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Abstract

Odd-dimensional non anti-invariant slant submanifolds of an α-
Kenmotsu manifold are studied. We relate slant immersions into a Kähler
manifold with suitable slant submanifolds of an α-Kenmotsu manifold.
More generally, in the framework of Chinea-Gonzalez, we specify the type of
the almost contact metric structure induced on a slant submanifold, then
stating a local classification theorem. The case of austere immersions is
discussed. This helps in proving a reduction theorem of the codimension.
Finally, slant submanifolds which are generalized Sasakian space-forms are
described.
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1 Introduction

The theory of slant submanifolds, started by B. Y. Chen in 1990 in the context
of Hermitian Geometry, has been quickly developed in the last two decades.

In 1996, Lotta introduced the concept of a slant submanifold of an almost
contact metric (a.c.m.) manifold, showing that there are two types of non anti-
invariant slant submanifolds, depending on the position of the Reeb vector field
ξ of the ambient space ([16]).
More precisely, if N is a non anti-invariant submanifold of an a.c.m. manifold M
and N has dimension n, one has: n is odd (resp. n is even) if and only if ξ is
tangent (resp. ξ is orthogonal) to N . Moreover, if n is odd, then N inherits from
M an a.c.m. structure.

Slant immersions in a contact metric manifold, in particular in a Sasakian
manifold, have been intensively studied ([3, 17]). Further results are known when
the structure of the ambient space is a particular type, namely it is cosymplectic,
or Kenmotsu or trans-Sasakian ([14, 12, 13] and References therein).
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In this paper we relate immersions in almost Hermitian (a.H.) manifolds with
submanifolds of a.c.m. manifolds.
Actually, starting by a slant submanifold of an a.H. manifold M̂ , we construct
a whole family of slant immersions in suitable a.c.m. manifolds, with the same
slant angle. The ambient spaces are warped product manifolds I ×λ M̂ , I being
an open interval of R and λ a positive real-valued smooth function, endowed with
an a.c.m. structure naturally induced by the a.H. structure on M̂ . In particular,
if M̂ is a Kähler manifold, then I×λ M̂ turns out to be an α-Kenmotsu manifold,
namely I ×λ M̂ falls in the Chinea-Gonzalez class C5. So, we provide explicit
examples of odd-dimensional slant submanifolds of a C5-manifold, arising by the
ones given in [4].

More generally, one considers a non anti-invariant slant submanifold (N, f) of
a C5-manifold M such that ξ is tangent to N . We specify the Chinea-Gonzalez
class of N , which is endowed with the a.c.m. structure induced by M . Indeed,
N turns out to be a C2 ⊕C5-manifold. This allows us to state that N is, locally,
a warped product ] − ε, ε[×λF , ε > 0, F being an almost Kähler manifold and
λ : ]− ε, ε[→ R a smooth positive function. Under suitable conditions, involving
the second fundamental form of the immersion, one obtains that N is a C5-
manifold.

We also discuss the case of minimal, in particular austere, slant immersion.
This allows us to prove a reduction theorem of codimension for submanifolds of
the hyperbolic space.

Finally, we locally classify those submanifolds which are generalized Sasakian
space-forms.

In this article all manifolds are assumed to be connected.

2 Preliminaries

Let (M̂, Ĵ , ĝ) be an a.H. manifold and f̂ : (N̂ , ĝ′) → (M̂, ĝ) an isometric immer-

sion. For any x ∈ N̂ and X ∈ TxN̂ , we make use of the identifications x ≡ f̂(x)

and X ≡ (f̂∗)xX, where (f̂∗)x is the tangential map.

For any X ∈ TN̂ we put ĴX = P̂X + F̂X, where P̂X and F̂X denote the tan-
gential and the normal components of ĴX, respectively. Also, for any V ∈ T⊥N̂ ,
we put ĴV = t̂V + n̂V , t̂V , n̂V being the tangential and the normal components
of ĴV . This allows us to define smooth maps P̂ : TN̂ → TN̂ , F̂ : TN̂ → T⊥N̂ ,
t̂ : T⊥N̂ → TN̂ and n̂ : T⊥N̂ → T⊥N̂ inducing linear maps on each fibre. Since
(Ĵ , ĝ) is an a.H. structure, for any X,Y ∈ TN̂ , one has ĝ′(P̂X, Y ) = −ĝ′(X, P̂Y ).

It follows that, for any x ∈ N̂ , Q̂ = P̂ 2 : TxN̂ → TxN̂ is a self-adjoint endomor-
phism, its non-zero eigenvalues have even multiplicity and belong to [−1, 0[.

The tensor fields of type (1, 1) on N̂ determined by P̂ , Q̂ are denoted by the same
symbol.

For any non-zero vector X ∈ TxN̂ , x ∈ N̂ , the Wirtinger angle of X is the
angle θ(X) ∈ [0, π2 ] between ĴX and TxN̂ . The immersion f̂ : N̂ → M̂ is said to
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be a slant immersion if the angle θ(X) is a constant θ, that is θ does not depend

on the choice of X and x ∈ N̂ . In this case, θ is called the slant angle of N̂ in M̂
([5]). One says that (N̂ , f̂) is a slant submanifold of M̂ and adopts the notation

sla(N̂) = θ. If sla(N̂) = θ 6= π
2 , then the dimension of N̂ is even and ( 1

cos θ P̂ , ĝ
′)

is an a.H. structure on N̂ .
Holomorphic submanifolds and totally real submanifolds are nothing but slant
submanifolds with θ = 0 and θ = π

2 , respectively. A slant submanifold is called
proper if it is neither holomorphic nor totally real.

Now, let (M,ϕ, ξ, η, g) be an a.c.m. manifold and f : (N, g′) → (M, g) an
isometric immersion. For any X ∈ TN we put ϕX = PX + FX, where PX and
FX denote the tangential and the normal components of ϕX, respectively. Also,
for any x ∈ N , V ∈ T⊥x N we put ϕV = tV +nV , tV ∈ TxN and nV ∈ T⊥x N . So,
one defines smooth maps P : TN → TN , F : TN → T⊥N , t : T⊥N → TN and
n : T⊥N → T⊥N inducing linear maps on each fibre. In particular, P determines
a tensor field on N , denoted again by P , that satisfies g′(PX, Y )+g′(X,PY ) = 0.
Putting Q = P 2, at any x ∈ N , Q is a self-adjoint endomorphism whose non-zero
eigenvalues belong to [−1, 0[ and have even multiplicity.

As in [16], the immersion f : N →M is said to be a slant immersion (briefly, N
is slant in M) if, for any x ∈ N , X ∈ TxN such that X, ξ are linearly independent,
the Wirtinger angle θ(X) ∈ [0, π2 ] between ϕX and TxN is a constant θ. In this
case, one adopts the notation sla(N) = θ and θ is called the slant angle of N in
M . In particular, if θ = 0 (resp. θ = π

2 ), then (N, f) turns out to be an invariant
(resp. anti-invariant) submanifold of M .
Moreover, if θ 6= π

2 and ξ is tangent to N , putting ϕ′ = 1
cos θP , η′ = f∗η,

ξ′ = (η′)], one easily proves that (ϕ′, ξ′, η′, g′) is an a.c.m. structure, called the
a.c.m. structure induced on N by f .

In order to emphasize the link between the two concepts of a slant immersion,
we focus on a particular class of a.c.m. manifolds strictly related to a.H. manifolds
([10]).

Given an a.H. manifold (M̂, Ĵ , ĝ), an open interval I ⊂ R and a smooth

function λ : I → R, λ > 0, we consider the a.c.m. structure (ϕ, ξ, η, gλ) on I × M̂
such that

ϕ(a
∂

∂t
,X) = (0, ĴX), η(a

∂

∂t
,X) = a, a ∈ F(I × M̂), X ∈ Γ(TM̂)

ξ = (
∂

∂t
, 0), gλ = π∗(dt⊗ dt) + λ2σ∗(ĝ),

(2.1)

π : I×M̂ → I, σ : I×M̂ → M̂ denoting the canonical projections. Note that gλ is
the warped product metric of the Euclidean metric g0 and ĝ. The a.c.m. manifold
I×λ M̂ = (I×M̂, ϕ, ξ, η, gλ) is called the warped product manifold of (I, g0) and

(M̂, Ĵ , ĝ) by λ. We identify any vector field X on M̂ with (0, X) ∈ Γ(T (I × M̂)).

The Levi-Civita connections ∇ of I ×λ M̂ and ∇̂ of M̂ are related by

∇XY = ∇̂XY − gλ(X,Y )grad log λ, (2.2)
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for any vector fields X,Y on M̂ . Moreover, the following relations are well-known

∇ξξ = 0, ∇ξX = ∇Xξ = ξ(log λ)X, X ∈ Γ(TM̂). (2.3)

Any warped product manifold I ×λ M̂ belongs to the Chinea-Gonzalez class⊕
1≤i≤5

Ci, briefly denoted by C1−5. In particular, if (M̂, Ĵ , ĝ) is a Kähler manifold,

then I ×λ M̂ falls in the Chinea-Gonzalez class C5.
In any dimensions, 2m+ 1, C5-manifolds are characterized by

(∇Xϕ)Y = − 1

2m
δη(g(ϕX, Y )ξ − η(Y )ϕX), (2.4)

and are called α-Kenmotsu manifolds, α = − 1
2mδη. If α ≡ 1, one obtains Ken-

motsu manifolds ([15]).
A local description of α-Kenmotsu manifolds is given in [10, 21].

Let (M,ϕ, ξ, η, g) be an α-Kenmotsu manifold, with dimM = 2m + 1 ≥ 5, and
consider the integrable distribution D associated with the subbundle kerη of
TM . Then D defines a spheric foliation, namely each leaf N of D is an extrinsic
sphere of M , with mean curvature vector field H = −αξ|N , α being constant
on N . Furthermore, M is, locally, almost contact isometric to a warped product
manifold ]− ε, ε[×λM̂ , M̂ being a Kähler manifold and λ : ]− ε, ε[→ R a smooth
function, λ > 0.

Let (M̂, Ĵ , ĝ) be an a.H. manifold, f̂ : (N̂ , ĝ′) → (M̂, ĝ) an isometric immer-
sion, I ⊂ R an open interval and λ : I → R a smooth function, λ > 0. The
map

fλ : I × N̂ → I × M̂, fλ(t, x) = (t, f̂(x)), t ∈ I, x ∈ N̂ (2.5)

is an isometric immersion with respect to the warped product metrics g′λ =

π∗(dt⊗ dt) + λ2σ∗(ĝ′), gλ = π∗(dt⊗ dt) + λ2σ∗(ĝ). Note that fλ is a particular

warped product immersion ([7, 18]), and (I×λN̂ , fλ) is a Riemannian submanifold

of the a.c.m. manifold I ×λ M̂ . If λ ≡ 1, (I × N̂ , f1) is studied in [16]. For any

(t, x) ∈ I × N̂ we use the identification T⊥(t,x)(I ×λ N̂) ≡ T⊥x N̂ and denote by

AV , (Aλ)V the Weingarten operators of (N̂ , f̂), (I ×λ N̂ , fλ) with respect to any
normal direction V . Analogous notation is used for the second fundamental forms
h, hλ and the mean curvature vector fields H, Hλ.
By direct calculus, applying the Gauss and Weingarten equations, (2.1), (2.2)

and (2.3), for any X,Y ∈ T (I × N̂) and V ∈ T⊥N̂ , one obtains:

(Aλ)VX = AV (X − η(X)ξ),

hλ(X,Y ) = h(X − η(X)ξ, Y − η(Y )ξ), (2.6)

Hλ =
n

n+ 1

1

λ2
H,

where n = dim N̂ .
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3 A class of odd-dimensional slant submanifolds of C1−5-manifolds

In this section, we consider an isometric immersion f̂ : (N̂ , ĝ′) → (M̂, Ĵ , ĝ), an
open interval I ⊂ R, a smooth function λ : I → R, λ > 0 and the warped product
immersion fλ : I ×λ N̂ → I ×λ M̂ given in (2.5). By direct calculus, using (2.1),

we obtain that the vector fields P̂ , Pλ associated with f̂ , fλ, respectively, are
related by

PλX = P̂ (X − η(X)ξ), X ∈ Γ(T (I × N̂)). (3.1)

Analogously, the normal bundle-valued 1-forms F̂ , Fλ associated with f̂ , fλ sat-
isfy

FλX = F̂ (X − η(X)ξ), X ∈ Γ(T (I × N̂)). (3.2)

Given (t, x) ∈ I×N̂ , we consider a vector X ∈ T(t,x)(I×N̂) such that X, ξ are lin-

early independent. Thus, X−η(X)ξ is a non-zero vector in TxN̂ . By (2.1), (3.1),
the Wirtinger angles θλ(X) and θ(X − η(X)ξ) satisfy

cos θλ(X) = cos θ(X − η(X)ξ). (3.3)

It follows that f̂ is a slant immersion with sla(N̂) = θ if and only if fλ is a slant

immersion and sla(I ×λ N̂) = θ.
Formulas (2.6) allow us to produce examples of suitable slant immersions fλ,

depending on the behavior of the second fundamental form of f̂ . In particu-
lar, applying (2.3), we observe that the second fundamental form hλ satisfies

hλ(X, ξ) = 0, for any X ∈ Γ(T (I × N̂)). It follows that fλ cannot be totally
umbilical, unless it is totally geodesic. According to [23], fλ is contact totally
umbilical if there exists a normal vector field W such that

hλ(X,Y ) = {gλ(X,Y )− η(X)η(Y )}W. (3.4)

It is easy to verify that W = n+1
n Hλ, n = dim N̂ .

By (2.6) one gets the following equivalences:

i) (N̂ , f̂) is totally umbilical if and only if (I ×λ N̂ , fλ) is contact totally
umbilical.

ii) (N̂ , f̂) is minimal if and only if (I ×λ N̂ , fλ) is minimal.

iii) (N̂ , f̂) is totally geodesic if and only if (I ×λ N̂ , fλ) is totally geodesic.

Recalling that an immersed submanifold N of a Riemannian manifold (M, g) is
said to be austere if, for any V ∈ T⊥N , the set of eigenvalues of AV is invariant
under multiplication by -1, applying (2.6), we easily prove the equivalence:

iv) (N̂ , f̂) is an austere submanifold of M̂ if and only if (I ×λ N̂ , fλ) is austere

in I ×λ M̂ .
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Now, we assume that (N̂ , f̂) is a slant submanifold with sla(N̂) = θ 6= π
2 and

consider the a.H. structure (J ′ = 1
cos θ P̂ , ĝ

′) on N̂ . By (3.1), one has that the

a.c.m. structure (ϕ′λ = 1
cos θPλ, ξ

′ = ξ|I×N̂ , η
′ = f∗λη, g

′
λ) on I × N̂ is just of the

a.c.m. structure defined in (2.1), which is associated with (J ′, ĝ′). So, I ×λ N̂ is

the warped product manifold of (I, g0) and (N̂ , J ′, ĝ′). It follows that the Gray-

Hervella class of (N̂ , J ′, ĝ′) determines the Chinea-Gonzalez class of I×λ N̂ ([10]).

In particular, if (M̂, Ĵ , ĝ) is a Kähler manifold, we know that (J ′, ĝ′) is an almost

Kähler structure, namely (N̂ , J ′, ĝ′) falls in the Gray-Hervella class W2, so that

I×λ N̂ is a C2⊕C5-manifold. Moreover, if (N̂ , f̂) is Kählerian ([5]), then I×λ N̂
is a C5-manifold. We remark that if dim N̂ = 2, (N̂ , J ′, ĝ′) is a Kähler manifold,

equivalently (N̂ , f̂) is Kählerian, thus I ×λ N̂ is a C5-manifold. This fits with
next Theorems 1, 2 holding in a more general context.

We end this section giving some explicit examples, where the first two of them
are obtained considering the main examples of slant immersions into the Kähler
manifold (R2m, J0, g0), (J0, g0) being the canonical Hermitian structure on R2m

([3, 4]). The last two examples are obtained starting by an austere submanifold
of (R2m, g0) (m = 2, m = 4) endowed with a suitable almost complex structure.

Example 1. For any k ∈ R, k > 0, the map f̂ : R4 → R8 acting as

f̂(x1, x2, x3, x4) = (x1, x2, k sinx3, k sinx4, kx3, kx4, k cosx3, k cosx4)

defines a slant submanifold with sla(R4) = π
4 , and (R4, f̂) is a Kählerian sub-

manifold.
Hence, for any smooth function λ : I → R, λ > 0, the map fλ : I ×R4 → I ×R8,
fλ(t, x) = (t, f(x)), defines a slant submanifold of the C5-manifold I ×λ R8 with
slant angle π

4 and the a.c.m. manifold I ×λ R4 falls in the class C5.

Example 2. For any θ ∈ [0, π2 [, the map f̂ : R4 → R8 acting as

f̂(x1, x2, x3, x4) = (x1, 0, x3, 0, x2 cos θ, x2 sin θ, x4 cos θ, x4 sin θ)

defines a totally geodesic slant submanifold with sla(R4) = θ. The metric on R4

induced by f̂ is the Euclidean metric g0 and (R4, J ′ = 1
cos θ P̂ , g0) is a Kähler ma-

nifold. So, for any smooth function λ, λ > 0, fλ is a totally geodesic immersion
and I ×λ R4 is a C5-manifold.

Example 3. The map f̂ : R2 → R4 acting as

f̂(x1, x2) = (x1, x2, ex
1

cosx2, ex
1

sinx2)

defines an holomorphic submanifold of the Kähler manifold (R4, Ĵ , g0), Ĵ being

the almost complex structure defined by Ĵ(y1, y2, y3, y4) = (−y2, y1,−y4, y3). We

know that (∇̂′X F̂ )Y = n̂h(X,Y ) − h(X, P̂Y ) for any X,Y tangent to R2, ∇̂′
being the Levi-Civita connection of (R2, f̂) (see [4], Chapter II, formula (3.3)).
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Since F̂ ≡ 0, it follows that h(X, P̂Y ) = n̂h(X,Y ) = h(P̂X, Y ) . Thus, for any

normal vector V , it is possible to verify that AV ◦ P̂ = −P̂ ◦ AV . This implies
that (R2, f̂) is an austere submanifold. By direct computation we obtain that the

second fundamental form h does not vanish, namely (R2, f̂) is not totally geodesic.
Hence, for any smooth function λ : I → R, λ > 0, the map fλ is an austere, but
not totally geodesic, invariant immersion into the C5-manifold I ×λ R4.

Example 4. Let f̂ : R4 → R8 be the map acting as

f̂(x1, x2, x3, x4) = (x1, x2, ex
1

cosx2, ex
1

sinx2, 0, x4, 0, x3).

This map defines an holomorphic submanifold of the Kähler manifold (R8, Ĵ , g0),

Ĵ acting as

Ĵ(y1, y2, y3, y4, y5, y6, y7, y8) = (−y2, y1,−y4, y3,−y7,−y8, y5, y6).

As in Example 3, the submanifold (R4, f̂) is austere and f̂ induces a Kähler
structure on R4. Hence, for any smooth function λ : I → R, λ > 0, the map
fλ : I × R4 → I × R8 is an austere invariant immersion into the C5-manifold
I ×λ R8.

4 Slant submanifolds of a C5-manifold

The aim of this section is to determine the type of the a.c.m. structure induced
on an odd-dimensional slant submanifold of a C5-manifold. This allows us to give
a local description of such submanifolds.

Let f : N → M be an isometric immersion in an α-Kenmotsu manifold
(M,ϕ, ξ, η, g). Assume that ξ is tangent to N and, whenever there is no dan-
ger of confusion, denote again by ξ the restriction ξ|N . Also, we denote by η the
1-form f∗η, by g the induced metric on N and write α instead of α ◦ f .
The maps P , F , t and n associated with f satisfy the following relations

P 2 + tF = −ITN + η ⊗ ξ, P t+ tn = 0,

FP + nF = 0, F t+ n2 = −IT⊥N .
(4.1)

Applying (2.4), the Gauss and Weingarten equations, one gets

∇′Xξ = α(X − η(X)ξ), h(X, ξ) = 0,

(∇′XP )Y = AFYX + th(X,Y ) + α(g(PX, Y )ξ − η(Y )PX),
(4.2)

where ∇′ is the Levi-Civita connection of N , h is the second fundamental form
and AFY the Weingarten operator with respect to FY .

For any X,Y ∈ Γ(TN), V ∈ Γ(T⊥N) one puts

(∇XF )Y = ∇⊥XFY − F (∇′XY ),

(∇Xt)V = ∇′XtV − t(∇⊥XV ),

(∇⊥Xn)V = ∇⊥XnV − n(∇⊥XV ),
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∇⊥ denoting the normal connection. Thus, applying (2.4), the Gauss and Wein-
garten equations, we obtain

(∇XF )Y = nh(X,Y )− h(X,PY )− αη(Y )FX,

(∇Xt)V = AnVX − P (AVX) + αg(FX, V )ξ, (4.3)

(∇⊥Xn)V = −h(X, tV )− F (AVX).

Now, we assume that (N, f) is a slant submanifold with sla(N) = θ. Since
Q = P 2 = (− cos2 θ)(ITN − η ⊗ ξ), one gets

g(PX,PY ) = (cos2 θ)g(ϕX,ϕY ), g(FX,FY ) = (sin2 θ)g(ϕX,ϕY ). (4.4)

We also recall the relation ([13])

(∇′XQ)Y = α(cos2 θ)(g(X,Y )ξ − 2η(X)η(Y )ξ + η(Y )X). (4.5)

Proposition 1. Let (N, f) be a slant submanifold of an α-Kenmotsu manifold
(M,ϕ, ξ, η, g) such that ξ is tangent to N . For any X,Y ∈ Γ(TN) we have

AFPYX + P (AFYX) + th(X,PY ) + Pth(X,Y ) = 0. (4.6)

Proof: By (4.2), (4.4), for any X,Y ∈ Γ(TN) we have

(∇′XQ)Y =(∇′XP )PY + P ((∇′XP )Y ) = AFPYX + th(X,PY ) + P (AFYX)

+ Pth(X,Y ) + α(cos2 θ)(g(X,Y )ξ − 2η(X)η(Y )ξ + η(Y )X).

Hence, the statement follows by (4.5).

Remark 1. It is easy to check that (4.6) is equivalent to

AFPYX +AFPXY −AFY PX −AFXPY = 0, (4.7)

for any X,Y ∈ Γ(TN).

Theorem 1. Let (N, f) be a slant submanifold of an α-Kenmotsu manifold
(M,ϕ, ξ, η, g) such that sla(N) = θ 6= π

2 . Assume that dimN = 2r + 1 ≥ 5.
Then the a.c.m. manifold (N,ϕ′ = 1

cos θP, ξ, η, g) belongs to the class C2 ⊕ C5.
Furthermore, the manifold N is, locally, almost contact isometric to a warped
product manifold ] − ε, ε[×λF , ε > 0, F being an almost Kähler manifold and
λ : ]− ε, ε[→ R a smooth function, λ > 0.

Proof: Firstly, we remark that (N,ϕ′, ξ, η, g) is a C2 ⊕ C5-manifold if and only
if

dη = 0, Lξϕ′ = 0, dΦ′ = βη ∧ Φ′, (4.8)

where Φ′ is the fundamental 2-form, namely Φ′(X,Y ) = g(X,ϕ′Y ), Lξ is the Lie
derivative with respect to ξ, and β is a smooth function. Moreover, (4.8) implies
that β = − 1

r δη ([10]).
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Obviously, η is closed and (4.2) gives

(∇′Xϕ′)Y =
1

cos θ
(AFYX + th(X,Y )) + α(g(ϕ′X,Y )ξ − η(Y )ϕ′X).

Hence, given X,Y, Z ∈ Γ(TN), we have

3dΦ′(X,Y, Z) = − σ
(X,Y,Z)

g((∇′Xϕ′)Y, Z) = 2α σ
(X,Y,Z)

η(X)g(Y, ϕ′Z),

where σ represents the cyclic sum on X,Y, Z. It follows that dΦ′ = 2αη ∧ Φ′.
By (4.2), we also get

(Lξϕ′)X = (∇′ξϕ′)X −∇′ϕ′Xξ + ϕ′(∇′Xξ) = 0.

So, (N,ϕ′, ξ, η, g) is a C2 ⊕ C5-manifold. The last part of the statement follows
by Theorem 3.1 and Proposition 3.2 [10].

Remark 2. Applying (4.2), it is easy to check that a slant submanifold (N, f)
as in Theorem 1 is a C5-manifold if and only if, for any X,Y ∈ TN , AFXY =
AFYX. This agrees with a result given in [13].
In particular, if sla(N) = θ = 0, then F vanishes and N is in the class C5.

Proposition 2. Let (N, f) be a slant submanifold of an α-Kenmotsu manifold
(M,ϕ, ξ, η, g) such that sla(N) = θ 6= π

2 and dimN = 2r + 1 ≥ 5. If, for
any X tangent to N , AFX ◦ P = P ◦ AFX , then AFX = 0, for any X, and
(N,ϕ′ = 1

cos θP, ξ, η, g) is a C5-manifold.

Proof: Let D′ be the integrable distribution on N associated with the subbundle
kerη′ of TN , η′ = f∗η. By (4.2) it follows that D′ defines a spheric foliation.

Let N ′ be a leaf of D′ and consider the a.H. structure (J = ϕ′|TN ′ , g′) induced
on N ′ by the a.c.m. structure on N . By Theorem 1, we know that (N ′, J, g′) is
an almost Kähler manifold and, using (4.2), we obtain

(∇′′XJ)Y =
1

cos θ
(AFYX + th(X,Y )), X, Y ∈ Γ(TN ′) (4.9)

∇′′ denoting the Levi-Civita connection of (N ′, g′).
Let X,Y be vector fields on N ′. Since (N ′, J, g′) is almost Kähler, the covari-

ant derivative ∇′′J satisfies (∇′′XJ)Y + (∇′′JXJ)JY = 0 and, applying (4.9), we
have

AFYX +AFJY JX + th(X,Y ) + th(JX, JY ) = 0.

Taking the skew-symmetric component, we obtain

AFYX −AFXY +AFJY JX −AFJXJY = 0.

Hence, using the hypothesis, we have

AFY JX −AFXJY −AFJYX +AFJXY = J(AFYX −AFXY
+AFJY JX −AFJXJY ) = 0.
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By (4.7) it follows AFXJY = AFJXY . Thus, for any X,Y, Z ∈ TN ′, one
has g′(Jth(Y,Z), X) = g(h(Y,Z), FJX) = g′(AFJXY, Z) = g′(AFXJY, Z) =
−g′(th(JY, Z), X), so that

th(JY, Z) = −Jth(Y,Z) = th(JZ, Y ), Y, Z ∈ TN ′. (4.10)

On the other hand, the hypothesis implies, for any X,Y, Z, g′(th(JY, Z), X) =
−g′(AFXJY, Z) = g′(AFXY, JZ) = −g′(th(Y, JZ), X), and using (4.10) we get
th(JY, Z) = 0, for any Y,Z ∈ TN ′.
Therefore, considering X ∈ TN ′, the Weingarten operator AFX vanishes, since
g′(AFXY,Z) = −g′(th(Y,Z), X) = 0.

Remark 3. Let (N, f) be a slant submanifold as in Proposition 2 and assume that
N is contact totally umbilical, namely h(X,Y ) = 2r+1

2r (g(X,Y ) − η(X)η(Y ))H,
where dimN = 2r + 1 and H is the mean curvature vector field. Since all the
Weingarten operators commute with P , N is a C5-manifold and tH = 0. Indeed,
for any X ∈ TN , g(tH,X) = − 1

2r+1 traceAFX = 0.

Theorem 2. Let (N, f) be a slant submanifold of an α-Kenmotsu manifold
(M,ϕ, ξ, η, g) such that sla(N) = θ 6= π

2 and dimN = 3. Then the a.c.m. ma-
nifold (N,ϕ′ = 1

cos θP, ξ, η, g), which is in the class C5, is, locally, almost contact
isometric to a warped product manifold ] − ε, ε[×λF , ε > 0, F being a Kähler
manifold and λ : ]− ε, ε[→ R a smooth function, λ > 0.

Proof: We prove that, for any X,Y tangent to N , one has AFXY = AFYX.
In fact, by (4.7) we have AFXPX = AFPXX, X ∈ TN . Thus, with respect to a
local orthonormal frame {e1, e2 = ϕ′e1, ξ} on N , we have AFe1e2 = AFe2e1.
Since AFeiξ = 0, i = 1, 2, we obtain AFXY = AFYX for any X,Y tangent to N .
Therefore (4.2) gives

(∇′Xϕ′)Y = (α ◦ f)(g(ϕ′X,Y )ξ − η(Y )ϕ′X).

Since the function α ◦ f satisfies d(α ◦ f)∧ f∗η = 0, the C5-manifold N is locally
realized as a warped product manifold ] − ε, ε[×λF , F being a Kähler manifold
([10]).

5 Particular types of slant immersions

We are going to state some results on slant submanifolds (N, f) of an α-Kenmotsu
manifold (M,ϕ, ξ, η, g) involving the behavior of the second fundamental form.
To this aim, one considers the vector subbundle µ of T⊥N whose fibre at any
x ∈ N is the orthogonal complement to F (TxN) in T⊥x N , namely TxM = TxN ⊕
F (TxN) ⊕ µx. Note that µ is ϕ-invariant and any normal vector field V is a
section of µ if and only if tV = 0. If sla(N) = θ 6= 0, putting dimM = 2m + 1,
dimN = 2r + 1, one has rankF (TN) = 2r and rankµ = 2(m − 2r). Hence, µ is
trivial if and only if m = 2r.
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Theorem 3. Let (N, f) be a slant submanifold of an α-Kenmotsu manifold such
that dimN = 2r + 1 and sla(N) = θ 6= π

2 . Assume that the mean curvature
vector field H ∈ Γ(µ) and, for any X ∈ Γ(TN), ∇⊥XH ∈ Γ(µ). Then (N, f) is
minimal.

Proof: We observe that the hypothesis implies nH = ϕH ∈ Γ(µ). By (4.3)
and (4.4), for any vector fields X,Y on N , we have

g((∇XF )Y, nH) = g(h(X,Y ), H) + g(nh(X,PY ), H),

g((∇⊥Xn)H,FY ) = (− sin2 θ)g(h(X,Y ), H).

Moreover, by direct calculus and the hypothesis, we obtain

g((∇XF )Y, nH) + g((∇⊥Xn)H,FY ) = 0.

It follows that

g(H, (cos2 θ)h(X,Y ) + nh(X,PY )) = 0, X, Y ∈ Γ(TN). (5.1)

Let {e1, . . . , er, ϕ′e1, . . . , ϕ′er, ξ} be a local orthonormal frame on N . By
(5.1) and (4.2) we get

0 =

r∑
i=1

{g(H, (cos2 θ)h(ei, ei) + nh(ei, P ei))

+ g(H, (cos2 θ)h(ϕ′ei, ϕ
′ei) + nh(ϕ′ei, ϕ

′Pei))} = (2r + 1)(cos2 θ)g(H,H).

Since θ 6= π
2 , we obtain H ≡ 0.

Corollary 1. Let (N, f) be a slant submanifold as in Theorem 3. Assume that
H ∈ Γ(µ) and AnH = P ◦AH . Then (N, f) is minimal.

Proof: If H ∈ Γ(µ), applying (4.3), for any X,Y ∈ Γ(TN) we obtain

g(t(∇⊥XH), Y ) = −g(∇⊥XH,FY ) = g((∇XF )Y,H)

= g(P (AHX)−AnHX,Y ).

Hence, we have t(∇⊥XH) = P (AHX) − AnHX = 0, so the statement follows by
Theorem 3

By Proposition 2 and Corollary 1 we obtain the next result.

Corollary 2. Let (N, f) be a slant submanifold as in Theorem 3. Assume that
dimN ≥ 5 and that the Weingarten operators satisfy:

AnH = P ◦AH , AFX ◦ P = P ◦AFX ,

for any X ∈ TN . Then (N, f) is minimal.
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Remark 4. Corollary 2 is not true when dimN = 3. Indeed, by (4.4), the
condition AFX ◦ P = P ◦AFX gives

th(PX,PY ) = (cos2 θ)th(X,Y ), X, Y ∈ TN.

Moreover, considering a local orthonormal frame {e1, e2 = ϕ′e1, e3 = ξ} on N
and using (4.2), we have tH = 2

3 th(e1, e1). Hence, if th(e1, e1) 6= 0, we have that
H /∈ Γ(µ) and Corollary 1 cannot be applied .

Corollary 3. Let (N, f) be a slant submanifold as in Theorem 3. Assume that
the Weingarten operators satisfy:

AnH = P ◦AH , AFX ◦ P = −P ◦AFX ,

for any X ∈ TN . Then (N, f) is minimal.

Proof: Given X,Y, Z ∈ TN , by the hypothesis and (4.4), we have

g(th(PX,PY ) + (cos2 θ)th(X,Y ), Z) = −g(AFZPX,PY )− (cos2 θ)g(AFZX,Y )

= g(P (AFZX), PY )− (cos2 θ)g(AFZX,Y )

= 0.

Hence, for any X,Y ∈ TN , we obtain th(PX,PY ) + (cos2θ)th(X,Y ) = 0.
Considering a local orthonormal frame {ei, ϕ′ei, ξ}1≤i≤r on N , we get

(2r + 1)tH =
∑r
i=1{th(ei, ei) + (cos2 θ)th(Pei, P ei)} = 0.

Hence H ∈ Γ(µ) and the statement follows by Corollary 1.

Theorem 4. Let (N, f) be a proper slant submanifold of an α-Kenmotsu manifold
(M,ϕ, ξ, η, g), such that ξ is tangent to N and (∇XF )Y = −αη(Y )FX, for any
X,Y ∈ Γ(TN). Then, one has:

i) N is an austere submanifold.

ii) For any V ∈ Γ(µ), AV = 0.

iii) F (TN) is a parallel subbundle of T⊥N .

iv) (N,ϕ′ = 1
cos θP, ξ, η, g) is a C5-manifold if and only if ∇⊥n = 0.

Proof: By the hypothesis and (4.3) we get

h(X,PY ) = nh(X,Y ) = h(PX, Y ), X, Y ∈ Γ(TN). (5.2)

It follows that all the Weingarten operators AV , V ∈ T⊥N , anti-commute with
P . In particular, given V ∈ T⊥N , the set of eigenvalues of AV is invariant under
multiplication by -1. Thus, i) holds.
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Moreover, by (5.2), one has n2h(X,Y ) = nh(X,PY ) = −(cos2 θ)h(X,Y ) and,
applying (4.1), we get

h(X,Y ) = − 1

sin2 θ
F th(X,Y ), X, Y ∈ Γ(TN). (5.3)

This gives ii). Also, for any V ∈ Γ(µ), X,Y ∈ Γ(TN), we have g(∇⊥XFY, V ) =
g((∇XF )Y, V ) = 0, so that ∇⊥XFY ∈ Γ(F (TN)). Hence, iii) holds.
Moreover, by (4.3) and ii), for any X ∈ Γ(TN), V ∈ Γ(µ) one has (∇⊥Xn)V = 0.
By (4.1), (4.2), (4.3), (5.3) we also obtain

(∇⊥Xn)FY = (sin2 θ)h(X,Y )− F (AFYX) = −F (th(X,Y ) +AFYX).

Since th(X,Y ) +AFYX is orthogonal to ξ, one has (∇⊥Xn)FY = 0 if and only if
th(X,Y ) +AFYX = 0. Then, iv) follows also applying (4.2).

Remark 5. It is easy to see that statement i) in Theorem 4 is also satisfied when
the submanifold N is invariant.

To get examples of submanifolds as in Theorem 4 it is enough to consider
odd-dimensional totally geodesic proper slant submanifolds of an α-Kenmotsu
manifold. As explained in Section 3, any totally geodesic proper slant immersion
into a Kähler manifold gives rise to a whole family of such submanifolds.

Several consequences can be obtained by Theorem 4. Firstly, we give a short
proof of a similar result stated in [13].

Proposition 3. Let (N, f) be a minimal proper slant submanifold of an α-
Kenmotsu manifold (M,ϕ, ξ, η, g) such that dimN = 3 and dimM = 5. Then N
is immersed in M as an austere submanifold.

Proof: We claim that the Weingarten operators satisfy

AV ◦ P +AnV = 0, V ∈ T⊥N. (5.4)

Indeed, putting sla(N) = θ, we consider a point x ∈ N and an adapted slant
frame {e1, e2 = 1

cos θPe1, e3 = ξ, e4 = 1
sin θFe1, e5 = 1

sin θFe2} defined in a neigh-
borhood of x. Applying (4.1) we have

ne4 = −(cos θ)e5, ne5 = (cos θ)e4. (5.5)

Moreover, by Theorem 2, we have AFe1e2 = AFe2e1 and, since f is minimal and
AV ξ = 0 for any V ∈ T⊥N , we also get AFe1e1 + AFe2e2 = 0. Using (5.5), a
direct calculus entails

AekPei +Anekei = 0, i = 1, 2, 3, k = 4, 5.

Hence, (5.4) holds and by (4.3), for any X,Y ∈ Γ(TN), we have (∇XF )Y =
−αη(Y )FX. So, the statement follows by Theorem 4.
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6 Slant immersions and curvature

In this section we establish some results on slant submanifolds involving suitable
restrictions on the curvature of the ambient space or of the submanifold.
Firstly, also applying Theorem 4, we are going to prove a reduction theorem for
submanifolds of a space-form.

Let M2m+1(c), m ≥ 2, be an α-Kenmotsu manifold with constant sectional
curvature c. Then c = −α2, so α is constant and either M is cosymplectic
and flat, or c < 0 ([21]). It follows that, for any α 6= 0, the hyperbolic space
H2m+1(−α2) is the local model of space-forms carrying a non-cosymplectic α-
Kenmotsu structure.

Given α ∈ R, α > 0, on H2m+1 = {(x1, . . . , x2m+1) ∈ R2m+1;x1 > 0} one

considers the metric gα = 1
(αx1)2

∑2m+1
i=1 dxi ⊗ dxi and puts Ei = αx1 ∂

∂xi , i =

1 . . . 2m + 1. Let (ϕ, ξ, η, gα) be any a.c.m. structure such that ϕ has constant
components with respect to the orthonormal frame {Ei}1≤i≤2m+1, ξ = E1 and
η = ξb = 1

αx1 dx
1. Then (H2m+1, ϕ, ξ, η, gα) is an α-Kenmotsu manifold, simply

denoted by H2m+1(−α2) ([8]).

Theorem 5. Given α ∈ R, α > 0, let (N, f) be a proper slant submanifold of
H2m+1(−α2) such that dimN = 2r+ 1 and, for any X,Y ∈ Γ(TN), (∇XF )Y =
−αη(Y )FX. Then N is contained in a (4r + 1)-dimensional totally geodesic
submanifold of H2m+1(−α2) as an austere submanifold.

Proof: By Theorem 4 and formula (5.3), it follows that the normal subbundle
F (TN), of rank 2r, is parallel in T⊥N and, for any x ∈ N , the first normal space
N1
x , spanned by {h(X,Y );X,Y ∈ TxN}, is a subspace of F (TxN).

Thus, the statement follows applying the reduction theorem of Erbacher ([9]).

Now, we focus on slant submanifolds which are generalized Sasakian space-
forms with respect to the a.c.m. structure considered in Section 4.
A generalized Sasakian space-form (g.S. space-form) M(f1, f2, f3) is an a.c.m.
manifold (M,ϕ, ξ, η, g) which admits three smooth functions f1, f2, f3 such that
the curvature tensor R satisfies

R = f1π1 + f2S + f3T, (6.1)

π1, S, T being the algebraic curvature tensor fields defined by

π1(X,Y, Z) = g(Y,Z)X − g(X,Z)Y,

S(X,Y, Z) = 2g(X,ϕY )ϕZ + g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX,

T (X,Y, Z) = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ.

In the context of contact Geometry this concept, introduced in [1], resembles
the one of generalized complex space-form (g.c. space-form), arising in Hermitian
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Geometry. As in [22], a g.c. space-form M(F1, F2) is an a.H. manifold (M,J, g)
admitting two smooth functions F1, F2 such that the curvature tensor satisfies

R = F1π1 + F2π2, (6.2)

π2 being defined by

π2(X,Y, Z) = 2g(X, JY )JZ + g(X, JZ)JY − g(Y, JZ)JX.

Many examples of g.S. space-forms can be obtained. For instance, taking into
account Theorems 3.3, 5.3 in [20], one can see that every α-Kenmotsu manifold
(M,ϕ, ξ, η, g) with pointwise constant ϕ-sectional curvature C and dimM ≥ 5,

is a g.S. space-form with functions f1 = C−3α2

4 , f2 = C+α2

4 , f3 = C+α2

4 + ξ(α).
Furthermore, if α is a constant function, then any 3-dimensional α-Kenmotsu

manifold is a g.S. space-form with functions f1 = C−3α2

4 , f2 = f3 = C+α2

4 .
Moreover, in [1], the authors obtained a wide range of g.S. space-forms using
warped products. More precisely, given a g.c. space-form M(F1, F2), the a.c.m.
warped product manifold R ×λM , where λ > 0 is a smooth function on R, is a

g.S. space-form with functions f1 = (F1◦σ)−λ′2

λ2 , f2 = F2◦σ
λ2 , f3 = (F1◦σ)−λ′2

λ2 + λ′′

λ ,
where σ : R ×M → M is the canonical projection and λ′, λ′′ are the first and
second derivatives of λ.
Finally, we point out that the second author obtained local classification results
for suitable g.S. space-forms ([10]).

Proposition 4. Let (N, f) be a slant submanifold of an α-Kenmotsu manifold
(M,ϕ, ξ, η, g) such that sla(N) = θ 6= π

2 . Assume that dimN = 2r + 1 ≥ 5 and
N(f1, f2, f3) is a g.S. space-form. Then, one has:

i) df1 ∧ η = 0, df2 ∧ η = 0.

ii) Any leaf (N ′, J = 1
cos θP |TN ′ , g′) of the distribution D′ on N orthogonal to

ξ is a g.c. space-form.

Proof: By Theorem 1, we know that (N,ϕ′ = 1
cos θP, ξ, η, g) is a C2 ⊕ C5-

manifold, in particular it is a C1−5-manifold with Lee form ω = δη
2r η = −(α◦f)η.

So, applying Lemma 4.2 [10], for any unit section X of D′, one has X(f1) =
−X(f2) = −3f2ω(X) = 0. This proves i).

Let (N ′, g′) be a leaf of the distribution D′. We remark that it is a totally
umbilical submanifold of N with mean curvature vector field H ′ = −(α ◦ f)ξ|N ′ .
Indeed, by (4.2) the second fundamental form h′ of N ′ acts as h′(X,Y ) =
−g(∇′Xξ, Y )ξ = −(α ◦ f)g′(X,Y )ξ.

Let R,R′ denote the curvature tensors of N , N ′, respectively. For the cor-
responding Riemannian curvatures we adopt the convention R(X,Y, Z,W ) =
g(R(Z,W, Y ), X) = −g(R(X,Y, Z),W ).
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Applying the Gauss equation and (6.1), for any X,Y, Z,W ∈ Γ(TN ′) we have

R′(X,Y, Z,W ) =R(X,Y, Z,W )

+ (α ◦ f)2{g′(X,Z)g′(Y,W )− g′(Y,Z)g′(X,W )}
=(f1 + (α ◦ f)2){g′(X,Z)g′(Y,W )− g′(Y, Z)g′(X,W )}
− f2{2g′(X, JY )g′(JZ,W ) + g′(X, JZ)g′(JY,W )

− g′(Y, JZ)g′(JX,W )}.

It follows
R′ = (f1 + (α ◦ f)2)|N′π1 + f2|N′π2. (6.3)

Hence, N ′ is a g.c. space-form and both functions F1 = (f1 + (α ◦ f)2)|N′ ,
F2 = f2|N′ are constant.

Theorem 6. Let (N, f) be a slant submanifold of an α-Kenmotsu manifold
(M,ϕ, ξ, η, g) such that sla(N) = θ 6= π

2 and dimN = 2r + 1 ≥ 5. Assume
that N(f1, f2, f3) is a g.S. space-form. Then (N,ϕ′ = 1

cos θP, ξ, η, g), which falls
in the class C5, is, locally, almost contact isometric to a warped product manifold
] − ε, ε[×λF , ε > 0, λ : ] − ε, ε[→ R being a smooth function, λ > 0, and F a
Kähler manifold with constant holomorphic sectional curvature.

Proof: By Theorem 1, we know that (N,ϕ′, ξ, η, g) is, locally, almost contact
isometric to a warped product manifold ]− ε, ε[×λF , F being an almost Kähler
manifold biholomorphic to a leaf (N ′, J = ϕ′|TN ′ , g′) of the distribution D′ on N
orthogonal to ξ.

We claim that each leaf of D′ is a Kähler manifold and has constant holomor-
phic sectional (c.h.s.) curvature.
To this aim, fixed a point x0 ∈ N , we consider the leaf (N ′, J, g′) of D′ through x0.
Note that dimN ′ ≥ 4 and, by (6.3), the curvature of N ′ is a combination of the
tensor fields π1, π2 by means of constant functions. So, if f2(x0) 6= 0, applying the
theory developed in [22], namely Theorem 12.7 and the corresponding remark, N ′

is a Kähler manifold with c.h.s. curvature C = 4(f1(x0) + α(f(x0))2) = 4f2(x0).
On the other hand, if f2(x0) = 0, being R′ = (f1 + (α ◦ f)2)|N′π1, N ′ turns

out to be an almost Kähler manifold with constant curvature. Hence, applying
a theorem of Oguro ([19]), we get that N ′ is a flat Kähler manifold.
In any case, all the manifolds F occurring in the local description of N carry a
Kähler structure with c.h.s. curvature and N falls in the class C5.

Finally, we observe that any 3-dimensional slant submanifold (N, f) of an α-
Kenmotsu manifold, such that sla(N) 6= π

2 , is a g.S. space-form. Indeed, being
d(α ◦ f)∧ f∗η = 0, we directly apply (3.9) in [21]. In our notation, the curvature
of N is given by

R = (
τ

2
+ 2(α ◦ f)2 + 2ξ(α) ◦ f)π1 + (

τ

2
+ 3(α ◦ f)2 + 3ξ(α) ◦ f)T,
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where τ is the scalar curvature.
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Math. J. (2) 24 (1972), 93-103.

[16] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc.
Sc. Math. Roumanie 39 (87) (1996), 183-198.

[17] A. Lotta, Three-dimensional slant submanifolds of K-contact manifolds,
Balkan J. Geom. Appl. 3 (1998), 37-51.

[18] S. Nölker, Isometric immersions of warped products, Differential Geom.
Appl. 6 (1996), 1-30.

[19] T. Oguro, On almost Kähler manifolds of constant curvature, Tsukuba
J. Math. 21 (1997), 199-206.

[20] Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math.
57 (1989), 73-87.
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