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a b s t r a c t 

Nonnegative Matrix Factorization (NMF) is a linear dimensionality reduction technique for 

extracting hidden and intrinsic features of high-dimensional data sets. Recently, several 

Projective NMF (P-NMF) methods have been proposed for the purpose of resolving issues 

associated with the standard NMF approach. Experimental results show that P-NMF al- 

gorithms outperform the standard NMF method in some aspects. But some basic issues 

still affect the existing NMF and P-NMF methods, these include slow convergence rate, 

low reconstruction accuracy and dense basis factors. In this article, we propose a new and 

generalized hybrid algorithm by combining the concept of alternating least squares with 

the multiplicative update rules of the α-divergence-based P-NMF method. We have con- 

ducted extensive numerical experiments on 7 real-world data sets and compared the new 

algorithm with several state-of-the-art methods. The attractive features and added advan- 

tages of the new algorithm include remarkable clustering performances, providing highly 

“orthogonal” and very sparse basis factors, and extracting distinctive and better localized 

features of the original data than its counterparts. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Several data mining and analysis techniques can be employed for extracting basic and hidden features of high-

dimensional data sets. Data sets obtained from real-world applications are nonnegative in nature and usually stored as

high-dimensional nonnegative data matrices. Such data matrices do not allow negative entries because such entries are

misleading and contradict physical realities. For the purpose of avoiding misinterpretations and ambiguous results, the de-

composition of real-life data sets usually takes nonnegativity constraints into account. A linear dimensionality reduction

technique called nonnegative matrix factorization (NMF) is very well-known for decomposing real-world data sets and pro-

viding nonnegative factors. Unlike other multivariate data analysis techniques such as vector quantization (VQ), singular

value decomposition (SVD) and principal component analysis (PCA), NMF algorithms enable the so-called “additive parts-
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based” representation of data and summation of parts to make a whole [1–3] . On the contrary, the factors obtained from

VQ, SVD and PCA contain both positive and negative entries, as a result they do not facilitate physical interpretations. 

NMF algorithms are designed to solve the following optimization problem: given a data matrix Y ∈ R 

m ×n 
+ and a reduced

rank k , find two low-rank matrices W ∈ R 

m ×k 
+ and H ∈ R 

k ×n 
+ that approximate Y in a low-dimensional form as Y ≈ WH . In this

factorization, the factors W and H have different physical meanings in different applications. For instance, in image feature

extraction and data clustering, W is a basis matrix (factor) and H is a weight matrix (factor). Each of the n columns in Y

represent data points in an m -dimensional space, and k is the required number of basis vectors. In order to achieve the

above approximation, one usually attempts to solve minimization problems that involve different kinds of cost functions.

The most commonly used cost functions are the squared Frobenius norm, the generalized Kullback–Leibler (KL) divergence

and the Amari α-divergence. In this paper, we are interested in the more general divergence measure of the above three,

i.e., Amari’s α-divergence. In fact, the learning algorithm derived from the α-divergence, namely α-NMF, is proved to be

more flexible and efficient than those based on the Frobenius norm and the KL-divergence [4,5] . 

In general, the NMF minimization problem based on the α-divergence measure can be written as 

min 

W ∈ R m ×k 
+ , H∈ R k ×n 

+ 
D α(Y ‖ W H) = 

∑ 

i j 

(
y i j 

(y i j / (W H) i j ) 
α−1 − 1 

α(α − 1) 
+ 

(W H) i j − y i j 

α

)
, (1) 

where α ∈ (−∞ , + ∞ ) . 

Recently, methods called projective nonnegative matrix factorization (P-NMF) based on α-divergence ( α-PNMF) have

been proposed to solve problem (1) and improve the performances of α-NMF methods [6] . P-NMF algorithms are designed

by projecting the data matrix Y by a nonnegative m × m approximative projection matrix P = W W 

� of a given rank k onto

a subspace of nonnegative matrices. It should be noted that we look for a matrix W whose columns are approximately

orthogonal. 1 It has been reported that α-PNMF algorithms outperform α-NMF methods in some circumstances [6] . Unfortu-

nately, α-PNMF also has some drawbacks; these include relatively dense basis factors and low reconstruction accuracies. In

addition, we realized that there are possibilities for improvement concerning the orthogonality of the columns of the basis

matrix (factor) W and the ability of learning localized features of the original data. 

Several techniques are used for solving minimization problems that arise in NMF. Among these techniques, the multi-

plicative update rules (MUR) of Lee and Seung adopted for NMF, α-NMF, P-NMF, α-PNMF methods [1,2,6,7] and the alter-

nating least squares (ALS) algorithms [3] could be mentioned. Since the existing α-NMF, P-NMF and α-PNMF algorithms are

based solely on MUR, they inherit at least one major drawback called locking of zero entries (once an entry is zero it can

never take another value; that is, it is locked). Due to this locking phenomenon, the aforementioned algorithms might be

trapped at non-stationary points or even at saddle points. On the other hand, the ALS-based NMF algorithms are well-known

for providing sparse factors and for their flexibility due to the absence of the aforementioned locking phenomenon. 

Contributions and outline of the paper. In this paper, we propose a new and generalized hybrid algorithm that exploits

the nice properties of the basic ALS algorithm and the multiplicative update rule of the α-PNMF method. According to the

extensive numerical experiments conducted on 7 real-life data sets, this hybridizing strategy results in a new class of high-

performance algorithms. The new algorithm is shown to outperform several state-of-the-art methods in various aspects. The

advantages of the newly proposed algorithm includes high clustering performances, providing very sparse factors consisting

of better localized features, and giving rise to highly “orthogonal” basis factors. 

The remaining part of this article is organized as follows: Section 2 presents a short revision of α-NMF, α-PNMF and

the basic ALS algorithm. A detailed discussion of the proposed algorithm is presented in Section 3 . Section 4 is devoted to

the numerical experiments conducted on various data sets coming from real-life applications. In Section 5 , we present the

concluding remarks. 

2. Review of related works 

This section presents a short survey on α-NMF, α-PNMF, and the basic ALS algorithm. 

2.1. NMF based on alpha-divergence 

Formally, the basic NMF problem can be stated as: given a nonnegative data matrix Y ∈ R 

m ×n 
+ and a (small) rank

k < < min( m, n ), find two nonnegative matrices—a basis matrix W ∈ R 

m ×k 
+ and an encoding matrix H ∈ R 

k ×n 
+ —such that 

Y ≈ W H. (2) 

In NMF, irrespective of the divergence measure used, the approximate factorization (2) is treated as a non-linear optimiza-

tion problem. For α-NMF, the factors W and H are computed by minimizing Amari’s α-divergence 

D α(Y ‖ W H) = 

∑ 

i j 

(
y i j 

(y i j / (W H) i j ) 
α−1 − 1 

α(α − 1) 
+ 

(W H) i j − y i j 

α

)
, (3) 
1 Due to the nonnegativity constraints in NMF (and its variants), the basis matrix W (or its columns) can never be completely orthogonal. Therefore, in 

this paper, by orthogonality (“orthogonal”) we mean approximate orthogonality in the sense of a small ρ = ‖ W 

� W − I‖ F , where ‖ A ‖ F = 

√ ∑ 

i, j a 
2 
i j 

. 
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with respect to W and H . Here α ∈ (−∞ , ∞ ) is a pre-specified constant which is typically chosen in the interval (0,2]. The

α-divergence is a quite general divergence measure in the sense that for special values α → 1, α → 0, α = 0 . 5 , and α = 2 ,

one obtains the generalized Kullback–Leibler (KL) divergence, the dual generalized KL divergence, the squared Hellinger’s

distance, and the Pearson’s distance, respectively [4] . 

The α-NMF minimization process requires W and H to be subjected to the pointwise nonnegativity constraints W ≥ 0

and H ≥ 0. By projecting W and H onto φ and ψ spaces by the formulae φ(w i j ) = w 

α
i j 

and ψ(h i j ) = h α
i j 
, one can derive the

multiplicative update rules (MUR) 

w 

(l+1) 
i j 

= w 

(l) 
i j 

⎛ 

⎜ ⎝ 

∑ 

k h 

(l) 
jk 

(
y ik 

[ W 

(l) H (l) ] ik 

)α

∑ 

p h 

(l) 
jp 

⎞ 

⎟ ⎠ 

1 
α

, 

h 

(l+1) 
i j 

= h 

(l) 
i j 

⎛ 

⎜ ⎝ 

∑ 

k w 

(l+1) 
ki 

(
y k j 

[ W 

(l+1) H (l) ] k j 

)α

∑ 

p w 

(l+1) 
pi 

⎞ 

⎟ ⎠ 

1 
α

, 

where w 

( l ) stands for the l th iterate. It is claimed [4,5] that the cost function (3) is non-increasing under the above update

rules. 

2.2. P-NMF based on alpha-divergence 

P-NMF algorithms are designed by projecting the data matrix Y ∈ R 

m ×n 
+ by a nonnegative m × m approximative projection

matrix P = W W 

� onto a subspace of nonnegative matrices, where W ∈ R 

m ×k 
+ and k is a reduced rank fixed by the user. The

objective function for the α-PNMF optimization problem is 

D α(Y ‖ W W 

� Y ) = 

∑ 

i j 

(
y i j 

(y i j / (W W 

� Y ) i j ) 
α−1 − 1 

α(α − 1) 
+ 

(W W 

� Y ) i j − y i j 

α

)
. (4)

The MUR for minimizing (4) with respect to W is given by [6] 

w 

(l+1) 
ik 

= w 

(l) 
ik 

( (
U 

(l) Y � W 

(l) + Y U 

(l) � W 

(l) 
)

ik ∑ 

j 

(
W 

(l) � Y 
)

k j 
+ 

∑ 

j y i j 

∑ 

p w 

(l) 
pk 

) 

1 
α

, (5)

where U = (Y./ [ W 

(l) W 

(l) � Y ]) .α, ./ stands for element-wise division, and ( ) . α denotes element-wise exponentiation. 

Yang and Oja [8] proved that the cost function (4) is non-increasing under the update rule (5) . 

2.3. The basic ALS algorithm for NMF 

The alternating least squares (ALS) algorithms are one of the most widely used methods for solving minimization prob-

lems that arise in NMF. These class of algorithms are proven to work very well in practice. In fact, they are chosen for their

sparse factors, flexibility and lack of the locking phenomenon among other things. These algorithms solve for the unknowns

W and H from the equation Y = W H in an iterated alternating two-step procedure by optimizing ‖ Y − W H‖ F . That is, one

factor, say W , is fixed and a step of least squares is employed to solve Y = W H for H and then H is fixed and another step

of least squares is used to solve the above equation for W . This process continues in an alternating way until some stop-

ping criteria are met; usually these algorithms are terminated when the maximum number of iterations set by the user is

reached. For more information about the basic ALS algorithm and its variants, see [3] . 

3. Proposed algorithm 

The α-PNMF algorithms discussed in the previous section managed to resolve some of the issues associated with stan-

dard α-NMF methods and work better in areas where the latter experiences some difficulties. However, some basic issues

still affect α-NMF and α-PNMF; these include, unsatisfactory clustering performance, non-localized basis matrices, dense

factors, and low reconstruction accuracies. For these reasons, the design of new algorithms that can address the aforemen-

tioned issues and improve the performance of the existing variants of α-NMF and α-PNMF methods is required. 

In this section, we propose a new and generalized hybrid algorithm for solving the minimization problem given by (5) . 

The algorithm is designed in such a way that it exploits the nice properties of the basic ALS algorithm and the α-

PNMF method. In particular, we propose a 2-stage hybrid projective nonnegative matrix factorization algorithm called α-

HPNMF. α-HPNMF combines the ALS algorithm with the multiplicative update rule (5) . By changing the value of α to 2,

1 and 0.5, we obtain other new hybrid algorithms called Pearson-HPNMF, KL-HPNMF, and Hellinger-HPNMF, respectively.

The new algorithm consists of two separate stages. In the first stage we combine ALS with α-PNMF in order to benefit
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from the resulting sparse factors. Note that in P-NMF we need to minimize objective functions of the form F (W ) = ‖ Y −
W W 

� Y ‖ F . One should observe that it is impossible to apply ALS on P-NMF (and α-PNMF) directly, for this reason one needs

to introduce a matrix H = W 

� Y and attempt to minimize F (W, H) = ‖ Y − W H‖ F under the constraint H = W 

� Y . Therefore,

in the newly proposed algorithms we first provide initialization for W and solve Y = W H for H . But we require the solutions

( H ) obtained above to satisfy the constraint H = W 

� Y . For this reason, we use the above solution H as an input and solve

H = W 

� Y for W . At the end, we update W using the multiplicative update rule (5) ; see Algorithm 1 for the detail. In the

first stage, solving for H and W continues in an alternating fashion until the desired value of stage1iter is reached, where

stage1iter (number of iterations required for the first stage) is an integer defined a priori by the user. We will discuss how

to choose stage1iter a little later. In the second stage of our algorithms, we solely update W on a separate loop using the

multiplicative update rule (5) . Orthogonality of the basis factor W is crucial for many applications such as text mining,

feature extraction and data clustering [9,10] . In the new algorithms orthogonality of W is achieved through approximating

the original data Y by PY , where P = W W 

� is a projection matrix. Since W is nonnegative, approximating Y by WW 

� Y can

be achieved only when W is approximately orthogonal and WW 

� ≈ I . In addition, the new algorithms combine ALS with the

α-PNMF method which is shown to facilitate the orthogonality and sparsity of W . 

The main steps of the proposed algorithm, α-HPNMF are summarized in Algorithm 1 . It should be noted that the user

is free to choose the value of stage1iter accordingly, and obviously suitable choices are made based on the quality and the

precision needed. In our experiments, we realized that for small values of stage1iter the aforementioned algorithms tend to

the multiplicative update rules. For this reason, we recommend values in the interval [10 , maxiter ) that happen to work very

well in practice (see Section 4 ). Here, maxiter stands for maximum number of iterations. In Section 4.2 , we investigate the

behavior of Algorithm 1 for different values of stage1iter . One of the many advantages of these algorithms is that, since they

combine ALS steps with that of the multiplicative update rules, the zero (very small) elements locked by the multiplicative

update rules get a chance to take new values in the ALS steps. As a result, they provide some level of flexibility and enable

the algorithms to lay on a very good and sustainable foundation. On the contrary, the multiplicative update rules of α-NMF

and α-PNMF do not behave this way, that means, they suffer from locking of zero entries. This is one of the disadvantages

of using these update rules and it is responsible for leading them to poor local minima and non-stationary points. 

Remark 1. In the first stage of Algorithm 1 , we use ALS to solve W 

� Y = W 

� W H and Y H 

� = Y Y � W . We learned from our

various experiments that there are cases where the matrices W 

� W and YY � become singular, in such cases adding an iden-

tity matrix of the appropriate size avoids the non-invertibility issue. 

Remark 2. In the new algorithm the iterates are updated using the multiplicative update rule of α-PNMF, see Algorithm 1 .

The details of the convergence properties of this update rule (5) are given in [8] . It should be noted that the ALS steps in

the newly proposed algorithm are used only as inner initialization steps in the first stage. As a result, the new algorithm

inherits the convergence properties of the α-PNMF method. 

Computational complexity. Here, we calculate the computational complexity of Algorithm 1 . Computational complexity is

simply a measure of how many steps or operations are required for solving a given problem. In the case of NMF, com-

putational complexity depends on the size of the matrices involved in solving the associated minimization problem. The

steps of Algorithm 1 are lines 3, 7–11, and 17. Table 1 summarizes the approximate number of floating point operations

Algorithm 1 α-HPNMF. 

1: Input: Y ∈ R 

m ×n 
+ , a rank k and a small positive number δ; 

2: Initialize W ∈ R 

m ×k 
+ and set maxiter and stage1iter ; 

3: Compute A = Y Y � ; 
4: begin 

5: for i := 1 to stage1iter do 

6: begin 

7: solve W 

� Y = W 

� W H for H = (h i j ) using ALS ; 

8: H = ( max (h i j , δ)) ; 

9: solve Y H 

� = AW for W = (w i j ) using ALS ; 

10: W = ( max (w i j , δ)) ; 

11: use (5) to update W ; 

12: end 

13: end . 

14: begin 

15: for i := stage1iter + 1 to maxiter do 

16: begin 

17: use (5) to update W ; 

18: end 

19: end . 

Nicoletta Del Buono



M.T. Belachew and N.D. Buono / Applied Mathematics and Computation 369 (2020) 124825 5 

Table 1 

Rough estimate of the number of flops needed for the main steps in the tested algorithms: α- 

HPNMF, α-PNMF and α-NMF. 

Steps ≈ # flops 

A = Y Y � → m 

2 (2 n − 1) 

B = W 

� W → k 2 (2 m − 1) 

C = W 

� Y → nk (2 m − 1) 

H = linsolve (B, C) → 

2 
3 

k 3 + 2 nk (2 k − 1) 

H = max (H, δ) → 2 nk 

D = Y H � → mk (2 m − 1) 

W = linsolve (A, D ) → 

2 
3 

m 

3 + 2 mk (2 m − 1) 

W = max (W, δ) → 2 mk 

(5) → 2 m 

2 k + mk (8 n − 3) + 2 nk (2 m − 1) 

α-HPNMF → 

2 
3 
(m 

3 + k 3 ) + m 

2 (4 k + 2 n − 1) + k 2 (2 m + 4 n − 1) + nk (2 m − 1)+ 

mk (2 m − 1) − m − k 

α-PNMF → 2 m 

2 k + mk (8 n − 3) + 2 nk (2 m − 1) 

α-NMF → 12 mnk + 2 mn + 2 nk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( flops ) needed for the aforementioned steps and the other tested algorithms. One can see from the aforementioned table

that the newly proposed algorithm requires more flops when compared to the other methods. Actually, this is due to the

additional computations in stage one of the said algorithm which are very crucial for obtaining quality factors that facilitate

interpretation. 

4. Experimental analysis 

In this section, we present and analyze experimental results. We considered 7 real-world data sets. Particularly, four

well-known data sets that contain photographs of faces of different persons were used for feature extraction and image

analysis tasks. In addition, three commonly used data sets from the UCI repository are employed for clustering purposes.

The description of each of the data sets is given in Sections 4.4.1 and 4.5.1 , respectively. In order to evaluate and compare

the behaviors of the tested algorithms, various evaluations have been performed on the basis of different qualitative and

quantitative measures. 

To speed up the comparison process, we provided plots of the approximation error (measured by Amari’s α-divergence

given in (4) ) and that of orthogonality measure ρ given by 

ρ = ‖ W 

� W − I‖ F , ‖ W (: , j) ‖ 2 = 1 , ∀ j = 1 , 2 , . . . , k. (6)

We have used (6) to measure the orthogonality of the basis matrix W . Note that W (:, j ) stands for the j th column of W .

Obviously, the smaller ρ , the better orthogonality is approximated. Moreover, for the sake of speeding up the comparisons

in the light of sparsity of factors and the ability in extracting better localized features, we have presented the images of the

basis matrices arising from each of the tested algorithms. In addition, quantitative measures such as Hoyer’s sparseness , the

τ -measure, purity and entropy are employed to further assess the performances of the new and existing algorithms. 

All experiments were conducted using MATLAB on a laptop Intel(R) Core(TM) i7-6500U CPU @2.50 GHz 2.59 GHz 8 GB

RAM. 

4.1. Initial conditions, parameters, and stopping criteria 

For all experiments, random initialization was used for its simplicity; that is, for a given data matrix Y ∈ R 

m ×n 
+ and a

reduced (small) rank k , we initialized the basis matrix W with W 0 = rand (m, k ) 2 and H with H 0 = rand (k, n ) . When working

with image analysis and feature extraction, the parameter stage1iter was set to 30, 50, 100 and 20 for ORL, MIT, Georgia

Tech and Yale data sets, respectively; while for experiments regarding data clustering stage1iter = 50 was used in all cases.

All iterations were terminated when the maximum number of iterations ( maxiter ) reached 200. 

4.2. Behavior of Algorithm 1 for different values of stage1iter 

In Section 3 , we recommended that the parameter stage1iter in Algorithm 1 can be chosen freely from the interval

[10 , maxiter ] . 3 To support this claim with some practical evidence, we vary the values of stage1iter and test the proposed

algorithms on Georgia Tech face data set (see Section 4.4.1 for description) and compare the results with other algorithms.

The results depicted in Fig. 1 show that each of the different values of stage1iter provides a version of α-HPNMF that

outperforms the α-PNMF method. 
2 rand (m, k ) is a MATLAB command for generating an m × k random matrix containing pseudo random values drawn from the standard uniform distri- 

bution on the open interval (0,1). 
3 In all of our figures the label ‘Number of iterations’ represents the interval [1 , maxiter ] . 

Nicoletta Del Buono
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Fig. 1. Behavior of Algorithms 1 on Georgia Tech face data set for k = 25 and different values of stage1iter . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Orthogonality and sparsity 

It is worth mentioning that approximate orthogonality for the basis matrix W in NMF can be enforced by adding a

constraint in the form equivalent to ‖ W 

� W − I‖ F , thereby forming an orthogonal NMF problem. Hence, the degree of or-

thogonality depends on the specific algorithm used to solve the orthogonal NMF problem. As a consequence of satisfying

the approximate orthogonality condition, the matrix W should have a large number of zero entries and become very sparse.

Moreover, orthogonality guarantees less overlap among basis elements, hence minimizing the redundancy of information.

In fact, the introduction of orthogonality as a constraint in NMF enables to obtain sparse factors which are crucial in many

applications such as clustering, image analysis and text mining [9,10] . 

4.4. Image analysis and feature extraction 

In this section, we illustrate the numerical results obtained from applying the new and the existing algorithms on four

well-known face data sets. First, we give a brief description of each of these data sets. 

4.4.1. Description and preparation of data sets 

The following data sets which are basically photographs of faces of different persons taken at different times by varying

the lighting, facial expressions and other conditions were used for conducting the experiments regarding image analysis

and local feature extraction. For each data set a preprocessing phase aimed at histogram-equalizing and normalizing the

images has been done. In addition, the pixel values of each image were stacked into a column vector so that each image is

represented by a column of the data matrix. 

• The Cambridge ORL face database [11] consists of 400 images of 40 different subjects in PGM format. Each subject has

10 images of size 112 × 92 which are taken at different times by varying the lighting, the facial expressions (open/closed

eyes, smiling/not smiling) and the facial details (glasses/no glasses). All the images were taken against a dark homoge-

neous background with the subjects in an upright, frontal position (with tolerance for some side movement). For the

sake of computational convenience each image has been resized to 25 × 25 pixels. With the concatenation of the pixels

of each image into a column we obtain a data matrix of size m × n = 625 × 400 . 
• The MIT CBCL face database [12] contains 2429 faces that has been used extensively at the Center for Biological and

Computational Learning (CBCL) at MIT. Each face has 19 × 19 = 361 pixels. With the concatenation of the pixels of each

image into a column we obtain a data matrix of size m × n = 361 × 2429 . 
• The Georgia Tech face database [13] contains 750 images of faces of 50 different individuals stored in JPG format. For

each individual, there are 15 color JPEG images with cluttered background taken at a resolution of 640 × 480 pixels. The

pictures show frontal and/or tilted faces with different facial expressions, lighting conditions and scale. Each image is

manually labeled to determine the position of the face in the image. For the sake of computational convenience each

image was converted into a gray scale image and resized to a resolution of 16 × 16 pixels. With the concatenation of the

pixels of each image into a column we obtain a data matrix of size m × n = 256 × 750 . 
• The Yale face database [14] contains 165 grayscale images of faces in GIF format of 15 individuals. There are 11 images per

subject, one per different facial expression or configuration: center-light, with glasses, happy, left-light, without glasses,

Nicoletta Del Buono
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Table 2 

Summary of used facial image datasets. 

Dataset # pixels m n 

Cambridge ORL 25 × 25 625 400 

MIT CBCL 19 × 19 361 2429 

Georgia Tech 16 × 16 256 750 

Yale 25 × 25 625 165 

Fig. 2. Cost function ( α-divergence) on the ORL data set. Here, we used rank k = 16 . 

Fig. 3. Cost function ( α-divergence) on the MIT data set. Here, we used rank k = 49 . 

 

 

 

 

 

 

 

 

normal, right-light, sad, sleepy, surprised, and wink. For the sake of computational convenience all the images in the

database have been resized to 25 × 25 pixels. With the concatenation of the pixels of each image into a column we

obtain a data matrix of size m × n = 625 × 165 . 

We summarize the data sets described above in Table 2 . 

4.4.2. Approximation error and orthogonality 

In this section, we present and analyze numerical results regarding the reconstruction accuracy of the tested algorithms

and the orthogonality of their basis matrices. Algorithms that provide smaller errors (divergences) are considered to possess

high level of reconstruction accuracies. This actually makes sense, since NMF aims at minimizing the error between the

original data and its approximation. Hence, the smaller the error, the better the approximation is. As shown in the left sides

(panels (a)) of Figs. 2–5 , the errors corresponding to α-HPNMF are smaller than those of α-PNMF in all the three cases

α = 0 . 5 , α = 2 and α = 5 . Therefore, α-HPNMF provides factors whose product approximates the original data much better
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Fig. 4. Cost function ( α-divergence) on the Georgia Tech data set. Here, we used rank k = 25 . 

Fig. 5. Cost function ( α-divergence) on the Yale data set. Here, we used rank k = 9 . 

 

 

 

 

 

 

 

 

 

 

 

 

than those of α-PNMF. As a result, the new hybrid algorithms (especially for α = 2 ) have higher reconstruction accuracies

than their counterparts. 

To compare the orthogonality of the basis factors of the tested algorithms, we used the ρ measure (6) . The right sides

(panels (b)) of Figs. 2–5 are the orthogonality plots corresponding to α-HPNMF and α-PNMF for different values of α. The

ρ-plots in the aforementioned figures signify that the factors obtained from α-HPNMF have highly orthogonal columns—

because of the corresponding smaller values of ρ—than those of α-PNMF. For this reason, the new hybrid algorithms out-

perform their counterparts by providing highly orthogonal and very sparse basis factors. As a consequence, the factors of

α-HPNMF (especially for α = 2 ) guarantee minimum overlaps among basis images and hence avoid redundancy of informa-

tion. 

4.4.3. Basis images, local feature extraction and face reconstruction 

In this section, we apply the methods α-HPNMF, α-PNMF and α-NMF on the data sets of faces described in

Section 4.4.1 and present the images of their basis matrices. All the basis matrices are of size m × k . Each column is reshaped

into a matrix of size 
√ 

m × √ 

m and then the resulting k matrices are arranged into a block matrix of size 
√ 

mk ×
√ 

mk . 

One can see from the numerical results depicted in Figs. 6 , 8 , 10 and 12 that the new algorithm, α-HPNMF (especially

for α = 2 ), managed to learn better localized features and is able to provide very sparse basis images which are clearly rep-

resentatives of facial parts. On the contrary, α-NMF and α-PNMF fail to learn localized facial parts and their basis matrices

are dense and they certainly represent full faces; especially those of α-NMF. As to the reconstructed faces, our algorithms

are the runner ups while α-NMF, the one with dense factors is the best. This obviously indicates that there is a trade-off

between learning highly orthogonal local features and reconstruction accuracy ( Figs. 7 , 9 , 11 and 13 ). 

Nicoletta Del Buono



M.T. Belachew and N.D. Buono / Applied Mathematics and Computation 369 (2020) 124825 9 

Fig. 6. Basis images, ORL data set for α = 0 . 5 and k = 16 . 

Fig. 7. Face reconstruction, ORL data set using α = 0 . 5 and k = 16 . 

Fig. 8. Basis images, MIT data set for α = 5 and k = 49 . 

Fig. 9. Face reconstruction, MIT data set using α = 2 and k = 49 . 

Fig. 10. Basis images, Georgia Tech data set for α = 2 and k = 25 . 
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Fig. 11. Face reconstruction, Georgia Tech data set using α = 2 and k = 25 . 

Fig. 12. Basis images, Yale data set for α = 2 and k = 9 . 

Fig. 13. Face reconstruction, Yale data set using α = 2 and k = 9 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.4. Sparsity, orthogonality and entropy 

This section is devoted to comparing the performances of the various α-divergence based algorithms on the basis of

sparsity, orthogonality and entropy . We start off by defining some terms; namely, Hoyer’s sparseness , the τ -measure , and

average entropy : 

Hoyer’s sparseness (v ) = 

√ 

mk − ( 
∑ 

i | v i | ) / 
√ ∑ 

i v 
2 
i √ 

mk − 1 

, (7) 

τ = 1 − ‖ Nr � W 

Nr W 

− I k ‖ F 

k (k − 1) 
, (8) 

average entropy = 

1 

k 

k ∑ 

j=1 

( 

−
m ∑ 

i =1 

w i j log w i j 

) 

, ‖ W (: , j) ‖ 2 = 1 ∀ j, (9) 

where v i is the i th component of v , v = W (:) vectorizes W and Nr W 

= normc ( W ) is a MATLAB command which takes W as

an input and normalizes the columns to a length of one. 

According to [15] , Hoyer’s sparseness ranges in between 0 and 1. The sparsest possible vectors, those having only one

nonzero entry, has the extreme value 1. The other extreme value, 0, is associated with the densest possible vectors, those

where all entries have the same value. The impressive performance of the α-HPNMF algorithm is advocated by the cor-

responding large values of Hoyer’s sparseness . Therefore, we can conclude that the new hybrid algorithms are capable of

generating sparser factors than the other methods. 

We also used the τ - measure as defined in (8) to measure the orthogonality of the basis matrices generated by the new

hybrid algorithms and the other tested algorithms. As stated in [6] , values of τ closer to 1 are indications of a high level

of orthogonality. Maintaining approximate orthogonality among the columns of a basis matrix is very important in the

tasks of acquiring sparse factors that ensure minimum overlap among basis images. The values of τ corresponding to our

proposed algorithm, namely α-HPNMF, are shown to be much higher and closer to 1 than those of α-NMF and α-PNMF.

This witnesses that the new algorithms are capable of providing highly orthogonal and sparser factors, thereby generating

highly independent basis elements and saving a great deal of storage space than their counterparts. 

We used (9) to quantify the entropy of the various α-divergence-based algorithms. As mentioned in [7] , entropy is a mea-

sure of randomness. Here, we note that algorithms that score small entropy values enable the extraction of more localized
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Table 3 

Comparison of performances (in terms of time, sparsity, orthogonality and entropy) of the new and the existing α- 

divergence based algorithms. The maximum number of iterations was set to 200 for all data sets and the rank k was 

set to 16, 49, 25 and 9 for ORL, MIT, Georgia Tech (GT) and Yale data sets, respectively. In each row the best results are 

highlighted in bold. 

Data Measure α-HPNMF α-PNMF α-NMF 

α = 2 α = 

1 
2 

α = 2 α = 

1 
2 

α = 2 α = 

1 
2 

ORL Time 27.30 41.70 25.55 39.66 7.15 28.48 

Hoyer’s sp. 0.71 0.69 0.47 0.31 0.34 0.30 

τ 0.99 0.99 0.97 0.96 0.96 0.96 

Av. entropy 17.16 19.25 45.07 57.42 50.36 53.54 

MIT Time 54.21 102.54 51.61 99.70 34.12 108.55 

Hoyer’s sp. 0.84 0.83 0.64 0.41 0.55 0.48 

τ 0.99 0.99 0.99 0.98 0.99 0.99 

Av. entropy 4.29 5.20 23.57 35.93 22.60 26.82 

GT Time 11.18 21.28 9.95 20.12 6.20 22.21 

Hoyer’s sp. 0.78 0.77 0.47 0.37 0.41 0.37 

τ 0.99 0.99 0.97 0.97 0.98 0.98 

Av. entropy 5.86 6.52 26.29 29.96 24.19 26.49 

Yale Time 14.82 20.38 13.60 16.71 3.19 6.50 

Hoyer’s sp. 0.64 0.62 0.49 0.41 0.28 0.25 

τ 0.99 0.98 0.95 0.94 0.93 0.92 

Av. entropy 22.41 24.95 39.23 47.66 55.39 58.27 

Table 4 

Summary of used datasets from the 

UCI repository. 

Dataset Classes m n 

Iris 3 150 4 

Ecoli 7 327 7 

Pima 2 768 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

features and ensure the rise of more “orthogonal” and sparser basis factors. One can observe from the tabular results in

Table 3 that the entropy values corresponding to the proposed new hybrid algorithms are smaller than those of α-NMF and

α-PNMF. Hence, one can say that the α-HPNMF algorithms (especially for α = 2 ) are capable of extracting better localized

basis features than the other methods. 

4.5. Data clustering 

In this section we analyze the numerical results obtained from applying the new and existing α-divergence-based algo-

rithms on three real-world data sets from the UCI repository. First, we present the description of these data sets. 

4.5.1. Description of data sets 

The following data sets obtained from the University of California at Irvine (UCI) machine learning repository were used

for conducting experiments about data clustering. 

• The Iris plants data set (Iris) [16] is a data set which contains m = 150 instances of n = 4 positive-real-valued attributes.

The samples belong to three iris classes, ‘Setosa’, ‘Versicolour’, and ‘Virginica’, each consisting of 50 instances; altogether

they form a m × n = 150 × 4 data matrix Y . Here rank k = 3 was used. 
• The Ecoli data set (Ecoli) [17] contains m = 327 protein samples of the Escherichia coli (E. coli) bacteria categorized in n = 7

different classes. The values (positive-real-valued attributes between 0 and 1) are arranged in the form of a m × n =
327 × 7 data matrix Y . For convenience only the samples coming from the first 5 largest classes were considered. We

also used k = 5 . 
• The Pima Indian diabetes data set (Pima) [18] contains some information about diabetes patients who are of Pima Indian

heritage. Several constraints were placed on the selection of these instances from a larger database. In particular, all

patients here are females who are at least 21 years of age. There are two classes in this data set which are labeled as ‘1’

and ‘0’, where ‘1’ means a positive test for diabetes and ‘0’ stands for a negative test. There are a total of eight clinical

findings for the 268 cases in class ‘1’ and the 500 cases in class ‘0’. The sample values are arranged in a matrix of size

m × n = 768 × 8 . Usually the feature subspace dimension (i.e., k ) is assigned the same value as the number of classes,

but for the sake of computational convenience we set the former to k = 10 for this particular data set. 

We summarize the data sets described above in Table 4 . 
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Fig. 14. Comparison of the orthogonality of the basis factors of the various α-divergence based algorithms discussed in this paper. We plotted the values 

of the ρ-measure defined by ρ = ‖ W 

� W − I‖ F , ‖ W (: , j ) ‖ 2 = 1 , ∀ j . The smaller the ρ , the higher the orthogonality is. 

 

 

 

 

 

 

 

 

 

4.5.2. Orthogonality and clustering 

Empirical and theoretical studies [9,15,19] show that NMF has clear clustering effects and NMF with orthogonality con- 

straints is equivalent to k -means clustering. Once again we used the ρ-measure defined in Section 4 to measure and com-

pare the orthogonality of the basis matrices provided by α-HPNMF, α-NMF and α-PNMF. The experimental results in Fig. 14

indicate that α-HPNMF manages to achieve ρ values which are quite smaller than those of α-NMF and α-PNMF on all

data sets. This implies that the proposed new hybrid algorithms outperform their counterparts by providing approximately

orthogonal basis factors, keeping the overlap between the basis columns to a minimum and giving rise to sparser factors.

Hence, we can conclude that α-HPNMF (especially for α = 2 ) possesses a much better clustering performance than α-NMF

and α-PNMF. 

4.5.3. Sparsity, purity and entropy 

We used purity and entropy as defined in [20,21] to compare the clustering performances of several α-divergence-based

NMF algorithms. In addition, the measurement Hoyer’s sparseness , as defined in (7) , is employed to compare the sparsity of

the basis factors corresponding to these methods. First, we give the definitions of purity and entropy : 

purity = 

1 

n 

k ∑ 

i =1 

max 
1 ≤ j≤q 

n 

j 
i 
, (10) 

entropy = − 1 

n log 2 q 

k ∑ 

i =1 

q ∑ 

j=1 

n 

j 
i 

log 2 
n 

j 
i 

n i 

, (11) 

where q is the number of classes, n 
j 
i 

is the number of samples in the cluster i that belong to the original class j and

n i = 

∑ 

j n 
j 
i 
. 
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Table 5 

Comparison of performances (in terms of sparsity, purity and entropy) of the tested algorithms: α-NMF, α-PNMF and 

α-HPNMF. We set maxiter to 200 and recorded the mean results of the measurements for 100 different random initial- 

izations. The best results are highlighted in bold. 

Data Measure α-HPNMF α-PNMF α-NMF 

α = 2 α = 

1 
2 

α = 2 α = 

1 
2 

α = 2 α = 

1 
2 

Iris k =3 Hoyer 0.39 0.39 0.34 0.33 0.17 0.17 

Purity 0.81 0.81 0.72 0.72 0.78 0.76 

Entropy 0.35 0.35 0.40 0.40 0.40 0.41 

Ecoli5 k =5 Hoyer 0.48 0.47 0.35 0.32 0.17 0.17 

Purity 0.71 0.73 0.62 0.62 0.68 0.68 

Entropy 0.41 0.39 0.54 0.54 0.47 0.48 

Pima k =10 Hoyer 0.66 0.62 0.60 0.57 0.37 0.37 

Purity 0.65 0.65 0.65 0.65 0.65 0.65 

Entropy 0.27 0.27 0.26 0.26 0.26 0.27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In NMF and other multivariate data analysis techniques purity and entropy are used quite often to compare the cluster-

ing performances of different algorithms for the reason that they provide fair comparison. In fact, they quantify clustering

performances by using ground truth class information irrespective of the assumptions of the cluster distributions as well as

the type of algorithm being used [8] . Entropy , whose values range in between ‘0’ and ‘1’, measures how the various classes

are distributed within each cluster. Perfect clustering, a clustering that leads to clusters that contain information from only a

single class, is attained when the value of the entropy is ‘0’. In general, small entropy values (those close to 0) are associated

with better clustering performances [21] . The other useful clustering performance measure is purity whose values also lie in

the interval [0,1], with ‘1’ standing for perfect clustering. Usually, large purity values (those close to 1) indicate remarkable

achievement in clustering [8,20] . 

In Table 5 , we presented the mean results of the various measurements defined in (7), (10) , and (11) for 10 different

random initializations. As reported in this table, the new algorithms score the highest values on Hoyer’s sparseness measure

for all the data sets, thereby guaranteeing the sparsest basis factors and saving a great deal of storage space. 

It is mentioned earlier that purity is one of the measures commonly used for comparing clustering performances of

different algorithms under the notion that the higher the purity value, the better the clustering performance is. According

to the results recorded in Table 5 , the proposed new hybrid algorithms score the highest purity values on 2 out of 3 data

sets while all algorithms have an identical score on the third one, namely the Pima data set. In general, we can say that α-

HPNMF has better clustering performance than α-NMF and α-PNMF (as evidenced by the corresponding high purity values).

The Entropy measure, defined by (11) , is also used to assess the clustering performances of the various algorithms dis-

cussed in this paper. By referring to the results in Table 5 , we can see that the entropy values corresponding to the new

hybrid algorithm ( α-HPNMF) are smaller than those of α-NMF and α-PNMF for 2 out of 3 data sets. Therefore, we can

conclude that α-HPNMF has a much better clustering performance on the majority of the data sets than its counterparts. 

5. Conclusion 

In this paper, we proposed a new class of generalized hybrid algorithm called α-HPNMF, by combining the basic ALS al-

gorithm with the multiplicative update rule of the α-PNMF method. Different kinds of measures including Hoyer’s sparseness ,

the τ - measure, purity and entropy were employed to assess the performances of the new and several existing algorithms.

For feature extraction and image analysis, we used four well-known data sets of faces and came to realize that the new hy-

brid algorithm is capable of extracting much better localized facial parts and providing highly orthogonal and sparser basis

factors than the other algorithms. We also realized that the choice α = 2 for the α-HPNMF algorithm provides better results.

The clustering performances of the new and existing α-divergence based algorithm was tested on three commonly used data

sets from the UCI repository. The numerical experiments on the UCI data sets also confirm that the proposed new hybrid

algorithm exhibits higher clustering performances, give rise to approximately orthogonal and highly sparse basis factors, and

guarantee less overlap among basis elements, thereby minimizing the redundancy of information to a greater extent. 
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