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ABSTRACT
We show that the Friedrichs–Lee model, which describes the one-excitation sector of a two-level atom interacting with a structured boson
field, can be generalized to singular atom–field couplings. We provide a characterization of its spectrum and resonances and discuss the
inverse spectral problem.
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I. INTRODUCTION
The Friedrichs–Lee Hamiltonian is a self-adjoint operator on a Hilbert space, which describes the behavior of an eigenvalue coupled

to a continuous spectrum, and it is a rare example of a solvable model with a rich mathematical structure.15 It was originally introduced by
Lee18 as a solvable quantum-field theoretical model suitable for the investigation of the renormalization procedure. Lee’s Hamiltonian has a
conserved quantum number labeling reducing subspaces (excitation sectors). Its reduction to the first nontrivial excitation sector, which we
will refer to as the Friedrichs–Lee Hamiltonian, is the quantum-mechanical model used by Friedrichs in his seminal study of the perturbation
of continuous spectra;11 similar models for unstable relativistic boson fields have been studied in the literature.3

Since its inception, the Friedrichs–Lee Hamiltonian has proven to be a very useful model in many applications, ranging from quantum
field theory of unstable particles4 to non-relativistic quantum electrodynamics,5 to quantum field theory on manifolds,16 to quantum optics,12

and to quantum probability.30

In this paper, we aim at a complete study of the mathematical properties of the Friedrichs–Lee operator by extending it to a larger class of
possibly singular couplings (thus providing rigorous foundations to many formal computations usually carried out in the physical literature)
and providing a characterization of its spectrum with respect to the spectrum of the uncoupled operator. This paper is organized as follows:

● In Sec. II, we derive the expression of the Friedrichs–Lee Hamiltonian as the restriction to the one-excitation sector of Lee’s field-
theory model.● In Sec. III, we introduce the singular Friedrichs–Lee Hamiltonian, proving that it includes the case of a regular coupling (Theorem
III.2) and showing that a singularly coupled model can always be obtained as the norm resolvent limit of a proper sequence of regular
models (Theorem III.4).● In Sec. IV, we characterize the spectrum of the Friedrichs–Lee Hamiltonian: in Theorem IV.1, we find its essential and discrete
components, and in Theorem IV.3, we find its absolutely continuous, singular continuous, and pure point components, the latter
being strictly dependent on a Herglotz function known as the self-energy of the model.● In Sec. V, we apply the results of Secs. III and IV to some examples of Friedrichs–Lee Hamiltonians.● In Sec. VI, we discuss the resonances of the model, showing that they can be characterized as complex eigenvalues of a deformation
of the Hamiltonian (Theorem VI.7).● In Sec. VII, we introduce the inverse spectral problem, i.e., the choice of a coupling yielding the desired dynamics for a model with a
given field structure.
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Future developments may include the generalization of the singular coupling and spectral characterization to the n-atom Friedrichs–Lee
Hamiltonian or to higher excitation sectors, as well as applications to physically interesting systems.

II. PHYSICAL MODEL
Let (X, �) be a σ-finite measure space and H = L2(X, �) be the space of square-integrable complex-valued functions with respect to �,

with �⋅�⋅� denoting the inner product, conjugate-linear in the first entry, and � ⋅ � denoting the induced norm. Let Hfield be a Hamiltonian
operator on the Bose–Fock space F of H with formal expression

Hfield = �
X

ω(k) a∗(k) a(k) d�(k), (1)

where ω : X → R is a measurable function and a(k) and a∗(k) are the operator-valued distributions associated with a family of annihilation
and creation operators, respectively, satisfying the formal commutation relations [a(k), a∗(k′)] = δ(k − k′). Physically, Hfield is the operator
associated with the energy of a bosonic field, (X, �) is the momentum space of the bosons, and ω(k) is the dispersion relation, i.e., the energy
of a quantum with momentum k. For example, the choices X = R3, ω(k) = (�k�2 +m2)1�2, and � being the Lebesgue measure on R3 describe a
relativistic bosonic field associated with particles of mass m. At the mathematical level, Hfield is the second quantization of the multiplication
operator associated with the function ω and is a densely defined self-adjoint operator on F.24

Let us consider a nondegenerate two-level atom, with ground state (in Dirac’s notation) �↓� and excited state �↑� in C2. Let

Hatom = εa�↑��↑� (2)

be its Hamiltonian, where εa ∈ R is the energy of the excited state and the ground state energy is set to zero. The operator Hatom ⊗ I + I ⊗Hfield,
defined on a dense subspace of C2 ⊗F, represents the system atom–field in the absence of mutual interaction. A physically meaningful
coupling between the atom and the field can be introduced as follows: given g ∈H, let

Vg = �
X
�σ+ ⊗ g(k) a(k) + σ− ⊗ g(k) a∗(k)� d�(k), (3)

where σ+ = �↑��↓� and σ− = �↓��↑� are the ladder operators, that is, σ+ raises the ground to the excited state and σ− lowers the excited to the
ground state.5 The total Hamiltonian HLee associated with the atom–field system is formally given by

HLee = Hatom ⊗ I + I ⊗Hfield +Vg , (4)

where we use the same notation for identity operators acting on different Hilbert spaces. This is a generalization of the standard Lee model.18

Physically, � controls and weighs the values of momenta available to the bosons and must be chosen according to the physical setting: for
instance, for an electromagnetic field in free space, � is the Lebesgue measure on X = R3, while, for a field confined in an optical cavity, at least
one component of the momenta will be discrete.

Summing up, the analytic features of our model will depend on three physically important quantities:

● The space (X, �) of all possible momenta of the field quanta,● The dispersion relation ω(k) that gives the energy of a quantum with momentum k, and● The form factor g(k) that controls the coupling between the atom and a field quantum with momentum k.

The operator HLee does not conserve the total number of bosons in the theory: the number operator, formally defined as

Nfield = �
X

a∗(k)a(k) d�(k), (5)

does not commute with HLee for any nonzero form factor g. However, the operator

Ntot = �↑��↑�⊗ I + I ⊗Nfield, (6)

representing the total number of excitations in the system, commutes with HLee for every choice of g; since the operator Ntot has spectrum
σ(Ntot) = N, one can study the evolution of the system generated by the restriction of HLee to each eigenspace of Ntot.

The simplest nontrivial choice is the one-excitation sector that is isomorphic to C⊕H. The generic normalized element Ψ ∈ C⊕H may
be expressed as

Ψ = �x
ξ�, x ∈ C, ξ ∈H, (7)

the normalization being
�x�2 +�

X
�ξ(k)�2 d�(k) = 1, (8)
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where �x�2 is the probability that the atom is in its excited state and ξ is the wave function of the boson in the field. In particular, the state

Ψ0 = �1
0� (9)

represents the excited atom interacting with the vacuum. The restriction of HLee to the one-excitation sector C⊕H, which we will denote as
HFL, is the Friedrichs–Lee Hamiltonian.11,15 Its domain is

D(HFL) = C⊕D(�) = ��x
ξ� � x ∈ C, ξ ∈ D(�)�, (10)

and it acts on a generic vector of the domain as

HFL�x
ξ� = �εax + �g�ξ�

xg +�ξ �, (11)

where � is the multiplication operator associated with the dispersion relation ω, that is, (�ξ)(k) = ω(k)ξ(k); we will refer to � as the inner
Hamiltonian of the model. The action of the Hamiltonian HFL in (11) can be obtained by using a formal matrix representation,

HFL = �εa �g�
g � �, (12)

where �g� is, in Dirac notation, the linear functional on H associated with g.

III. THE SINGULAR FRIEDRICHS–LEE HAMILTONIAN
The Hamiltonian (11) with matrix representation (12) cannot include a singular coupling between the field and atom, i.e., a form factor

g ∉H = L2(X, �). This obstruction is relevant at a physical level: for instance, a flat form factor between the field and atom [i.e.,
g(k) = constant] cannot be generally included (if � is not a finite measure), thus preventing the description of interesting phenomena [e.g.,
exponential decay of the state Ψ0 in Eq. (9)].

To extend the Friedrichs–Lee model to a (possibly) singular coupling between the atom and field,19 the formalism of Hilbert scales will
be extensively used (see Ref. 1).

Definition III.1. Given a Hilbert space K and a self-adjoint operator T on it, the space K s, for any s ≥ 0, is the domain of �T�s/2 endowed
with the norm

�φ�s ∶= ��T − i�s�2φ� (13)

and K−s is its dual space, i.e., the space of continuous functionals on it, endowed with the norm �φ�−s ∶= ��T − i�−s/2φ�.
With an abuse of notation, the pairing between φ ∈K−s and ζ ∈K s will still be denoted as �φ�ζ�, i.e., with the notation of the scalar

product on K . Besides, K2 = D(T) and the following properties hold:

● K s ⊂K s′ for any s > s′, with dense inclusion.● K0, K1, and K2 are the original Hilbert space K , the form domain of T, and the domain of T, respectively.● T maps K s into K s−2 and 1
T−i maps K s into K s+2.

In the following, we will consider the Hilbert space K =H and the self-adjoint operator T = � as the multiplication operator by a
real-valued measurable function ω : X → R. In this case, we have, for every s ≥ 0,

g ∈Hs iff �
X
�ω(k) − i�s�g(k)�2 d�(k) <∞, (14)

g ∈H−s iff �
X

�g(k)�2�ω(k) − i�s d�(k) <∞. (15)

Our first result is the following theorem, which extends the Friedrichs–Lee Hamiltonian to the case g ∈H−2.
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Theorem III.2. Let ε ∈ R, � be a self-adjoint operator on the Hilbert space H = L2(X, �) acting as the multiplication operator by a
real-valued measurable function ω : X → R, and g ∈H−2. Consider the operator H g,ε on the Hilbert space C⊕H with domain

D(Hg,ε) =
�������
�
�

x

ξ − x
�

�2 + 1
g
�
�
������������

x ∈ C, ξ ∈H2

������� (16)

such that

Hg,ε
�
�

x

ξ − x
�

�2 + 1
g
�
� =
�
�

εx + �g�ξ�
�ξ + x

1
�2 + 1

g
�
�. (17)

Then, we have the following:

(i) If g ∈H, then H g,ε reduces to the Friedrichs–Lee Hamiltonian HFL in (11) with an atom excitation energy

εa = ε + �g � �
�2 + 1

g �. (18)

(ii) H g,ε is self-adjoint and, for all z ∈ C�R, its resolvent operator is

1
Hg,ε − z

�x
ξ� =

������

x − �g � 1
�−z ξ �

ε − z − Σg(z)
1

� − z
ξ − x − �g � 1

�−z ξ �
ε − z − Σg(z)

1
� − z

g

������
, �x

ξ� ∈ C⊕H, (19)

where

Σg(z) ∶= �g �� 1
� − z

− �
�2 + 1

�g� (20)

is the self-energy function of H g,ε.
(iii) The evolution group generated by H g,ε is given by

UHg,ε(t) = 1
2πi

PV� iδ+∞
iδ−∞ e−izt 1

Hg,ε − z
dz (21)

for all t > 0, where δ > 0 is an arbitrary constant and the principal-value integral must be understood in the strong sense. Moreover, if

�x(t)
ξ(t)� = UHg,ε(t)Ψ0 (22)

is the evolution at time t > 0 of the initial state Ψ0 in (9), we have

x(t) = 1
2πi

PV� iδ+∞
iδ−∞

e−izt

ε − z − Σg(z) dz, (23)

ξ(t, k) = − 1
2πi

PV� iδ+∞
iδ−∞

g(k) e−izt

[ε − z − Σg(z)][ω(k) − z] dz. (24)

Proof. (i) If g ∈H, then �
�2+1 g ∈H2 = D(�), and hence, the domains in Eqs. (10) and (16) coincide. Applying HFL to any vector of

the form (16) yields the same result as in Eq. (17), and hence, the two operators coincide.

(ii) Since D(�) is dense in H, then D(H g,ε) is dense in C⊕H. Moreover, the self-energy function Σg in Eq. (20) is well defined and a
direct calculation shows that H g,ε is symmetric. Finally, the bounded operator acting on C⊕H as in Eq. (19) is the inverse of H g,ε − z
for any z ∈ C�R and the self-adjointess of H g,ε easily follows from that.

(iii) Equation (21) follows from Eq. (19) and from the link between the resolvent and the evolution group associated with any self-adjoint
operator;9 particularly, Eq. (23) follows by substituting x = 1 and ξ = 0 in Eq. (19) and applying Eq. (21). �
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Remark III.3. We can distinguish three separate cases:

1. g ∈H: the domain D(H g,ε) does not depend on g, and both εa and ε are finite quantities, representing the “bare” and “dressed”
(coupling-dependent) excitation energies of the atom, respectively. The formal matrix expression (12) of the Hamiltonian holds.

2. g ∈H−1�H: the domain D(H g,ε) depends on g, but again, both εa and ε are finite quantities with the same physical meaning as above,
since �g� �

�2+1 g � is finite. Again the Hamiltonian can be written as in Eq. (12).
3. g ∈H−2�H−1: the domain D(H g,ε) depends on g, and the bare excitation energy εa is not defined, since �g� �

�2+1 g � is not finite; because
of that, Eq. (12) is ill-defined.

The latter situation is related to the renormalization procedure of quantum field theory in which the bare (hence unobservable) value of a
parameter, e.g., the electron charge, diverges in such a way to obtain a finite value of the measurable dressed one. Besides, in the first two cases,
we may equivalently write

ε − Σg(z) = εa − Σ̃g(z), (25)

where Σ̃g(z) = �g� 1
�−z g � is the “bare” self-energy. In this sense, the extension of the model to the case g ∈H−1 is straightforward up to an

algebraic technicality, i.e., the choice of a convenient representation of the domain, while the further extension to the case g ∈H−2 requires
an “infinite” term to be added to both the bare excitation energy and the bare self-energy.

Finally, the three cases reflect the possible situations in which Ψ0 has

1. finite mean value and variance of energy H g,ε,
2. finite mean value but infinite variance of H g,ε, and
3. infinite mean value and variance of H g,ε.

When g ∉H, we will say that the atom–field coupling is singular, as opposed to the regular case g ∈H. We would like to obtain a
singular Friedrichs–Lee Hamiltonian as the limit, in a suitable sense, of a sequence of regular models.8,31 The usual notions of norm and strong
operator convergence cannot apply because of the unboundedness of the operators and the fact that the domain of the singular Hamiltonian
is coupling-dependent; however, we can resort to the notions of resolvent and dynamical convergence.

Recall that, given a family (Tn)n∈N of self-adjoint operators on a Hilbert space K and a self-adjoint operator T, the sequence (Tn)n∈N is
said to converge to T:

● in the norm (strong, respectively) resolvent sense if, for all z ∈ C�R, 1
Tn−z → 1

T−z in the norm (strong, respectively) sense, as n→∞,
and● in the norm (strong, respectively) dynamical sense if, for all t ∈ R, e−itTn → e−itT in the norm (resp. strong) sense, as n→∞.

The following result holds:

Theorem III.4 (Singular coupling limit). Let ε ∈ R.

(i) If (gn)n∈N ⊂H is a convergent sequence in the norm of H−2 with limit g ∈H−2, then Hgn ,ε → Hg,ε in the norm resolvent sense and in the
strong dynamical sense as n→∞.

(ii) Conversely, for every singular Friedrichs–Lee Hamiltonian H g,ε, g ∈H−2, there exists a sequence (gn)n∈N ⊂H such that Hgn ,ε → Hg,ε in
the norm resolvent sense and in the strong dynamical sense as n→∞.

Proof. First of all, notice that norm resolvent convergence obviously implies strong resolvent convergence and the latter is equivalent to
strong dynamical convergence (see Ref. 20), and hence, we only need to prove the results about norm resolvent convergence.

(i) A direct calculation shows that the resolvent operator in Eq. (19), with form factor gn ∈H and g ∈H−2, respectively, can be written as
the sum of the resolvent of the uncoupled operator H0,ε plus a finite-rank term, namely,

1
Hgn ,ε − z

= 1
H0,ε − z

+ Kn, (26)

1
Hg,ε − z

= 1
H0,ε − z

+ K, (27)

where for all Ψ = �x
ξ� ∈ C⊕H,

KnΨ = 1
ε − z − Σgn(z)

����
x

Σgn(z)
ε − z

− � 1
� − z̄

gn�ξ�
x

1
� − z

gn + � 1
� − z̄

gn�ξ� 1
� − z

gn

���� (28)
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and

KΨ = 1
ε − z − Σg(z)

����
x

Σg(z)
ε − z

− � 1
� − z̄

g�ξ�
x

1
� − z

g + � 1
� − z̄

g�ξ� 1
� − z

g

����. (29)

Hence, the claim is proven if we show that for all z ∈ C�R,

● � 1
�−z gn − 1

�−z g�→ 0, as n→∞, and● Σgn(z)→ Σg(z), as n→∞.

We recall that gn → g, as n→∞, in the norm of H−2, means that � 1
�−i gn − g�→ 0, and equivalently, by the first resolvent formula,

� 1
�−z gn − 1

�−z g�→ 0, for every z ∈ C�R; moreover, by continuity of the pairing between H2 and H−2, this also proves Σgn(z)→ Σg(z).
(ii) Let g ∈H−2. Since H is dense in H−2, there exists a sequence (gn)n∈N such that gn → g, as n→∞, in the norm of H−2, and hence, as

in (i), a sequence of regular Friedrichs–Lee Hamiltonians converges in the norm resolvent sense to the singular one.

�
Remark III.5. If g ∈H−2, the approximating sequence of Hamiltonians Hgn ,ε is characterized by a diverging bare excitation energy εa,n= ε + �gn� �

�2+1 gn� and a diverging bare self-energy Σ̃gn(z) = �gn� 1
�−z gn�; their difference converges to a finite limit that depends on the value

of the dressed excitation energy ε; this is clearly a renormalization procedure, as discussed in Remark III.3.
Also notice that Theorem III.4 holds even if the dressed energy ε of the approximating sequence, instead of being kept fixed, is replaced

with a converging sequence εn → ε.

Remark III.6. There is an interesting connection between the Friedrichs–Lee model and rank-one perturbations of self-adjoint operators.
Given a Hilbert space K , a self-adjoint operator T on K , and a functional φ ∈K−2, consider the formal operator

T + α�φ��φ�, α ∈ R. (30)

If φ ∈K−2�K , this is only a formal expression, with which one can associate a well-defined self-adjoint operator through a
restriction–extension procedure1,22,23,27 that we briefly recall in the following. Consider the densely defined symmetric operator Tφ obtained
by restricting T to ker(�φ�); one can prove that its adjoint T∗φ is the operator with domain

D(T∗φ ) = � ξ − x
T

T2 + 1
φ � ξ ∈ D(T), x ∈ C� (31)

acting as

T∗φ�ξ − x
T

T2 + 1
φ� = Tξ + x

1
T2 + 1

φ. (32)

Then, for φ ∈K−1�K , the restriction Tφ,α of T∗φ to the domain

D(Tφ,α) = � ξ − x
T

T2 + 1
φ � ξ ∈ D(T), x ∈ C, �φ�ξ� = −x� 1

α
+ cφ��, (33)

with cφ = �φ� T
T2+1 φ�, is a self-adjoint operator that corresponds to a singular rank-one perturbation of T: indeed, if one applies the formal

expression (30) on vectors in the above domain, all terms outside the Hilbert space K cancel out because of the constraint in the domain
definition.

If, instead, φ ∈K−2�K−1, there is an issue: the action of �φ� on T
T2+1 φ is not defined. However, we can still fix some arbitrary c ∈ R and

define Tc
φ,α as the restriction of T∗φ to the domain

D(Tc
φ,α) = � ξ − x

T
T2 + 1

φ � ξ ∈ D(T), x ∈ C, �φ�ξ� = −x� 1
α
+ c��. (34)

Interestingly, in both cases, the dependence on the parameter α is in the domain of the operator and not in its action. Besides, in the case
φ ∈K−2�K−1, the operator depends on 1�α + c rather than on α and c separately.

Now we present an alternative procedure obtained by introducing an extra degree of freedom in the system, i.e., by searching for self-
adjoint realizations on the larger Hilbert space C⊕K rather than on K . Let us define the operator T̃c

φ,α with the domain

D(T̃c
φ,α) =

�������
�
�

x

ξ − x
T

T2 + 1
φ
�
�
������������

ξ ∈ D(T), x ∈ C������� (35)
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acting as

T̃c
φ,α
�
�

x

ξ − x
T

T2 + 1
φ
�
� =
����
� 1

α
+ c�x + �φ�ξ�

Tξ + x
1

T2 + 1
φ

����. (36)

In practice, we are handling the “diverging” terms by enlarging the Hilbert space instead of imposing a constraint: the dependence on α (also
on c) is therefore moved to the action of the operator rather than to its domain.

Now, by choosing K =H, � as the multiplication operator by ω, and φ = g, the operator T̃c
φ,α corresponds to a singular Friedrichs–Lee

Hamiltonian H g,ε with the dressed excitation energy

ε = 1
α
+ c. (37)

Notice that the freedom in the choice of c reflects the fact that, in the Friedrichs–Lee model, a bare excitation energy is not defined for g ∉H−1:
the operator really depends only on 1�α + c, in the same way as the Friedrichs–Lee Hamiltonian ultimately depends on the dressed energy ε
alone.

IV. SPECTRAL PROPERTIES
After having introduced the model, let us characterize its spectral properties with respect to two common decompositions of the spectrum

of a self-adjoint operator:

● absolutely continuous, singular continuous, and pure point spectrum and● essential and discrete spectrum

(the discrete spectrum being the set of all isolated eigenvalues of finite multiplicity20).
In the absence of coupling (i.e., for g = 0), the spectrum of the Friedrichs–Lee Hamiltonian H0,ε is obviously

σ(H0,ε) = {ε} ∪ σ(�), (38)

with σ(�) being the spectrum of �, i.e., the closure of the �-essential range of ω,

�- Ran(ω) = �λ ∈ R � ��ω−1((λ − δ, λ + δ))� > 0, ∀δ > 0�, (39)

which coincides with the support of the induced measure ν� defined as

ν�(B) = �
ω−1(B)d�(k) (40)

for every Borel set B ⊂ R.
Here and henceforth, the support of a Borel measure ν on R is the set

supp(ν) = {λ ∈ R � ν((λ − δ, λ + δ)) > 0, ∀δ > 0}. (41)

This is the smallest closed set C such that ν(R�C) = 0 and is also known as the set of growth points of ν or the spectrum of ν.
Moreover, by abusing the English language with the use of an adjective to modify rather than limiting a noun, we define a minimal

support (or an essential support) of the measure ν a set M such that ν(R�M) = 0 and that every Borel subset M0 ⊂M with ν(M0) = 0 has also
zero Lebesgue measure. Notice that a minimal support is not unique: minimal supports may differ by sets of zero Lebesgue and ν measure, and
it can happen either that supp(ν) is a minimal support or that it is not—there exists always a minimal support of ν whose closure coincides
with supp(ν), but, in general, the closure of a minimal support may differ from supp(ν) by a set of nonzero Lebesgue measure.

The absolutely continuous (ac), singular continuous (sc), and pure point (pp) components of σ(�) coincide with the supports of the ac,
sc, and pp components of ν�, whence

● σac(H0,ε) = σac(�),● σsc(H0,ε) = σsc(�), and● σpp(H0,ε) = {ε} ∪ σpp(�),
with Ψ0 being the eigenvector in Eq. (9) belonging to ε. At the physical level, supp(ν�) = σ(�) is the energy space of the boson. As
for the distinction between the essential and discrete spectrum, in the most general case, we have● σess(H0,ε) = σess(�) and● σdis(H0,ε)�{ε} = σdis(�),
with ε belonging to the discrete spectrum σdis(H0,ε) if and only if ε is isolated from the spectrum of �.
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We want to find a complete characterization of the spectral properties of H g,ε with respect to the spectrum of � for a generic form factor
g ∈H−2. First of all, let us examine the behavior of the discrete/essential decomposition of the spectrum.

Theorem IV.1. Let ε ∈ R and g ∈H−2. The essential spectrum of H g,ε in (16) and (17) coincides with the essential spectrum of �, with
the possible exception of the accumulation points of the eigenvalues of �.

Proof. Suppose g ∈H, i.e., consider the regular model. Then, using the matrix representation for H g,ε, we can write

Hg,ε = �ε 0
0 �� + �εa − ε �g�

g 0 � ≡ H0,ε + Kg,ε, (42)

with εa as in Eq. (18). K g,ε is finite-rank and hence leaves the essential spectrum unchanged, and thus, σess(H g,ε) = σess(H0,ε) = σess(�).
If g ∈H−2�H, Theorem III.4 ensures that H g,ε will be the norm resolvent limit of a sequence of regular models sharing the same essential

spectrum. Under these conditions, the norm resolvent limit preserves the essential spectrum with the possible exception of accumulation
points of the eigenvalues of �.20 This proves the claim. �

Remark IV.2. As a consequence of Theorem IV.1, when σess(�) is entirely continuous or dense pure point, it will coincide with the
essential spectrum of the corresponding Friedrichs–Lee operator. However, there may be conversion of the dense pure point spectrum into
continuous spectrum or vice versa.

Now, let us study the decomposition of the spectrum σ(H g,ε) into its absolutely continuous, singular continuous, and pure point
components. We define the coupling measure associated with � and g as

κg(B) = �
ω−1(B)�g(k)�2 d�(k) (43)

for all Borel sets B ⊂ R.
We have the following result:

Theorem IV.3. Let ε ∈ R and g ∈H−2. Let Hg = L2(Xg , �), with

Xg = ω−1(supp(κg)), (44)

and let H�
g be its orthogonal complement. Let Gg : R→ R ∪ {∞} be the function

Gg(λ) = �R
1(λ − λ′)2 dκg(λ′), (45)

and let Σ+g be the boundary value on the real axis of the self-energy function Σg in (20), defined almost everywhere by

Σ+g (λ) = lim
δ↓0 Σg(λ + iδ). (46)

Then,

● σac(H g,ε) = σac(�),
● σpp(Hg,ε) = σpp���

H
�
g
� ∪ �λ ∈ R � ε − λ = Σ+g (λ), Gg(λ) <∞�,

● σsc�Hg,ε�H�
g
� = σsc���

H
�
g
�,

● the set �λ ∈ R � ε − λ = Σ+g (λ), Gg(λ) =∞� is a minimal support for a maximal singular continuous measure of H g,ε, and● the restrictions of � and H g,ε to their absolutely continuous subspaces are unitarily equivalent.

Remark IV.4. This result can be explained as follows: First of all, the space X of field momenta can be split into a subset Xg of momenta,
which are effectively coupled to the atom (i.e., on which the form factor g is �-supported) and a complementary subset of uncoupled momenta;
this subdivision induces a correspondent subdivision of the energy space (i.e., the support of ν�) into coupled and uncoupled energies, i.e.,
the support of κg and its complement.
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As expected, the uncoupled part of the spectrum is independent of g and hence, particularly, is the same as in the case g = 0. As for the
coupled one, it turns out that the absolutely continuous spectrum is still unchanged, but the singular (i.e., pure point and singular continuous)
spectrum will be minimally supported by the set of solutions of the equation

ε − λ = Σ+g (λ). (47)

Finally, notice that the pole equation (47) admits the unique solution λ = ε only when g = 0 and, in this case, necessarily G(λ) = 0, and hence,
ε is in the pure point spectrum; our result is in full agreement with the uncoupled case discussed above.

Remark IV.5. If one substitutes g with βg for some β ∈ R and hence Σβg(z) = β2Σg(z), the singular spectrum becomes supported by
the set of solutions of the equation Σ+g (λ) = ε−λ

β2 , which will be a different set for every value of β. Therefore, the singular spectrum of the
Friedrichs–Lee Hamiltonian H g,ε is highly coupling-dependent.

The Proof of Theorem IV.3 will be given in Sec. IV C. First, we need some mathematical preliminaries.

A. The self-energy as a Borel transform

Definition IV.6. Let ν be a Borel measure on R satisfying the growth condition

�R
1

1 + λ2 dν(λ) <∞. (48)

Its (regularized) Borel transform is the function Bν : C�supp(ν)→ C acting as

Bν(z) = �R�
1

λ − z
− λ

1 + λ2 �dν(λ). (49)

Remark IV.7. In the literature, the (standard) Borel transform of a Borel measure ν on R is often defined as follows:

B̃ν(z) = �R
1

λ − z
dν(λ).

However, this definition makes sense for a smaller class of measure, i.e., measures ν satisfying the growth condition

�R
1

1 + �λ� dν(λ) <∞. (50)

For such measures, B̃ν(z) and Bν(z) only differ by a finite real constant; this difference is, in fact, immaterial for our purposes, since, as we
will show in the next proposition, ν depends only on the imaginary part of the boundary values of Bν(z) on the real line, but the choice (49) is
more convenient since it is well-defined for a larger class of measures. Indeed, for a Friedrichs–Lee Hamiltonian with form factor g, we have

● g ∈H iff ∫Rdκg(λ) <∞,● g ∈H−1 iff ∫R 1
1+�λ� dκg(λ) <∞, and

● g ∈H−2 iff ∫R 1
1+λ2 dκg(λ) <∞,

and hence, in particular, the case g ∈H−2�H−1 corresponds to the case in which κg does not admit a standard Borel transform [i.e., the
bare self-energy Σ̃g(z)] but does have a regularized Borel transform.

Proposition IV.8. Let g ∈H−2. The self-energy Σg of a Friedrichs–Lee Hamiltonian defined in Eq. (20) has the following properties:

(i) Σg is analytic in C�supp(κg) and Im Σg(z) > 0 for all z ∈ C+, i.e., it is a Herglotz function.13

(ii) The coupling measure κg in (43) can be uniquely reconstructed from the imaginary part of Σg by the Stieltjes inversion formula,

1
2
(κg((λ0, λ)) + κg([λ0, λ])) = 1

π
lim
δ↓0 �

λ

λ0

ImΣg(λ + iδ) dλ. (51)

(iii) The boundary values of Σg along supp(κg) are linked as follows to the Lebesgue decomposition of κg :

1. supp(κg) = {λ ∈ R � ImΣ+g (λ) > 0},
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2. Mac = {λ ∈ supp(κg) � 0 < ImΣ+g (λ) <∞} is a minimal support of κac
g , and the density of κac

g is ρg(λ) = 1
π ImΣ+g (λ),

3. Msc = {λ ∈ supp(κg) � ImΣ+g (λ) =∞, limδ↓0δ ImΣg(λ + iδ) = 0} is a minimal support of κsc
g , and

4. supp(κpp
g ) =Mpp, where Mpp = {λ ∈ supp(κg) � ImΣ+g (λ) =∞, limδ↓0δ ImΣg(λ + iδ) > 0}, and κg({λ}) = limδ ↓0 δ ImΣg(λ + iδ),

(iv) Let Gg(λ) be the function defined in (45), and then,

1. limδ↓0 1
δ ImΣg(λ + iδ) = Gg(λ), and

2. in addition, if Gg(λ) <∞, then Σ+g (λ) is finite and real and Σg(λ + iδ) = Σ+g (λ) + iδGg(λ) + o(δ), as δ ↓ 0, i.e., Gg(λ) is the upper
derivative of Σg(z) in the direction of the imaginary axis.

Proof. By (43), the self-energy of the Friedrichs–Lee Hamiltonian H g,ε in Eq. (20) can be written as

Σg(z) = �R�
1

λ − z
− λ

1 + λ2 �dκg(λ). (52)

Therefore, Σg(z) = Bκg (z), i.e., the self-energy is the regularized Borel transform of κg , and the properties (i)–(iv) follow from the general
theory of Borel transform (see Ref. 13 and references therein). �

Remark IV.9. A commonly shared name for analytic maps of the upper complex half-plane into itself is lacking in the mathematical
literature, as discussed in Ref. 13: what is here called “Herglotz function” is elsewhere referred to as Nevanlinna, Pick, Nevanlinna–Pick, or
R-function. This is a good example where Arnold’s principle (see the Preface of Ref. 28) definitely applies. In this paper, we will use the name
Herglotz, which seems to be more common in the mathematical physics literature.

B. Cyclic subspaces and spectral properties
In Subsection IV A, we have shown the link between the self-energy Σg and the properties of κg ; now, we will link the latter with the

spectral properties of the Friedrichs–Lee Hamiltonian. We will start from some basic definitions.

Definition IV.10. Let T be a self-adjoint operator on a Hilbert space K and let φ ∈K−2. The cyclic subspace Kφ of K spanned by φ is
defined as follows:

Kφ = Span� 1
T − z

φ � z ∈ C�R�. (53)

In particular, if Kφ =K , φ is called a cyclic vector and T is said to have a simple spectrum.

Proposition IV.11 (Refs. 20 and 27). Let T be a self-adjoint operator on a Hilbert space K , and let φ ∈K−2. The following properties
hold:

● Kφ is a reducing subspace for T, and hence, T = T�Kφ
⊕ T�

K
�
φ

.
● T�Kφ

is unitarily equivalent to the position operator (i.e., the multiplication operator by the identity function) on the Hilbert space
L2(R, νφ), where νφ is the spectral measure of T at φ, defined by νφ(B) = �φ�ET(B)φ�, for all bounded Borel sets B ⊂ R, with ET(⋅) being
the spectral projection of T.

● σ�T�Kφ
� = supp(νφ) and σj�T�Kφ

� = supp(νj
φ) for j ∈ {ac, sc, pp}.

Remark IV.12. In our case, K =H = L2(X, �), T = �, and φ = g. The cyclic subspace Hg spanned by g, as a consequence of
Stone–Weierstrass theorem, is equal to L2(Xg , �), with Xg given by Eq. (44); this justifies the use of the notation Hg = L2(Xg , �) in
Theorem IV.3. In particular, ��Hg

and ��
H
�
g

are the multiplication operators by the restriction of ω to Xg and X�Xg , respectively. Finally, g
is cyclic iff its support is a set of full measure �.

Remark IV.13. As a consequence of Propositions IV.8 and IV.11, the spectrum of ��Hg
and its decomposition can be studied by

analyzing the boundary values of the (regularized) Borel transform (49) of the coupling measure κg .

Proposition IV.14. Let ε ∈ R, g ∈H−2, and g ≠ 0, and let H g,ε be the corresponding Friedrichs–Lee Hamiltonian (16) and (17). Then,

(i) the cyclic subspace of C⊕H spanned by Ψ0 in Eq. (9) is C⊕Hg , with Hg being the cyclic subspace of H spanned by g. In particular, if
g is cyclic in H, Ψ0 is cyclic in C⊕H, and
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(ii) Hg,ε�(C⊕Hg)� = H0,ε�(C⊕Hg)� , and hence, the spectrum of Hg,ε�(C⊕Hg)� is the same as that of the uncoupled case.

Proof. Let K = C⊕H. By definition, the cyclic subspace KΨ0 spanned by Ψ0 is

KΨ0 = Span� 1
Hg,ε − z

Ψ0 � z ∈ C�R�, (54)

where, by Eq. (19), for any z ∈ C�R, we have

1
Hg,ε − z

Ψ0 = 1
ε − z − Σg(z)

�
�

1

− 1
� − z

g
�
�. (55)

To prove that KΨ0 = C⊕Hg , we will prove the equivalent equality K
�
Ψ0
= (C⊕Hg)� = {0}⊕H�

g .

Let Ψ = �x
ξ� be orthogonal to vectors of the form (55) such that

1
ε − z − Σg(z)�x − �ξ �

1
� − z

g �� = 0, ∀z ∈ C�R. (56)

This implies that x = �ξ � 1
�−z g � for all z ∈ C�R and hence necessarily that

x = 0, �ξ � 1
� − z

g � = 0 ∀z ∈ C�R, (57)

with the second equality meaning that ξ∈H�
g . This proves (i). Besides, by the expression of the Hamiltonian in Eq. (17), for any ξ∈H�

g∩D(�), we have

Hg,ε�0
ξ� = � 0

�ξ� (58)

so that {0}⊕H�
g is invariant under H g,ε (which is true, in general, for any cyclic subspace) and, particularly, the action of H g,ε on it is

independent of g. This proves (ii). �
C. Proof of Theorem IV.3

We are now ready to prove Theorem IV.3.

Proof. By Proposition IV.14, we know that Hg,ε�(C⊕Hg)� = H0,ε�(C⊕Hg)� , so we must only find the spectrum of the restriction of H g,ε to
the cyclic subspace C⊕Hg . To simplify the notation, without loss of generality, let us suppose g cyclic for �; then, Proposition IV.14 implies
that Ψ0 is cyclic for H g,ε. Since both operators, � and H g,ε, are self-adjoint on their Hilbert spaces, by Proposition IV.11, the two operators
are equivalent to the position operators on L2(R, κg) and L2(R, νΨ0), respectively, with νΨ0 being the spectral measure of H g,ε at Ψ0; finally,
by Proposition IV.8, the ac, sc, and pp components of the maximal spectral measures κg and νΨ0 of both operators can be inferred by the
boundary values of the imaginary parts of their Borel transforms.

Now, the (regularized) Borel transform of κg is the self-energy Σg(z). The (standard) Borel transform of νΨ0 is defined as follows:

Πg(z) = �Ψ0 � 1
Hg,ε − z

Ψ0 �, (59)

where we dropped the regularizing term, which is not needed because Ψ0 ∈ C⊕H, and hence, νΨ0 is a finite measure. A straightforward
calculation yields

Πg(z) = 1
ε − z − Σg(z) , (60)

and hence, for any λ ∈ R and δ > 0,

ImΠg(λ + iδ) ∼ ImΣg(λ + iδ)�ε − λ − Σg(λ + iδ)�2 , as δ ↓ 0. (61)
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First of all, let us examine the absolutely continuous components. By Eq. (61), ImΣg(λ + iδ) has a finite nonzero limit if and only if
Im Πg(λ + iδ) has a finite nonzero limit; by Proposition IV.8, this proves that κac

g and νac
Ψ0

are minimally supported on (Lebesgue-almost
everywhere) equal sets; since they are absolutely continuous measures, this means that their densities are supported on (Lebesgue-almost
everywhere) equal sets, and hence, the position operators on the corresponding L2 spaces are unitarily equivalent. This proves the equality
between the absolutely continuous spectra of � and H g,ε.

Now let λ be in a minimal support of the singular spectrum of H g,ε; by Proposition IV.8 and Eq. (61), this happens iff ε − λ = Σ+g (λ)
[since, if ImΣg(λ + iδ) diverges as δ ↓ 0, the denominator diverges faster], also implying that Σ+g (λ) is real. To distinguish between the pure
point and singular continuous components, we must examine the limiting value of δΠg(λ + iδ) as δ ↓ 0. We have

δ Im Πg(λ + iδ) ∼ 1
δ ImΣg(λ + iδ)

1
δ2 (ε − λ − ReΣg(λ + iδ))2 + 1

δ2 ImΣg(λ + iδ)2
. (62)

Now, when Gg(λ) =∞, the denominator in (62) diverges faster than the numerator, and hence, δΠg(λ + iδ)→ 0 as δ ↓ 0. Besides, when
Gg(λ) <∞, the first term in the denominator in (62) vanishes since ReΣg(λ + iδ) ∼ ε − λ + o(δ), and hence, (ε − λ − ReΣg(λ + iδ))2 ∼ o(δ2);
hence, we are left with

δ Im Πg(λ + iδ) ∼ δ
ImΣg(λ + iδ) → 1

Gg(λ) > 0, as δ ↓ 0. (63)

As a result, the singular continuous component of νΨ0 is minimally supported on the set

�λ ∈ R � ε − λ = Σ+g (λ), Gg(λ) =∞�, (64)

and the support supp(νpp
Ψ0
) of the pure point component of νΨ0 is

supp(νpp
Ψ0
) = �λ ∈ R � ε − λ = Σ+g (λ), Gg(λ) <∞�. (65)

�
Remark IV.15. Notice that ImΣ+g (λ) =∞ iff limδ ↓0 Im Πg(λ + iδ) = 0. In the case in which the singular spectra of both � and H g,ε are

purely discrete, this means that inside the support of the spectral measure, the eigenvalues of � and H g,ε are completely disjoint: physically,
no stable state of the field with energy coupled to the atom preserves its stability.

As for the energy ε of the excited atom, which is an eigenvalue of the uncoupled operator,

● if ε ∉ supp(κg), it will also be an eigenvalue of the coupled operator and● if ε ∈ supp(κg), then it is an eigenvalue of the coupled operator if it satisfies the following equation:

Σ+g (ε) = 0. (66)

In particular, if the spectral density of the absolutely continuous part of κg is continuous, it must vanish at ε.

Remark IV.16. The eigensystem for the Friedrichs–Lee Hamiltonian can be solved explicitly. Let λ ∈ R, x ∈ C, and ξ ∈ D(�) such that

Hg,ε
�
�

x

ξ − x
�

�2 + 1
g
�
� = λ

�
�

x

ξ − x
�

�2 + 1
g
�
�; (67)

a direct calculation shows that λ must solve Eq. (47) and

ξ(k) = −x� 1
ω(k) − λ

− ω(k)
ω(k)2 + 1

�g(k), (68)

where the condition on λ ensures ξ to be square-integrable.

Remark IV.17. An important consequence of Theorem IV.3 is that, modulo a possible uncoupled part, the spectrum of the
Friedrichs–Lee Hamiltonian with a given ε depends entirely on the coupling measure κg or equivalently on the self-energy Σg(z), which can
always be reconstructed from the coupling measure through the inversion formula (51). Different choices of the momentum space (X, �), of
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the dispersion relation ω and of the form factor g, but yielding the same κg and the same uncoupled part are fully equivalent at the spectral
level.

To this respect, it is worth noticing that every Borel measure on R satisfying the growth condition (48) can be obtained as the coupling
measure of a Friedrichs–Lee Hamiltonian. Indeed, if ν is the desired coupling measure, just choose (X, �) = (R, ν), ω(k) = k, and g(k) = 1 for
all k ∈ R. Then, one immediately obtains

κg(B) = �
ω−1(B)�g(k)�2 d�(k) = �

B
dν(λ) = ν(B) (69)

for any Borel set B ⊂ R.

V. SOME EXAMPLES
In this section, we discuss the spectral properties of some interesting examples of Friedrichs–Lee models. The section is organized as

follows:

● Examples V.1–V.3 concern the case in which σ(�) is purely absolutely continuous.● Example V.4 explores a purely discrete σ(�).● Finally, in Example V.5, we investigate a pure point σ(�), with dense eigenvalues in [0, 1], which becomes singular continuous when
the coupling is switched on.

Some considerations are now in order. Suppose that σ(�) is purely absolutely continuous in some (possibly unbounded) closed interval
J ⊂ R, and hence,

● σac(H0,ε) = J and● σpp(H0,ε) = {ε},
where ε can also be in J. Now, switching on a coupling g, we will still have σac(H g,ε) = J. In particular, ε is again in the absolutely continuous
spectrum of H g,ε if and only if ε ∈ J, but in general, it will not be in σpp(H g,ε). However, ε ∈ σpp(H g,ε) if and only if Σ+g (ε) = 0, i.e., if ε is a zero
for the density (assumed to be continuous) of κg and, in addition, ReΣ+g (ε) = 0. Physically, the eigenvalue becomes unstable whenever it lies
in a set of coupled values of energy, except when the coupling density vanishes at that point. Of course, depending on the choice of κg , the
pure point spectrum may contain other elements. In particular, if the coupling density is nonzero on the whole real line, the singular spectrum
is empty and the eigenstate Ψ0 in Eq. (9) of the uncoupled Hamiltonian H0,ε becomes unstable.

More generally, if some λ ∈ R is a zero of the coupling density [hence ImΣ+g (λ) = 0], a necessary and sufficient condition for it to be in
the singular spectrum is that the equation ε − λ = ReΣ+g (λ) is fulfilled.

Example V.1 (Lebesgue coupling measure on R). Suppose that J = R and the coupling measure (43) reads

dκg(λ) = β
2π

dλ (70)

for some β > 0. This is obtained from a Friedrichs–Lee model with dispersion relation ω(k) = k on L2(R) and a flat form factor g(k) =�β�2π
(see Remark IV.17). Then, a straightforward calculation shows that

Σg(z) =
�����������

iβ
2

, Im z > 0,

− iβ
2

, Im z < 0.
(71)

This implies that the pole equation (47) does not have any solution, and hence, σ(H g,ε) is purely absolutely continuous. The uncoupled
eigenvalue ε “dissolves” in the continuum for any nonzero value of the coupling β. Physically, the bound state with energy ε becomes unstable.
Indeed, one can show that the evolution of the state Ψ0 in Eq. (9),

�x(t)
ξ(t)� = UHg,ε(t)Ψ0, (72)

yields x(t) = e−� β
2+iε�t , and hence, �x(t)�2 = e−βt : an exponential decay takes place. Notice that a purely exponential decay law at both short

and large times is possible since

● the initial state Ψ0 is not in the domain of H g,ε, but it is in the domain of H0,ε, since, being κg Lebesgue, g ∈H−2�H,10 and● � is unbounded both from below and from above, since σ(�) = supp(κg) = R, and hence, Paley–Wiener’s theorem, which prohibits
an exponential decay at large times, does not apply.9,17,21
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In Sec. VI, we will interpret this result in the framework of the theory of resonances.

Example V.2 (Lebesgue coupling measure on [0,∞)). As a second example, consider now a Friedrichs–Lee Hamiltonian with dis-
persion relation ω(k) = k on H = L2(0,∞) and a flat form factor g(k) =�β for some β > 0 so that the coupling measure (43) reads

dκg(λ) = βχ[0,∞)(λ) dλ. (73)

In this case, the uncoupled spectrum is composed of the eigenvalue {ε} and an absolutely continuous part in J = [0,∞). Again, the
self-energy can be evaluated exactly,

Σg(z) = −β log(−z), (74)

with log being the principal value of the complex logarithm, i.e., log(−z) = log �z� + iArg(−z), with Arg(z) ∈ (− π
2 , π

2 ). One can check that this
function is indeed analytic in C�[0,∞) and has a branch cut along the support of the measure. Let us search for the singular spectrum when
the coupling is switched on. Solutions of the pole equation (47) must be searched in (−∞, 0) since the coupling density is nonzero in [0,∞);
we have

β log(−λ) = −ε + λ, (75)

and hence,

− λ
β

e−λ�β = 1
β

e−ε�β, (76)

which has a unique real solution expressed through the principal branch W0 of Lambert’s W-function (or product-log function),7

E(ε, β) = −β W0� 1
β

e−ε�β�. (77)

Hence, we have a unique eigenvalue E(ε, β) for H g,ε. It is interesting to study the asymptotic behavior of E(ε, β) as a function of the excitation
energy ε of the atom. From the properties of the Lambert function,

W0(x) ∼ log x, as x →∞, W0(x) ∼ x, as x → 0, (78)

we have
E(ε, β) ∼ ε, as ε→ −∞, E(ε, β) ∼ −e−ε�β, as ε→∞. (79)

This means that, when ε is far away from the lowest energy level of the inner Hamiltonian �, the coupled eigenvalue E(ε, β) is close to ε, and
hence, the spectrum is nearly unchanged. When ε approaches and eventually reaches σ(�), the approximation E(ε, β) ∼ ε is no longer valid
and, as ε→∞, E(ε, β) approaches the boundary of σ(�).

Example V.3 (Sinusoidal coupling measure). Now, we consider a Friedrichs–Lee Hamiltonian in which the coupling density has support
on the whole real line but admits some isolated zeros. Let the coupling measure (43) be

dκg(λ) = β
2π
(1 − cos(τλ)) dλ (80)

for some β > 0 and τ ∈ R, i.e., an absolutely continuous measure with sinusoidal density. This can be obtained from a Friedrichs–Lee model
with the dispersion relation ω(k) = k on L2(R) and the form factor g(k) = (β(1 − cos τk)�2π)1/2. As in Example V.1, here, the uncoupled
operator H0,ε has a spectrum composed of the eigenvalue ε embedded in an absolutely continuous spectrum covering the whole real line;
however, here, the coupling density vanishes at λj = 2jπ�τ, with j ∈ Z.

The self-energy is

Σg(z) =
�����������

iβ
2
�1 − eiτz�, Im z > 0,
−iβ

2
�1 − e−iτz�, Im z < 0,

(81)
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which is indeed discontinuous on the whole real line except for the zeros λj; moreover, it is a periodic function. The pole equation (47) reads

���������
ε − λ = β

2
sin τλ,

cos τλ = 1.
(82)

The second equation is satisfied only when, as anticipated, λ is one of the zeros of the (continuous) coupling density; if so, the first equation
simply becomes ε − λ = 0. The following phenomenon occurs: the singular spectrum of H g,ε is empty except for some “resonant” values of the
parameter ε, namely, ε = 2πj

τ for some j ∈ Z—when this happens, σpp(H g,ε) = {ε}.

Example V.4 (Periodic discrete coupling measure). Consider a Friedrichs–Lee model with the dispersion relation ω(k) = k and the flat
form factor g(k) =�β�2π (β > 0) on L2(R, �), where � = ∑j∈Zδjτ (τ > 0) with δk being the Dirac measure at k ∈ R. It is easy to show that the
coupling measure (43) is

κg = β
2π�j∈Zδjτ , (83)

i.e., κg is supported on τZ. A direct calculation shows that

Σg(z) = −β
2

cot�πz
τ
�,

which can be extended to the real line except for the poles at τZ. The spectrum of the uncoupled operator will be purely singular and consists
of the solutions of the equation

cot�πλ
τ
� = 2

β
(λ − ε),

which admits a countable set of isolated solutions {Ej(ε, β, τ)}j∈Z (hence, the spectrum of H g,ε is again pure point), where Ej(ε, β, τ) ∈ (jτ,(j + 1)τ). In particular, each Ej(ε, β) varies smoothly with β, and

● Ej(ε, β, τ)→ τj, as β→ 0, i.e., in the limit of small coupling, we recover the uncoupled spectrum of �, and● Ej(ε, β, τ)→ τ�j + 1
2�, as β→∞, i.e., in the limit of large coupling, the spectrum is rigidly shifted by τ

2 .

Different from the previous cases, the singular spectrum (which is again pure point) is nonempty for every value of the parameters and indeed
contains a countable number of points.

Example V.5 (Generation of a singular continuous spectrum). This example is an adaptation of Example 2 in Ref. 29 to our framework.
Recall that a real number in [0, 1] is said to be a dyadic rational of order n ∈ N if it can be written in the form j�2n for some integer j. Dyadic
rationals of any order are the numbers whose expansion in base 2 is finite; such numbers are dense in [0, 1].

For any integer n ≥ 1, let us consider the normalized Borel measure

νn = 1
2n

2n

�
j=1

δj�2n (84)

and a sequence of positive numbers (an)n∈N. We define the measure

ν = ∞�
n=1

anνn. (85)

ν is therefore a pure point measure with points on the dense set of dyadic rationals between 0 and 1; besides, it is a finite measure iff∑nan <∞,
the latter sum being ν(R) = ν([0, 1]).

Consider a Friedrichs–Lee model H g,ε with field momentum space (X, �) = (R, ν), dispersion relation ω(k) = k, and flat form factor
g(k) = β1/2, with β > 0, so that the coupling measure reads κg = βν. Hence, the spectrum of the uncoupled Hamiltonian H0,ε is entirely pure
point, consisting of the dyadic rationals in [0, 1] and (if not already dyadic) the atom excitation energy ε. By Theorem IV.3, we know that, by
switching on the atom–field interaction, the new spectrum will be entirely singular (since creation of an absolutely continuous spectrum is
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prohibited) and will be the closure of set of all solutions of the pole equation (47). The discriminant between singular continuous and pure
point spectrum is given by the value of the function Gg(λ) in (45). In our case,

Gg(λ) = �R
1(λ − λ′)2 dκg(λ′) = β

∞�
n=1

anLn(λ), (86)

with

Ln(λ) = �R
1(λ − λ′)2 dνn(λ′) = 1

2n

2n

�
j=1

1
�λ − j

2n �2 . (87)

If λ is dyadic, then Gg(λ) =∞. Besides, for any n, there will be some integer j0 ∈ {1, . . ., n} for which the quantity �λ − j02−n� is the smallest
among the others, i.e., j02−n is the dyadic of order n that is closest to λ. Therefore, �λ − j02−n� is smaller than the spacing between any two
consecutive dyadic rationals of order n, which equals 2−n. This means that

�λ − j0

2n � ≤ 2−n, (88)

and thus,

1
2n

1
�λ − j0

2n �2 ≥ 1
2n 22n = 2n. (89)

In other words, for each n, the sum in the definition of Ln(λ) contains one term, which is larger than 2n; hence, Ln(λ) > 2n, and thus,

Gg(λ) ≥ β
∞�

n=1
an2n. (90)

This means that if we choose (an)n∈N in such a way that

∞�
n=1

an2n =∞, (91)

then, necessarily, Gg(λ) =∞ for every λ ∈ [0, 1], meaning that the spectrum of H g,ε will be fully singular continuous. Interestingly, the
same phenomenon happens for every value of β > 0, however small; this is an example of instability of the dense set of eigenvalues under
perturbations.

VI. RESONANCES
We now complete the discussion on the spectral properties of the Friedrichs–Lee operator by studying the resonances of the model. In

the following, we will denote by C± ∶= {z ∈ C � ± Im z > 0} the open upper and lower half-planes, and for any subset A ⊂ C, we will use the
notation A± ∶= A ∩C± and A0 ∶= A ∩R for its components in C± and R, respectively, so that A is the disjoint union A = A+ ∪ A− ∪ A0.

Let us recall the definition of a resonance for a self-adjoint operator T.

Definition VI.1. Let T be a self-adjoint operator on a Hilbert space K , and let z0 ∈ C with Im z0 < 0. Then, z0 is a resonance for T if there
is some ψ ∈K such that the function

z ∈ C+ � Rψ(z) = �ψ � 1
T − z

ψ � ∈ C (92)

admits a meromorphic continuation from the upper to the lower half-plane having a pole at z0.

Remark VI.2. The function (92) is a Herglotz function; indeed, it is the (standard) Borel transform of the (finite) spectral measure of
T at the vector ψ, and hence, the properties listed in Proposition IV.8 hold true; in particular, every singularity of Rψ lies on the real line. In
particular, if σ(T) has an absolutely continuous component along some interval J ⊂ R, then Rψ has a branch cut along J with finite boundary
values and thus will admit an analytic continuation “through the cut” from the upper to the lower plane.13

A pole at z0 of the meromorphic continuation is identified as a resonance, since it yields a contribution proportional to e−iz0t to the
survival amplitude of ψ; if z0 is close to the real line, this contribution may dominate at large times and make ψ a metastable state with energy
Re z0 and decay rate �Im z0�.
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Remark VI.3. The definition of resonance presented above is not the only possible one (see the discussions in Ref. 26 and in p. 165 of
Ref. 14). In scattering situations, quantum resonances are most commonly defined with respect to a Hamiltonian pair (T, T0), with T0
playing the role of a free Hamiltonian and T being the perturbed one: in this framework, they are associated with poles of the meromorphic
continuation of the S-matrix, and it must be ensured (see p. 55 of Ref. 25) that the function

z ∈ C+ � R0
ψ(z) = �ψ � 1

T0 − z
ψ � ∈ C (93)

admits a meromorphic continuation from the upper to the lower half-plane, which is analytic at the resonance z0. In our case, the role of the
Hamiltonian pair (T, T0) can be played by the coupled and uncoupled Friedrichs–Lee Hamiltonians, for which it is not difficult to show that
the aforementioned condition holds.

Now, for any ψ ∈K , real poles of Rψ , i.e., real resonances, are obviously simple poles of the resolvent of T, i.e., eigenvalues of T. Con-
versely, an eigenvalue λ0 of T is not necessarily a pole of Rψ for all nonzero ψ ∈K , since the spectral measure of T at ψ may not be supported
in a neighborhood of λ0 (e.g., if ψ is an eigenvector of T with eigenvalue λ ≠ λ0); however, if we consider any dense subset D of K , necessarily,
there will be some ψ ∈D such that Rψ has a pole at λ0.

It would be useful to characterize non-real resonances in a similar way. Aguilar–Balslev–Combes–Simon theory of resonances2,6,26 (see
also Ref. 14 and 31) allows us to identify resonances of a self-adjoint operator T as the (complex) eigenvalues of a “deformed” Hamiltonian
T(w), with w being a complex parameter.

We will apply this formalism to the Friedrichs–Lee Hamiltonian H g,ε; for this purpose, we will need some assumptions on the structure
of the inner Hamiltonian � and of the form factor g. First of all, we will make an assumption about the spectral properties of �.

Hypothesis 1. There is an interval J ⊂ R such that J ⊂ σac(�) and J ∩ (σsc(�) ∪ σpp(�)) = Á.

Remark VI.4. Notice that, by Theorem IV.1 and Hypothesis 1, J ⊂ σess(�) and σdis(�) ∩ J = Á.

Before introducing other hypotheses, we need the following definition:

Definition VI.5. A spectral deformation family is a family (U(w))w∈W0 of linear operators on H with the following properties:

● W0 ⊂ R is an open and connected neighborhood of 0.● U(w) is unitary for all w ∈W0, and U(0) = I.● (U(w))w∈W0 admits a dense set A of analytic vectors such that for any ψ ∈A , the map w ∈W0 � ψ(w) = U(w)ψ has an analytic
continuation in an open and connected set W ⊂ C, with W0 =W ∩R; moreover,A(w) = {ψ(w) �ψ ∈A} is dense inH for allw ∈W.

Given a spectral deformation family (U(w))w∈W0 , we assume that for all w ∈W0,

U(w)D(�) = D(�) (94)

and define the deformation of the inner Hamiltonian � as

w ∈W0 � �(w)ψ = U(w)�U(w)∗ψ (95)

for all ψ ∈ D(�).
More generally, we will need that the operators �(w) are embedded in a type-A analytic family, as follows:

Hypothesis 2. There is a family of closed operators (�(w))w∈W, defined on the common domain D(�), such that, for all ψ ∈ D(�), the
map

w ∈W � �(w)ψ ∈H (96)

is the analytic continuation from W0 into W of the map (95).

Notice that for w ∈W0, �(w) is unitarily equivalent to � and, particularly, the two operators share the same spectrum; for non-real
w, the spectrum of �(w) in general differs from that of �. For our purposes, we must require that the essential spectrum of �(w) in (96)
changes “nicely” as a function of w ∈W, in the sense that it must be always possible, for any non-real w, to “move continuously” through J
from the upper to the lower complex half-plane so that the matrix elements of the resolvent of �(w) are analytic continuation of those of �
through J. In order to accomplish these properties, we will make the following assumption:
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FIG. 1. Graphical representation of Hypothesis 3. For any w ∈ W+, the set S+ does not intersect the essential spectrum of the deformed Hamiltonian �(w) (gray region).
Moreover, there exists a set Sw ⊂ S such that S−w ∪ S0

w does not intersect the essential spectrum of �(w).

Hypothesis 3. There exists an open connected subset S ⊃ J of the complex plane such that, for every w ∈W+, the following properties hold
(see Fig. 1):

● σess(�(w)) ∩ S+ = Á.● There exists some open connected Sw ⊂ S, with S0
w ≠ Á, such that σess(�(w)) ∩ (S−w ∪ S0

w) = Á.

In other words, we require that the region S is such that, for any w ∈W+,

● the set S+ does not contain elements of the essential spectrum of the deformed Hamiltonian �(w) and● there is a subset Sw ⊂ S whose component with the nonpositive imaginary part, i.e., S−w ∪ S0
w, does not intersect the essential spectrum

of �(w).
Hypotheses 1–3 would be sufficient to characterize all resonances of � as eigenvalues of its deformations �(w) (see Ref. 14); since we

are interested in characterizing the resonances of H g,ε, we will need additional hypotheses on the form factor g ∈H−2.
First of all, we define the deformation of the form factor g,

w ∈W0 � �g(w)�ψ� = �g�U(w)∗ψ� (97)

for all ψ ∈ D(�) and require that the functionals g(w) are embedded in an analytic family.

Hypothesis 4. There exists a family (g(w))w∈W⊂H−2 such that for all ψ ∈ D(�), the map

w ∈W � �g(w)�ψ� ∈ C (98)

is the anti-analytic continuation from W0 into W of the map in (97).

Finally, we will need the following assumption on the form factor g.

Hypothesis 5. For all λ ∈ J, the boundary value Σ+g in (46) of the self-energy has a positive imaginary part, namely,

ImΣ+g (λ) > 0. (99)

Remark VI.6. Notice that, by Theorem IV.3, Hypothesis 1, and Hypothesis 5, it follows that J ⊂ σac(H g,ε) and
J ∩ (σsc(Hg,ε) ∪ σpp(Hg,ε)) = Á.

Hypotheses 4 and 5 on the form factor g, together with Hypotheses 1–3 on the inner Hamiltonian �, allow us to characterize all
resonances of the Friedrichs–Lee Hamiltonian H g,ε.

J. Math. Phys. 62, 032102 (2021); doi: 10.1063/5.0013032 62, 032102-18

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Theorem VI.7. Let H g,ε a Friedrichs–Lee Hamiltonian (16) and (17) with the excitation energy ε ∈ R, inner Hamiltonian �, and form
factor g ∈H−2. Suppose that Hypotheses 1–5 hold true, and define, for all w ∈W, the operator H g,ε(w) as follows:

D(Hg,ε(w)) =
���������
���

x

ξ − x
�(w)

�(w)2 + 1
g(w)

���
�������������

x ∈ C, ξ ∈ D(�)
���������

, (100)

Hg,ε(w)���
x

ξ − x
�(w)

�(w)2 + 1
g(w)

��� =
���

εx + �g(w)�ξ�
�(w)ξ + x

1
�(w)2 + 1

g(w)
���. (101)

Let S−W = �w∈W+S−w. Then, the following holds:

(i) There is a dense set Ã ⊂ C⊕H of analytic vectors such that, for every Ψ ∈ Ã , the function

z ∈ C+ � �Ψ � 1
Hg,ε − z

Ψ� ∈ C (102)

has a meromorphic continuation across J from C+ to S−W .
(ii) z0 ∈ S−W is a resonance of H g,ε if and only if z0 is an eigenvalue of H g,ε(w0) for some w0 ∈W+.

Proof. Our proof will be organized as follows: First of all, we will prove that H g,ε satisfies properties analogous to the ones fulfilled
by �:

(a) H g,ε has a purely absolutely continuous spectrum on J.
(b) For all w ∈W0, we define

Ũ(w) = I ⊕U(w), Ã = C⊕A ; (103)

then, it results that (Ũ(w))w∈W0 is a spectral deformation family with a dense set of analytic vectors Ã . Moreover, for all w ∈W0,
the Hamiltonian H g,ε(w) in Eq. (101) coincides with Ũ(w)Hg,εŨ(w)∗ and the map w ∈W0 � Hg,ε(w) = Ũ(w)Hg,εŨ(w)∗ admits an
analytic continuation from W0 into W.

(c) For every w ∈W+, σess(H g,ε(w)) ∩ S+ = Á and σess(Hg,ε(w)) ∩ (S−w ∪ S0
w) = Á; then, following an analogous argument as in Ref. 14, we

will deduce (i) and (ii) from (a)–(c).

Property (a) follows directly from Theorems IV.1 and IV.3 using Hypotheses 1 and 5, as explained in Remarks VI.4 and VI.6.
Let us prove property (b). It is straightforward that Ã and (Ũ(w))w∈W in (103) have the desired properties. To prove the equality

Hg,ε(w) = Ũ(w)Hg,εŨ(w)∗ for all w ∈W0, notice that, for any w ∈W0, the domain of Ũ(w)Hg,εŨ(w)∗ is

Ũ(w)D(Hg,ε) =

���������������������������

�����
x

U(w)ξ′ − xU(w) �
�2 + 1

g

�����

�������������������������������

x ∈ C, ξ′ ∈ D(�)

���������������������������

=

���������������������������

�����
x

ξ − xU(w) �
�2 + 1

g

�����

�������������������������������

x ∈ C, ξ ∈ D(�)

���������������������������

, (104)

where we have used the assumption U(w)D(�) = D(�) in (94); besides,

U(w) �
�2 + 1

g = �(w)
�(w)2 + 1

g(w), (105)
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easily following from the equality �(w) = U(w)�U(w)∗ for w ∈W0, and hence, the domains (100) and (104) coincide. The equality between
the actions of H g,ε(w) and Ũ(w)Hg,εŨ(w)∗ on the domain can be shown in a similar way.

Now, we prove (c) and (d). By Hypothesis 1, for every w∈W+, �(w) has no essential spectrum in S+, and hence, by Hypotheses 2–4, then
the function

(z, w)� Σg(z, w) = �g(w) � � 1
�(w) − z

− �(w)
�(w)2 + 1

�g(w)� (106)

is meromorphic in S+ × (W+ ∪W0). Moreover, since U(w) is unitary for all w ∈W0, it results that

∀z ∈ S+, ∀w ∈W0 : Σg(z, w) = Σg(z). (107)

Hence, by the identity principle for meromorphic functions, we have

∀z ∈ S+, ∀w ∈ (W+ ∪W0) : Σg(z, w) = Σg(z), (108)

and hence, the function z ∈ S+ × (W+ ∪W0)� Σg(z,w) is analytic because the self-energy z ∈ S+ � Σg(z) is analytic. Now, fix w ∈W+.
By Hypothesis 3, there is Sw ⊂ S such that σess(�(w)) has no intersection with the set S−w ∪ S0

w. Hence, for this value of w, the map z ∈ S+� Σg(z,w) can be meromorphically continued from S+ to S−w across S0
w ⊂ J. Repeating the process for every w ∈W+, the function z ∈ S+� Σg(z,w) is meromorphically continued from S+ to S−W ∪ S0

W , obtaining the function

z ∈ S+ ∪ S−W ∪ S0
W � Σg(z, w) ∈ C; (109)

this continuation is obviously unique and independent of w.
Now, we compute the resolvent of H g,ε(w)with w ∈W+. It can be easily proven, in the same way as for the non-deformed Friedrichs–Lee

Hamiltonian, that for every z ∈ S+ ∪ S−W ∪ S0
W , with z ∉ σ(H g,ε(w)),

1
Hg,ε(w) − z

�x
ξ� =

�������

x − �g(w) � 1
�(w)−z ξ �

ε − z − Σg(z, w)
1

�(w) − z
ξ − x − �g(w) � 1

�(w)−z ξ �
ε − z − Σg(z, w) 1

�(w) − z
g(w)

�������
. (110)

Therefore, the elements of the spectrum of H g,ε(w) will be either

● elements of the spectrum of �(w) or● solutions of the equation ε − z = Σg(z,w).
By Hypothesis (3), fixing w ∈W+, then σess(�(w)) ∩ S+ = Á and σess(�(w)) ∩ (S0

w ∪ S−w) = Á, i.e., the region S+ ∪ S0
w ∪ S−w does not contain

the essential spectrum of �(w). Moreover, since the function in (109) is meromorphic, the equation ε − z = Σg(z,w) can only admit isolated
solutions, i.e., the spectrum of H g,ε(w) can only have isolated eigenvalues in S−w ∪ S0

w.
Now, we can proceed with the proof of (i) and (ii).
(i) Let Ψ ∈ Ã and consider the following analytic function:

z ∈ C+ � RΨ(z) = �Ψ � 1
Hg,ε − z

Ψ� ∈ C. (111)

Since (Ũ(w))w∈W0 is a spectral deformation family with a dense set of analytic vectors Ã , the map w ∈W0 � Ψ(w) = Ũ(w)Ψ ∈ C⊕H admits
an analytic continuation in W. Now, we consider the function

(z, w) ∈ S+ × (W+ ∪W0)� RΨ(z, w) = �Ψ(w) � 1
Hg,ε(w) − z

Ψ(w)� ∈ C; (112)

using the expression for the resolvent in Eq. (110), Hypotheses 2–4, and (b) and (c), we obtain that the function in (112) is meromorphic.
Moreover, it is easy to observe that, for all w ∈W0,

�Ψ(w) � 1
Hg,ε(w) − z

Ψ(w)� = �Ũ(w)Ψ �Ũ(w) 1
Hg,ε − z

Ψ�, (113)

and thus, since Ũ(w) is unitary, ∀z ∈ S+, ∀w ∈W0 : RΨ(z, w) = RΨ(z). (114)
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Hence, by the identity principle for meromorphic functions, we have

∀z ∈ S+, ∀w ∈W+ ∪W0 : RΨ(z, w) = RΨ(z), (115)

and so, the function z ∈ S+ × (W+ ∪W0)� RΨ(z,w) is analytic because z ∈ S+ � RΨ(z) is analytic. Now, fix w ∈W+. By (c), we have
σess(Hg,ε(w)) ∩ (S−w ∪ S0

w) = Á; hence, for this value of w, the map z ∈ S+ � RΨ(z,w) can be meromorphically continued from S+ to S−w across
S0

w ⊂ J. Repeating the process for every w ∈W+, the function z ∈ S+ � RΨ(z,w) can be meromorphically continued from S+ to S−W ∪ S0
W ,

obtaining the function

z ∈ S+ ∪ S−W ∪ S0
W � RΨ(z, w) ∈ C; (116)

this continuation is obviously unique and independent of w.
(ii) Let z0 ∈ S−W be a resonance for H g,ε, i.e., z0 ∈ S−w0 for some w0 ∈W+. By definition, there is some Ψ ∈ C⊕H such that the function

z ∈ C+ � Rψ(z) = �Ψ � 1
Hg,ε − z

Ψ� ∈ C (117)

admits a meromorphic continuation from the upper to the lower half-plane having a pole at z0. Since Ã is dense in C⊕H, we can assume
that Ψ ∈ Ã . Then, by (116), the meromorphic continuation from the upper to the lower half-plane of (117) is the expectation value of the
resolvent of H g,ε(w0) at Ψ(w0), i.e., �Ψ(w0) � 1

Hg,ε(w0)−z Ψ(w0) �, and the poles of the latter object are necessarily eigenvalues of H g,ε(w0);
hence, z0 is an eigenvalue of H g,ε(w0).

Conversely, suppose that z0 ∈ S−W is an eigenvalue of H g,ε(w0) for some w0 ∈W+. Since Ã(w0) = �Ψ(w0) �Ψ ∈ Ã � is dense in C⊕H,
there must be necessarily some Ψ ∈ Ã such that the map in (116) has a pole in z0, and hence, z0 is a resonance of H g,ε. �

Example VI.8. Let � be the multiplication operator by a continuous dispersion relation ω on a momentum space (X, �) with an abso-
lutely continuous measure � so that Hypothesis 1 is trivially satisfied. A spectral deformation family may be constructed by considering an
isometric global flow Rw for w ∈W0, i.e., an operator acting on the momentum space X as follows:

(U(w)ψ)(k)= Jw(k)1�2ψ(Rw(k)) (118)

for ψ ∈H, with Jw(k) being the Jacobian of the transformation. We must then find some open and connected W ⊂ C, with W0 =W ∩R,
such that

● there exists a dense set A of analytic vectors such that w ∈W0 � ψ(w) = U(w)ψ ∈H has an analytic extension to the whole set W,● the operator �(w) = U(w)�U(w)∗ defined, for w ∈W0, as

(�(w)ψ)(k) = ω(Rw(k))ψ(k) (119)

for all ψ ∈ D(�) admits a strongly analytic extension (�(w))w∈W to W (Hypothesis 2), and● the form factor g(w) defined, for w ∈W0, as g(w) = U(w)g admits an analytic extension to W (Hypothesis 4).

This means that the dispersion relation ω, the form factor g, and every function ψ ∈A , which are functions of the real variable k, must admit
an extension as a function of a complex variable ranging in some open subset of the complex plane. Besides, the flow must be chosen in such
a way that Hypothesis 3 holds, i.e., the spectrum of �(w) (i.e., its essential range) is deformed in the desired way to unearth the resonances.

As a concrete example, consider a Friedrichs–Lee operator on L2(R) with the dispersion relation ω(k) = k [hence, with σ(�) = R] and
flat singular form factor g(k) =�β�2π, β > 0; this is a realization of a Friedrichs–Lee model with flat coupling measure studied in Example
V.1. Define, for any w ∈ R,

Rw(k) = k −w, (120)

whose Jacobian for real w is 1; hence, we obtain
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(U(w)ψ)(k) = ψ(k −w), (�(w)ψ)(k) = (k −w)ψ(k). (121)

The extension of �(w) to complex values of w, with D(�(w)) = D(�), is immediate; besides,

σ(�(w)) = σess(�(w)) = R − iIm w, (122)

and hence, for w ∈W+, the (essential) spectrum of � shifts rigidly into the lower half-plane—Hypothesis 2 holds with S+ = C+ and S−w = {w′∈ C � Imw′ < −Imw < 0}.
We must also find a set of analytic vectors A for U(w). Let A be the set of functions ψ ∈ L2(R) with the form

ψ(k) = P(k)e−ak2
, (123)

where P is a polynomial and a > 0; such functions are dense in L2(R), for any w ∈ C, the function ψ(w, ⋅) = ψ( ⋅ −w) ∈ L2(R) is naturally
defined, and hence, A is a dense set of vectors on which the action of U(w) can be defined for all w ∈ C. Finally, in our simple case, we have
g(w, k) =�β�2π for all w ∈ C, i.e., g(w, ⋅) is again a constant function.

We have thus found a dense set of analytic vectors Ã = C⊕A such that, for every Ψ ∈ Ã , the function z ∈ C+ � RΨ(z) = �Ψ� 1
Hg,ε−z Ψ �

∈ C has an analytic continuation in S−W = C−. By Theorem VI.7, all poles of those functions are solutions of the equation

ε − z = Σg(z, w) (124)

for some w ∈ C+. In our case, taking Imw large enough, this equation reads

ε − z = iβ
2

, (125)

and hence, we have a single resonance in z = ε − iβ
2 . The associated eigenvector Ψ of H g,ε(w) is characterized by a boson wavefunction ξ(w, ⋅)

defined by

ξ(w, k) =
�

β
2π

1
k −w − ε + iβ

2

. (126)

By construction, the Fourier–Laplace transform of RΨ(z), i.e., its survival amplitude, will be an exponential function with decay rate β�2. In
particular, in the limit β→ 0, its decay rate and boson component vanish, and we recover the (real) eigenvalue λ = ε, with eigenvector Ψ0, of
the uncoupled Friedrichs–Lee Hamiltonian.

Summing up, as anticipated in the discussion in Example V.2, when switching on a flat coupling g(k) =�β�2π in the Friedrichs–Lee
Hamiltonian with X = L2(R) and ω(k) = k, the uncoupled eigenvalue λ = ε is converted into a resonance associated with an unstable state
whose survival probability decays exponentially with rate β.

VII. INVERSE PROBLEM: THE CASE OF EXPONENTIAL DECAY
Theorem IV.3 allows us to fully characterize the spectrum and hence the dynamics of a Friedrichs–Lee Hamiltonian with some given

momentum space (X, �), dispersion relation ω, and form factor g. On the other hand, we may want to solve the inverse problem, i.e., finding
a Friedrichs–Lee model with some given spectrum, and hence some given dynamics.

As pointed out in Remark IV.17, the spectrum of the Friedrichs–Lee Hamiltonian with a fixed ε depends entirely on the coupling measure
κg in Eq. (43) or, equivalently, on the self-energy Σg in Eq. (20), and different choices of the momentum space (X, �), the dispersion relation
ω, and the form factor g, yielding the same κg , are fully equivalent at the spectral level.

A trivial solution (although not necessarily physically meaningful) always exists: just choose ω(k) = k, (X, �) = (R, κg), and g(k) = 1.
However, in the applications, the momentum space (X, �) and the dispersion relation ω are fixed by the nature and the structure of the
bosonic bath, while the form factor g may be suitably engineered. Thus, we are led to study the following inverse problem: for a given choice
of (X, �) and ω, what choices of g correspond to a Friedrichs–Lee Hamiltonian whose coupling measure κg yields our desired dynamics?

As an example, let us analyze the following problem: let us construct a Friedrichs–Lee operator such that the square modulus of x(t),
defined as in Eq. (22), decays with a purely exponential law. By Eq. (23), an exponential law is obtained if κg is, up to a multiplicative constant,
the Lebesgue measure on the whole real line. Indeed, if dκg(λ) = β

2π dλ, for some β > 0, then by Eq. (20), one readily obtains (71), namely,

Σg(z) =
�������������
+ iβ

2
, Im z > 0,

− iβ
2

, Im z < 0,
(127)
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and hence, by Eq. (23), for t > 0,
x(t) = e−(β�2+iε)t , (128)

implying �x(t)�2 = e−βt for any value of ε. A Friedrichs–Lee model on a measure space (X, �), with dispersion ω and form factor g, will thus
yield an exponential decay if and only if

β
2π
(λ − λ0) = �

ω−1([λ0,λ])�g(k)�2 d�(k), ∀λ0, λ ∈ R, λ ≥ λ0. (129)

Let us find some form factors g satisfying Eq. (129), with space X = Rd and � as the Lebesgue measure on Rd, for different choices of the
dispersion relation ω.

Example VII.1. Consider a dispersion relation ω depending only on the projection of the momentum in some direction; without loss of
generality, we fix a reference frame such that

ω(k1, . . . , kd) = w(k1), (130)

with w : R→ R being a differentiable and strictly increasing function. The latter hypothesis ensures that

ω−1([λ0, λ]) = �w−1(λ0), w−1(λ)� ×Rd−1, (131)

and hence, Eq. (129) becomes
β

2π
(λ − λ0) = � w−1(λ)

w−1(λ0) f (k1) dk1, (132)

with

f (k1) = �Rd−1
�g(k1, k2, . . . , kd)�2 dk2 . . .dkd. (133)

Equation (132) is satisfied iff f (k1) = β
2π w′(k1), and hence,

g(k1, k2, . . . , kd) = eiϕ(k1)
�

β
2π

w′(k1) h(k2, . . . , kd), (134)

with ϕ : R→ R being an arbitrary phase term and h : Rd−1 → C being a function satisfying

�Rd−1
�h(k2, . . . , kd)�2 dk2 . . .dkd = 1. (135)

This result can be readily generalized to the case in which w is piecewise monotonically increasing or decreasing: in this case, the form
factor is

g(k1, k2, . . . , kd) = eiϕ(k1)
�

β
2π
�w′(k1)� h(k2, . . . , kd). (136)

Example VII.2. As a second example, consider a dispersion relation ω depending only on the modulus of the momentum. For any k ∈ Rd,
we can write k = rn, where r = �k� and n ∈ S1, with S1 being the unit sphere. We assume that

ω(k) = w(r), (137)

with w : R+ → R being a differentiable and strictly increasing function. Again, we obtain an equation analogous to Eq. (132),

β
2π
(λ − λ0) = � w−1(λ)

w−1(λ0) f (r) rd−1 dr, (138)

where

f (r) = �
S1
�g(k)�2 dS(n). (139)
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Equation (138) is satisfied when f (r) = β
2π w′(r)�rd−1, and hence, the form factor is

g(k) = eiϕ(r)
�

β
2π

w′(r)
rd−1 h(n), (140)

again with ϕ : R→ R being an arbitrary phase term and h : S1 → C satisfying

�
S1
�h(n)�2 dS(n) = 1. (141)

This procedure can be generalized for a function w piecewise monotonically increasing or decreasing, and in this case, we obtain the form
factor,

g(k) = eiϕ(r)
�

β
2π
�w′(r)�

rd−1 h(n). (142)

VIII. CONCLUDING REMARKS
In this article, we have introduced a generalization of the Friedrichs–Lee Hamiltonian, a model of single-excitation interaction between

a two-level atom and a boson field, which provides a reasonable description of a vast class of physical models.
Our contribution is twofold. First of all, we have shown that the model can rigorously accommodate, via proper choice of the domain and

by exploiting the formalism of Hilbert scales, “singular” (i.e., not square-integrable) form factors, which are often encountered in the physical
literature; the possibility of approximating singular models via regular ones in the norm resolvent sense, for instance, via a cutoff procedure,
is also explored. Our technique represents a rigorous implementation of a renormalization procedure of the atom excitation energy.

Second, we have provided a general discussion of the spectral properties of the model. The spectrum of Friedrichs–Lee Hamiltonians
has been studied with respect to the spectrum of the uncoupled operator: a full characterization of the pure point and absolutely continuous
spectra, as well as a minimal support for a maximal singular continuous measure, has been obtained. Besides, we have studied the insurgence
of resonances and their algebraic characterization as eigenvalues of a deformed Friedrichs–Lee Hamiltonian. Some insightful examples have
been discussed; finally, a rigorous description of exponential decay phenomena in this framework has been addressed.

Future investigation may be devoted to generalizing our results to the many-atom case, where novel phenomena, absent in the one-
atom case, may occur, such as the insurgence of bound states in the continuum, corresponding to the eigenvalues embedded in a continuous
spectrum.
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