reliability of the constraints involved in the abductive explanation. Intuitively, (3) is based
on the fact that any element (rule, fact, abduced literal, or constraint) in an explanation must
be either true or false, which corresponds to a choice between two alternative sets of possible
worlds, while the value of elements that are not involved does not care. If one choice has
probability p, the opposite choice would lead to a disjoint set of worlds with probability
1 − p. Note that if any component in T is not probabilistic, the corresponding product
equals 1 and so only probabilistic components concur in differentiating the likelihood of the
explanations, as expected. In particular, the standard (non-probabilistic) setting, in which
all components of T are not probabilistic, is accounted for. Moreover, for sharp constraints,
violated constraints have probability 0, and the whole product becomes 0, meaning that the
world is impossible and must be discarded.

After determining all possible worlds/explanations of a goal G, and their associated prob-
abilities, the issue of selecting the best one arises. Indeed, while in standard PLP the set of
true facts is known and fixed, and different proofs just use a different subset thereof, in an
abductive setting each explanation may introduce new facts, and facts in different explana-
tions might be inconsistent with each other. We propose to select the most likely explanation,
i.e., the one with maximum (pseudo-)likelihood among all WG possible worlds:

� s.t. (L, �, C) = E = arg max
E∈WG

p(E) (4)

As said, for this purpose, there is no need to normalize the probabilities of the explanations
over all possible worlds.

4.3 An example

Consider the following logic program P , encoding in predicate printable/1 a policy to
decide whether a document can be sent to print:

P = { R1 : printable(X) ← a4(X),¬image(X), black white(X)

R2 : printable(X) ← a4(X), table(X)

R3 : printable(X) ← a4(X), image(X), color(X)

F1 : a4(d) }
and the goal G =← printable(d).

8Using (3), the actual probability of an abductive explanation E ∈ WG relative to the set WG of all possible
worlds can be computed using the following normalization:

p′(E) = p(E)∑
E∈WG

p(E)

Future work will deal specifically with the definition of a formal probability distribution for the assessment
of the likelihood of possible worlds.



668 Journal of Intelligent Information Systems (2018) 51:647–672

In a purely deductive setting, G cannot be proven in P , since the available definitions for
concept printable(X) need facts that are not in P to succeed (only a4(d) holds in P ). An
abductive setting is needed to provide an explanation for printable(d). Let us consider the
following:

A = {image/1, text/1, black white/1, table/1}
I = { C1 = or([table(X), text (X), image(X)])

C2 = nand([text (X), color(X)])
C3 = and([image(X), color(X)])
C4 = xor([black white(X), color(X)]) }

p(R1) = p(R2) = p(R3) = p(F1) = 1.0
∀X : p(image(X)) = 0.4, p(text(X)) = 0.8, p(table(X)) = 0.3,

p(color(X)) = 0.2, p(black white(X)) = 0.7
p(C1) = 0.9, p(C2) = 0.6, p(C3) = 0.7, p(C4) = 0.8

The reported strengths mean that in 90% of the cases a document must include at least
one among tables, images or text (constraint C1); in 80% of the cases a document must be
either in black and white or in color (constraint C4); etc.

To prove G, an abductive derivation is started, described in details in the next paragraphs
and schematically summarized in Table 2 as follows. Each row reports a possible explana-
tion, identified by the integer reported in the first column. Column P reports the rule used
in the explanation (each explanation used just one rule from P , plus fact F1). Then, section
A reports, with obvious abbreviations, the abduced literals that make up the explanation,
where: a Ti means that the literal is positive, a Fi means that the literal is negated, and the
subscript expresses the order in which the literals are generated by the associated proof.
Then, section I reports the integrity constraints, specifying if they are satisfied (+) or vio-
lated (−) by the explanation. A blank cell in A or I means that the literal or constraint was
not involved in the explanation. Finally, the last column reports the probability of the world
associated to the explanation. For the sake of readability, the probability of each element in

Table 2 Explanations (possible worlds) for query G =← printable(d)

P A I

#W img tab txt col b w C1 C2 C3 C4

1.0 0.4 0.3 0.8 0.2 0.7 0.9 0.6 0.7 0.8 p

1 R1 F1 T2 F4 T3 + + + 0.0435456

2 R1 F1 T2 F5 T4 T3 + + − − 0.000653184

3 R1 F1 T2 T5 T4 T3 + − − − 0.000435456

4 R1 F1 F2 T3 F4 T5 + + + 0.08128512

5 R1 F1 F2 T3 T4 T5 + − − − 0.01016064

6 R1 F1 F2 F3 F5 T4 − + + 0.0150528

7 R1 F1 F2 F3 T5 T4 − + − − 0.000028224

8 R2 T1 + 0.27

9 R3 T1 F3 T2 F4 + + + + 0.00145152

10 R3 T1 F3 T2 T4 + + + − 0.00084672

11 R3 T1 T3 T2 + − + 0.06912



Journal of Intelligent Information Systems (2018) 51:647–672 669

P , A and I is also reported in the table heading; since all elements in P have probability
1.0, they do not affect the final probability of the explanation.

Suppose case (1) selects rule R1 in P . a4(d) holds in P , so the abductive procedure
proceeds with the next literal ¬image(d). Since image(d) is not in P , and image/1
is abducible, its negation might be assumed by the abductive procedure, provided that
all integrity constraints involving it (only C1 in this case) are satisfied using the consis-
tency derivation. C1 may be satisfied by abducing table(d) (which is possible because
table/1 ∈ A), that does not involve further constraints. To complete the explanation of
the goal using rule R1, black white(d) must be abduced (indeed, black white/1 ∈ A),
involving constraint C4. It is of kind xor, so the only true literal must be black white(d)

and the other color(d) must be false. color/1 is abducible, and abducing ¬color(d) in turn
involves constraint C2, of kind nand, which is automatically satisfied because ¬color(d)

itself falsifies the and. Overall, this explanation (#1) involved (and satisfied) constraints C1,
C2 and C4.

To find other possible worlds, backtracking is forced. The last choice point was
¬color(d), so color(d) is abduced, which involves constraints C2, C3 and C4. It violates
constraints C4 (its negation was abduced to satisfy it) and C3 (because image(d) can-
not be abduced to satisfy the and constraint, having already abduced its negation). Since
text/1 ∈ A, the nand constraint C2 can be satisfied by abucing ¬text (d), which still sat-
isfies constraint C1. So, this explanation (#2) satisfies constraints C1 and C2, and violates
constraints C3 and C4.

The latest choice point to backtrack on is the abduction of ¬text (d). Abducing text (d)

instead violates constraint C2 (for which ¬text (d) had been abduced), but still satisfies
constraint C1. This explanation (#3) satisfies constraint C1 but violates constraints C2, C3
and C4.

The next backtracking is on the abduction of table(d). Abducing ¬table(d) instead
involves the or constraint C1 that, having already abduced ¬image(d), must be satisfied
by abducing text (d). This in turn involves the nand constraint C2, satisfied by abducing
¬color(d), which involves the xor constraint C4, satisfied by abducing black white(d).
Now the abductive proof for ¬image(d) is complete, and proof of rule R1 proceeds to
black white(d), which was just abduced. This completes the explanation (#4), which
involved (and satisfied) constraints C1, C2 and C4.

Backtracking on the latest choice point, i.e. the abduction of black white(d), the
procedure now abduces its negation ¬black white(d), violating constraint C4 but also
preventing the proof of R1. So, this world is discarded.

The procedure backtracks on ¬color(d), now abducing color(d), which violates con-
straint C2 and also involves constraints C3 and C4. C3 (an and constraint) is also violated,
because it would require abduction of image(d) but ¬image(d) was already abduced. C4,
an xor constraint, would be satisfied by abducing ¬black white(d), but this would prevent
the proof of R1, so this world is discarded, as well.

Abducing (by backtracking) black white(d) instead violates constraint C4, but com-
pletes the proof of R1, returning an explanation (#5) that satisfies constraint C1 but violates
constraints C2, C3 and C4.

Backtracking now goes to text (d), changing the abduction to ¬text (d) and thus vio-
lating constraint C1 (because all components in the or are now false), but automatically
satisfying constraint C2 (because at least one component in the nand is false). No more
constraints are involved, so the proof proceeds with the next literal in R1, which is
black white(d). Abducing this literal involves the xor constraint C4, satisfied by abducing



670 Journal of Intelligent Information Systems (2018) 51:647–672

¬color(d), which would involve the nand constraint C2 which, however, is already satis-
fied. The resulting explanation (#6) satisfies constraints C2 and C4 but violates constraint
C1.

Backtracking on ¬color(d) and abducing color(d) violates constraint C4, and further
involves constraints C2 and C3. The and constraint C3 has priority, and would be satisfied
by abducing image(d), but this is impossible, since its negation ¬image(d) was already
abduced in this world, so C3 is violated. On the other hand, C2 was already satisfied by
¬text (d). This explanation (#7) satisfies constraint C2 and violates constraints C1, C3 and
C4.

All possible backtrackings in the proof of rule R1 have been explored, so the procedure
backtracks on the rule itself and selects R2. Again, a4(d) holds in P , so the abductive
procedure proceeds with the next literal table(d). Since table/1 ∈ A, it can be abduced. It
involves only the or constraint C1, and is also sufficent to satisfy it, so the proof of R2 is
complete, returning an explanation (#8) that involves and satisfies only constraint C1.

No backtracking is possible on R2, since backtracking on table(d) and abducing
¬table(d) the proof would fail, and the corresponding world would be impossible.

The procedure selects now R3, where a4(d) is true in P . The next literal to be proven
is image(d), which can be done because image/1 ∈ A. This abduction involves (and
satisfies) constraints C1 and C3. C1 is an or constraint, and thus its evaluation is post-
poned. The and constraint C3 can be satisfied by abducing color(d). This can be done
because color/1 ∈ A, and further involves constraints C2 and C4. They have the same pri-
ority, so they are processed in this order. To satisfy C2, which is a nand constraint, literal
text (d) must be falsified, by abducing ¬text (d). To satisfy C4, which is an xor constraint,
black white(d) must be falsified, by abducing ¬black white(d). It is now the turn of C1,
which is already satisfied by image(d). The proof of image(d) is now complete, and the
proof of rule R3 proceeds to prove color(d). Actually, it was already abduced, so the proof
is complete and returns an explanation (#9) in which all constraints C1, C2, C3 and C4 were
involved and satisfied.

The latest choice point is on the abduction of ¬black white(d). The procedure back-
tracks and abduces black white(d), which now violates constraint C4 and does not involve
any additional constraint. So, the proof of R1 continues and needs color(d), which was
already abduced. This completes the proof, and yields a further explanation (#10) that
satisfies constraints C1, C2 and C3 and violates constraint C4.

The next choice point is on ¬text (d). Changing it to text (d) violates constraint C2
and involves the or constraint C1, also satisfying it. Again, the proof of R3 continues and
terminates positively thanks to the already abduced literal color(d). The explanation (#11)
associated to this proof satisfied constraints C1 and C3 and violated constraint C2.

The last backtracking occurs on the abduced literal color(d). Changing it to ¬color(d)

violates constraint C3, but also prevents the proof of the last literal in R3, making this world
impossible.

So, there are overall 11 possible worlds in which G is proven, whose probability can be
computed using (3) as follows. In the first world E1 = (L1, �1, C1), we have that

L1 = {R1, F1},
�1 = {¬image(d), table(d), black white(d),¬color(d)},



Journal of Intelligent Information Systems (2018) 51:647–672 671

C1 = {C1, C2, C4},
p(L1,�1, C1) = p(R1) · p(F1) ·

·p(¬image(d)) · p(table(d)) · p(black white(d)) · p(¬color(d)) ·
·p(C1) · p(C2) · p(C4) =

= 1.0 · 1.0 · (1 − 0.4) · 0.3 · 0.7 · (1 − 0.2) · 0.9 · 0.6 · 0.8 =
= 1.0 · 1.0 · 0.6 · 0.3 · 0.7 · 0.8 · 0.9 · 0.6 · 0.8 = 0.0435456

In the second world E2 = (L2,�2, C2), we have that
L2 = {R1, F1},

�2 = {¬image(d), table(d), black white(d), color(d),¬text (d)},
C2 = {C1, C2, C3, C4},

p(L2,�2, C2) = p(R1) · p(F1) ·
·p(¬image(d)) · p(table(d)) · p(black white(d)) · p(color(d))

·p(¬text (d)) ·
·p(C1) · p(C2) · p(C3) · p(C4) =

= 1.0 · 1.0 · (1 − 0.4) · 0.3 · 0.7 · 0.2 · (1 − 0.8) · 0.9 · 0.6

·(1 − 0.7) · (1 − 0.8) =
= 1.0 · 1.0 · 0.6 · 0.3 · 0.7 · 0.2 · 0.2 · 0.9 · 0.6 · 0.3 · 0.2 = 0.000653184

and so on, as reported in Table 2. Thus, the abductive explanation having maximum
likelihood is E8, since p(E8) = 0.27 ≥ p(Ei), i = 1, . . . , 11.

5 Conclusions

Reasoning in complex contexts often requires pure deductive reasoning to be supported by
techniques that can cope with incomplete and uncertain data. Abductive inference allows
to guess information that has not been observed, as long as it is consistent with given con-
straints. The abductive setting naturally calls for probability handling: first, because there
is a need to assess the reliability of the abduced information; second, because often the
constraints are not universally valid laws, but hold with some degree of certainty.

This paper introduced the PEALP (Probabilistic Expressive Abductive Logic Program-
ming) framework, an extension of the traditional ALP framework that can handle more
complex kinds of constraints and allows a fully probabilistic approach involving all of
its components. It provided computational procedures to handle the extended frame-
work. Based on a ‘possible worlds’ perspective, these procedures return the most reliable
explanation of a given goal.

Future work will concern an investigation of the properties of the proposed proof pro-
cedure, a more formal definition of its semantics (especially concerning the probabilistic
setting), and running experiments aimed at assessing its practical performance. Also, it
would be interesting to further extend the approach to integrity constraints of any kind,
obtained by nested combinations of the generalized constraints proposed in this paper, in
order to obtain constraints that are full-fledged logical expressions. Another direction for
future work is the optimization of the proposed procedure in order to reduce the compu-
tational burden required to carry out abduction. Finally, we will investigate the possibility



672 Journal of Intelligent Information Systems (2018) 51:647–672

of learning PEALPs using supervised Machine Learning approaches, and exploiting the
learned models for classification tasks.

References

Alberti, M., Bellodi, E., Cota, G., Lamma, E., Riguzzi, F., Zese, R. (2016). Probabilistic constraint logic
theories. In Hommersom, A., & Abdallah, S. (Eds.) Proceedings of the 3rd International Workshop
on Probabilistic Logic Programming (PLP-2016), co-located with 26th International Conference on
Inductive Logic Programming (ILP 2016), CEUR Workshop Proceedings, (Vol. 1661 pp. 15-28).

Arvanitis, A., Muggleton, S.H., Chen, J., Watanabe, H. (2006). Abduction with stochastic logic programs
based on a possible worlds semantics. In Short Paper Proceedings of the 16th International Conference
on Inductive Logic Programming (ILP-06), University of Coruña.

Christiansen, H. (2008). Implementing probabilistic abductive logic programming with constraint handling
rules. In Schrijvers, T., & Frühwirth, T. (Eds.) Constraint handling rules, lecture notes in computer
science, vol 5388, springer (pp. 85-118).

Clark, K.L. (1978). Negation as failure. In Gallaire, H., & Minker, J. (Eds.) Logic and Databases, Plenum
Press (pp. 293-322).

De Raedt, L., & Kersting, K. (2008). Probabilistic inductive logic programming. In Probabilistic inductive
logic programming, springer, lecture notes in artificial intelligence, (Vol. 4911 pp. 1-27).

De Raedt, L., Kimmig, A., Toivonen, H. (2007). Problog: A probabilistic prolog and its application in link
discovery. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-
07) (pp. 2462–2467).

Denecker, M., & Schreye, D.D. (1992). Sldnfa: An abductive procedure for normal abductive programs. In
Proceedings of ICSLP, MIT Press (pp. 700–868).

Fierens, D., Van den Broeck, G., Bruynooghe, M., De Raedt, L. (2012). Constraints for probabilistic logic
programming. In Roy, D., Mansinghka, V., Goodman, N. (Eds.) Proceedings of the NIPS probabilistic
programming workshop.

Fung, T.H., & Kowalski, R.A. (1997). The IFF proof procedure for abductive logic programming. The Journal
of Logic Programming, 33, 151–165.

Getoor, L.C. (2002). Learning statistical models from relational data. PhD thesis, Stanford, CA, USA,
aAI3038093.

Kakas, A., & Mancarella, P. (1990a). Abductive logic programming. In Proceedings of NACLP workshop on
non-monotonic reasoning and logic programming.

Kakas, A., & Mancarella, P. (1990b). Database updates through abduction. In Proceedings of the 16th VLDB,
Morgan Kaufmann (pp. 650–661).

Kakas, A.C., & Mancarella, P. (1990c). On the relation of truth maintenance and abduction. In Proceedings
of the 1st pacific rim international conference on artificial intelligence.

Kakas, A.C., Kowalski, R.A., Toni, F. (1992). Abductive logic programming. Journal of Logic and
Computation, 2, 719–770.

Kate, R.J., & Mooney, R.J. (2009). Probabilistic abduction using markov logic networks. In Proceedings of
the IJCAI-09 Workshop on Plan, Activity and Intent Recognition (PAIR-09), Pasadena, CA.

Lloyd, J. (1987). Foundations of Logic Programming, 2nd edn. Springer.
Muggleton, S. (1996). Stochastic logic programs De Raedt, L. (Ed.), (Vol. 32.
Nilsson, N. (1986). Probabilistic logic. Artificial Intelligence, 28, 71–87.
Poole, D. (1993). Probabilistic horn abduction and bayesian networks. Artificial Intelligence, 64(1), 81–129.
Raghavan, S.V. (2011). Bayesian abductive logic programs: a probabilistic logic for abductive reasoning.

In Walsh, T. (Ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI-11) (pp. 2840-2841).

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107–136.
Rotella, F., & Ferilli, S. (2013). Probabilistic abductive logic programming using possible worlds. In Pro-

ceedings of the 10th Italian Convention on Computational Logic (CILC-2013), Central Europe (CEUR)
Workshop Proceedings, (Vol. 1068 pp. 131-145).

Sato, T. (2002). EM Learning for symbolic-statistical models in statistical abduction. In Progress in discovery
science ,final report of the japanese discovery science project, Springer (pp. 189-200).

Vennekens, J., Verbaeten, S., Bruynooghe, M. (2004). Logic programs with annotated disjunctions. In
Demoen, B., & Lifschitz, V. (Eds.) Programming, Logic (pp. 431-445). Berlin: Springer.


	Extending expressivity and flexibility of abductive logic programming
	Abstract
	Abstract
	Introduction
	(Probabilistic) abductive logic programming
	Logic programming basics
	Abductive logic programming framework
	Related work

	Expressive abductive logic programming
	Generalized integrity constraints
	Extended abductive procedure
	Properties of EALP

	Probabilistic expressive abductive logic programming
	Probabilistic framework
	Computational procedures
	An example

	Conclusions
	References


