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Abstract 
Decision making is an activity that addresses the problem of extracting knowledge and information from data 
stored in data warehouses, in order to improve the business processes of information systems. Usually, decision 
making is based on On-Line Analytical Processing, data mining, or approximate query processing. In the last 
case, answers to analytical queries are provided in a fast manner, although affected with a small percentage of 
error. In the paper, we present the architecture of an approximate query answering system. Then, we illustrate our 
ADAP (Analytical Data Profile) system, which is based on an engine able to provide fast responses to the main 
statistical functions by using orthogonal polynomials series to approximate the data distribution of multi-
dimensional relations. Moreover, several experimental results to measure the approximation error are shown and 
the response-time to analytical queries is reported. 
Keywords: approximate query processing, OLAP, data warehouse, Business Intelligence tool, ADAP system 
1. Introduction 
The increasing importance of data warehouses (DWs) in information systems is due to their capacity of allowing 
decision makers to perform the extraction of knowledge and information by means of On-Line Analytical 
Processing (OLAP) and data mining techniques (Chaudhuri, Dayal, & Ganti, 2001). 
At present, there are three logical models for the development of a DW: (a) Relational OLAP model (ROLAP), 
that resides on the relational technology, (b) Multidimensional OLAP model (MOLAP), that uses multi-
dimensional arrays for storing data; and (c) Hybrid OLAP model (HOLAP), which adopts both ROLAP and 
MOLAP technologies (Golfarelli & Rizzi, 1998a; Golfarelli, Maio, & Rizzi, 1998b).  
In DWs built over the relational technology, analytical processing involves typically the computation of 
summary data and the execution of aggregate queries. This kind of queries needs to access all the data stored in 
the database and, on large volumes of data, the computation of aggregate queries leads to a long answering time. 
Although the availability and the use of indexes (usually, bitmaps and B-trees), materialized views, summary 
tables, and statistical data profiles can drastically reduce the response time to OLAP applications, operations 
often take hours or days to complete, due to the processing of extremely large data volumes (Di Tria, Lefons, & 
Tangorra, 2014). 
The alternative to the scan of huge amounts of data in data warehouses provides approximate query answering 
when applications can tolerate small errors in query answers (Sassi, Tlili, & Ounelli, 2012). The goal of this 
approach is to achieve interactive response times to aggregate queries. Really, in the most decisional activities, it 
is unnecessary to have exact answers to aggregate queries if this requires expensive time; it suffices to obtain 
(reasonably accurate) approximate answers and good estimates of summary data provided that fast query 
responses are guaranteed. Moreover, initial phases of data analysis involved by drill-down or roll-up query 
sequences can take advantages of sacrificing the accuracy of fast answers for this allows the analyst to explore 
quickly many possibilities or alternatives (scenarios) of analysis.  
Here, our contribution is the definition of the system architecture, which supports the main processes involved in 
the approximate query processing. Furthermore, the ADAP system is presented, which implements the system 
architecture using a methodology based on orthonormal series. The underlying method allows summarizing 
information about the data distribution of multi-dimensional relations using few computed data. These data, that 
are easily updated when the data distribution in the DW changes, allow to execute the main aggregate user 



www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 2; 2016 

157 
 

queries without accessing the DW and to obtain answers in constant time for their execution does not depend on 
the cardinality of the relations. 
The paper is organized into the following sections. Section 2 contains an overview about traditional and 
emerging methodologies for approximate query processing. Section 3 explains the architecture of ADAP, our 
system devoted to approximate query processing. Section 4 presents the architecture and the features of this 
system. Section 5 reports the experimental evaluation of this system in reference to a real context of analysis. 
Finally, Section 6 concludes the paper with some remarks. 
2. Background 
The most popular methodologies that represent the theoretical basis for the approximate query processing are 
founded on the following approaches. 
Summary tables: materialized tables that represent pre-computed aggregate queries (Abad-Mota, 1992; Gupta, 
Harinarayan, & Quuas, 1995). The impossibility to get summary tables for all possible user queries is the limit of 
this approach. 
Wavelet: process that computes a set of values, or wavelet coefficients, which represent a compact data synopsis 
(Chakrabarti, Garofalakis, Rastogi, & Shim, 2000; Sacharidis, 2006). 
Histogram: synthetic histograms used to store the data frequencies in a relation (Ioannidis & Poosala, 1999; 
Cuzzocrea, 2009). User’s queries are translated into equivalent ones that operate on histograms via a new algebra 
that has the same expressivity power of SQL operators.  
Sampling: collection of random samples of large volumes of data (Cochran, 1977; Chaudhuri, Gautam, &Vivek, 
2007). Gibbons et al. (1998a, 1998b) introduced two new sampling-based methodologies: concise samples and 
counting samples. A concise sample is a technique according to which values occurring more than once can be 
represented by pairs value, count. Counting samples allow counting the occurrences of values inserted into a 
relation after they have been selected as sample points. The authors also provide a fast algorithm to update 
samples as new data arrive. This methodology is advantageous because it offers accurate answers and it is able to 
store more sample points than other sampling-based techniques, using an equal amount of memory space. In 
order to improve the accuracy of the OLAP queries, that always involve relationships among the central fact 
table and the dimensions tables via foreign keys, Acharya, Gibbons, Poosala, & Ramaswamy (1999) proposed 
the computation of a small set of samples for every possible join in the schema, so to obtain join synopses that 
provide random and uniform samples of data. 
Sketch: summary of data streams that differs from sampling in that sampling provides answers using only those 
items which were selected to be in the sample, whereas the sketch uses the entire input, but is restricted to retain 
only a small summary of it. As an example, the cardinality of a dataset is computed exactly, and incremented or 
decremented with each insertion or deletion, respectively (Cormode, Garofalakis, Haas, & Jermaine, 2011; 
Khurana, Parthasarathy, & Turaga, 2014). 
Orthonormal series: this well-known method to analytically approximate continuous functions, is used in the 
OLAP environments to approximate the probability density function of multi-dimensional relations. To this end, 
a set of coefficients is computed that can be then used to perform quick statistical operations, such as count, sum 
and average, in the context of very large databases. Usually, polynomial series (Lefons, Merico, & Tangorra, 
1995) or trigonometric series are used. Systems using cosine series are described to approximate the data 
selectivity (Yan, Hou, Jiang, Luo, & Zhu, 2007) and to compute range-sum queries (Hou, Luo, Jiang, Yan, & 
Zhu, 2008). However, the coefficients to be generated are different for those two cases. Consequently, the cosine 
method is very ineffective practically. 
All these methodologies perform a data reduction process (Cormode et al., 2011; Furtado & Madeira, 1999) and, 
basically, they apply to mono-dimensional cases. However, all they provide extensions to multi-dimensional 
cases and are, therefore, relation-oriented. Further approaches have been proposed for managing also data stored 
in large XML files (Palpanas & Velegrakis, 2012). 
Other approaches have recently been proposed, some of them do not perform a data reduction. Examples of this 
kind of methodologies are based on (a) Graph-based model, which creates a graph that summarizes both the 
join-distribution and the value-distribution of a relational database (Spiegel & Polyzotis, 2006); (b) Genetic 
programming, where a starting query is re-written in order to minimize the elaboration costs and maximize the 
accuracy (Peltzer, Teredesai, & Reinard, 2006); (c) On-line processing, which shows a preview of the final 
answer to each aggregate query, by continuously providing an estimate of it during the elaboration (Jermaine, 
Arumugam, Pol, & Dobra, 2008); (d) Sensornet, which consists of a network of wireless sensors that collects 



www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 2; 2016 

158 
 

discrete data of continuous phenomena (Deshpande, Guestrin, Madden, Hellerstein, & Hong, 2004); and (e) 
Locally Closed World Assumption, where queries against partially complete databases are answered in 
polynomial time using a deductive database (Cortés-Calabuig, Denecker, Arieli, & Bruynooghe, 2007). 
3. Approximate Query Answering System 
In this Section, the architecture of an approximate query answering system is presented. The proposed system is 
an OLAP tool that collects and processes the data stored in a data warehouse, in order to produce fast answers in 
analytical processing. To this end, in the following we explain the main processes supported by approximate 
query answering systems. 
1) Data reduction. The preliminary step is devoted to calculate the data synopsis, which represents a concise 

representation of the data warehouse. The system also generates and stores metadata, which provide useful 
information about the DW schema—tables, fields, and data types,—and especially which tables have been 
effectively reduced. Only the reduced datasets are available in the next approximate query processing and 
can be used for analyses purposes, instead of accessing real data.  

2) Approximate query processing. The main step is devoted to perform the computations of the aggregate 
functions in approximate way, by using the stored previously reduced data. The analytical queries are 
formulated on the basis of the fact-tables, measures, dimensions, and aggregate functions selected by the 
user. The system also allows the user to set a selection condition on the values of the chosen attributes; this 
condition represents the criteria adopted to narrow the interval of data to be analyzed. The output of the 
processing is a scalar value that represents the approximation of an aggregate value. In addition, the system 
provides also methods to execute queries directly on the real data of the DW. This usually happens when 
the user deals with critical factors or when it is necessary to obtain deeper levels of refinement in query 
answering. 

The data flow related to these two processes is depicted in Figure 1. 
 

 
Figure 1. Data flow in approximate query processing 

 
3.1 System Architecture 
The architecture of approximate query answering systems, supporting the main processes in query processing, is 
illustrated in Figure 2. 
This classic three-level architecture is composed of the following components: 
Presentation Layer comprises the user interface components. The main users are the administrator, who 
manages the data reduction process, and the analyst, who executes the approximate query processing. 

(i) Administration is the input component used by the administrator to select the DW and set the data 
reduction parameters. It receives the metadata of the DW and presents them to the user. Metadata consist 
of table’s names, field’s names, and so on. Only the first time the users access the DW, a set of tables 
must be selected, in order to define which of them are fact tables, and which of them are dimension 
tables. Users must also choose which attributes are to be involved in multi-dimensional analyses. Once 
the user selects the parameters of data reduction, the system stores these metadata (i.e., selected attributes 
and fact tables) in the DS database and then starts generating the data synopsis on selected attributes. 

(ii) Analysis Environment is the input component used by the analyst to define and submit the analytical 
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queries returning fast and approximate answers. First, this component loads the metadata that define 
which fact tables and attributes are available for multi-dimensional analysis. Thanks to the metadata, 
users are able to express queries at a high level of abstraction. Then, they only have to set the kind of 
analysis—real or approximate—they want to perform. A real analysis consists of executing the query 
directly on the DW, so to get the exact value as query answer, with possibly high response-time. An 
approximate analysis is based only on the data synopses stored in the DS database. This kind of query 
gets a very fast query answer in constant response-time with a small percentage error. In general, a query 
can be formulated by simply selecting a fact table, an attribute and an aggregate function. Optionally, a 
user can define criteria to narrow the data on which to perform the analytical processing. 

(iii) Reports Browser is the non-graphical output component that shows the result of a computation, 
representing the query answer. It first retrieves from the Analysis Environment the parameters of the user 
query and then redirects it to the appropriate engine. It reports the computed results—approximate value 
or real one—along with the response time in milliseconds. Moreover, it allows the user to print the result 
or to save it in HTML format. It must be integrated with Microsoft Office, as it should be also able to 
export the result in MS Excel. 

Application Layer includes the business components that implement the basic processes of the approximate 
query processing. 

(i) DW Manager is the component that interacts with the DW via the DB Bridge, in order to extract both 
data and metadata and distribute them to other components. To clarify this concept, it extracts the 
metadata of the selected DW and distribute them to the Administration component to start the data 
reduction process. Similarly, it performs a read-access to the DW and distribute the dataset containing 
the data necessary for the generation of a data synopsis to the DS Manager component. For the Reports 
Browser, it provides real analyses, by translating the query into SQL statements and executing them 
against the DW. 

(ii) DS Manager is the basic component that executes a twofold task: the generation of the data synopsis and 
its extraction during the approximate query analysis. As already stated, when it stores the reduced data in 
the DS database, it also stores further metadata about the used DW (i.e., which tables and attributes of 
the DW the user selected for the multi-dimensional analysis). These metadata will be used later by the 
Analysis Environment component. In the generation process, it takes the data stored in the DW and 
generates the data synopsis, according to data reduction parameters on the set of attributes specified by 
the user. It requires a reading-access to the DW and performs a writing-access to the Repository via the 
DB Bridge component. Notice that this component implements the data reduction process on the basis of 
the underlying methodology. 

(iii) Approximate Query Engine is the most important component that executes analytical queries in an 
approximate way. To this end, it performs a read-access to the DS database to load the data synopsis 
relative to tables and attributes involved in the user query. Finally, it executes the query very quickly, 
using only that data synopsis. This component implements the query processing according to the adopted 
methodology. To evaluate the performance of these engines, metrics have been defined recently to 
measure the answering time and approximation error (Di Tria, Lefons, & Tangorra, 2012, 2015). 

Data Layer contains the components for the management of the system databases. 
(i) DB Bridge is the component that manages the physical connections towards the databases. As it must 

ensure access independence from the database technology, it is based on an ODBC connection for 
general purpose. Its task is to handle both the Data Warehouse, that represents the read-only data source, 
and the system repository, where all the computed data are stored. The data extracted from the Data 
Warehouse are the data stored in tables, and the metadata (e.g., table’s names, field’s names, and data 
types) providing information about the data model of the Data Warehouse itself. 

3.2 Metadata Representation 
The meta-model depicted in Figure 3 describes the structure we defined for representing the metadata needed by 
approximate query answering systems. Such a meta-model is based on the standard meta-models provided in the 
CWM (Object Management Group [OMG], 2003). The figure reports the main classes and relationships for 
creating standard metadata that can be effectively used by Approximate Query Answering systems, in order to 
trace the data reduction process and to support analytical processing. 
It is worth noting that this meta-model depends on (a) the CWM Relational meta-model, which is devoted to 
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define the metadata for describing the data warehouse logical model, and (b) the CWM Core meta-model, which 
creates meta-objects representing descriptors to be attached to each model element (that is, an element of the 
database being modelled). 

 
Figure 2. Architecture of the approximate query answering system 

 

 
Figure 3. Meta-model for metadata representation 

 
The main classes are summarized in Table 1. According to the meta-model, each element of the target system is 
represented by a meta-object. The steps for the creation of the meta-objects are: 
• In order to represent the physical database, a meta-object of the class Reduction is created. The name of 

this object is the Data Source Name (DSN) used for the physical connection to the database; 
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• For each relational schema chosen for the data reduction, a meta-object of the class RSchema is created. 
This object has the same name as the relational database and a reference to the catalogue of membership; 

• For each table of a relational schema chosen for the data reduction, a meta-object of the class RTable is 
created. This object has the same name as the table and a reference to the schema of membership; 

• For each column of a table chosen for the data reduction, a meta-object of the class RColumn is created. 
This object has the same name as the column of that table and a reference to the table of membership; 
and 

• If a table or a column must be tagged, then a meta-object of the class Descriptor is created. The name of 
this new object is unconstrained. Furthermore, it presents reference to the model element of membership. 

 
Table 1. Meta-model classes  
Class Definition 
ModelElement Element that is an abstraction drawn from the system being modelled. 
TaggedValue Information attached to a model element in the form “tagged value” pair; that is, name = value. 

Catalogue Unit of logon and identification. It also identifies the scope of SQL statements: the tables 
contained in a catalogue can be used in a single SQL statement. 

Schema Named collection of tables. It collects all tables of the relational schema (i.e., the logical 
database). 

Table Data structure representing a relation. 
Column Data structure representing the field of a relation. 
Reduction Class representing a process of reduction of the data stored in a relational database. 
RSchema Class representing a relational schema chosen for the data reduction. 
RTable Class representing a table chosen for the data reduction. 
RColumn Class representing a column whose data have been reduced. 
Descriptor Tag that can be attached to any element of the model. 
 
4. The ADAP System 
In dell’Aquila, Lefons, & Tangorra (2004), we faced the necessity to integrate the approximate query processing 
in a Web-based Decision Support System. In this section, we present the system used for the approximate query 
answering. The system uses the ‘Canonical Coefficients’ methodology that is based on orthonormal series. This 
methodology represents the theoretical base of the software tool presented here. In detail, the methodology is 
based on the statistical data profile, which serves to summarize information about the multi-dimensional data 
distribution of relations, and uses the polynomial approximation provided by Legendre orthogonal series. 
The software that implements this methodology is the so-called Analytical Data Profiling (ADAP) System. 
ADAP is an OLAP tool, whose features are to collect, to organize, and to process large data volumes stored in a 
DW, in order to obtain statistical data profiles to use for approximate query processing. The data profile offers a 
way to compute aggregate functions fast as an alternative to accessing the DW. 
The Canonical Coefficients is the data synopsis calculated by ADAP in the data reduction process on the basis of 
the algorithm given in Lefons et al. (1995), according to a degree of approximation and relative to the set of 
attributes specified by the user. When ADAP needs to calculate/update the Canonical Coefficients, it executes 
read-only access to the DW. 
The query result is obtained in constant time, since it does not depend on the cardinality of the tables of the DW, 
but it relies only on the Canonical Coefficients, whose cardinality is known a priori. 
Moreover, the software has been developed according to a modular design, in order to allow the add-in of other 
features, not yet implemented. It represents the OLAP tool that allows users to perform approximate query 
processing on a DW, managed by an OLAP Server. The ADAP system implements the three-layer architecture 
depicted in Figure 2. 
ADAP generates three kinds of chart: lines, histograms, and gauge charts. A graphic representation of the output 
consists of the visualization of a chart that allows the user to easily interpret query answers. 
Really, the cost for the computation of the canonical coefficients is very high. For this reason, an extended, 
distributed architecture of ADAP includes a parallel algorithm to compute the Canonical Coefficients 
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(dell’Aquila, Di Tria, Lefons, & Tangorra, 2010). 
As concerns the metadata, ADAP stores information about which tables have been reduced and what 
approximation degree of Legendre series has been utilized, along the min-max values of domains of the relation 
attributes. 
4.1 User Interface 
Figure 4 shows the user interface of ADAP that allows administrators to define which tables and columns are to 
be involved in the data reduction. First of all, an ODBC connection must be established. Then, the administrator 
can analyze the schema of the selected database, that is, the list of tables’ names and their columns’ names. At 
this point, the administrator has only to select the table and to choose its opportune columns to be considered for 
data reduction. 
Once the input data are specified, the data reduction process generates the set of canonical coefficients, 
according to the approximation degree chosen by the user. The computed coefficients are then stored in the 
repository managed by ADAP. 
ADAP system needs to trace also (a) the minimum and the maximum of each column, and (b) the number of 
rows of each table, as these data will be used by the algorithms performing the analytical processing based on 
approximate responses. 
Finally, based on the list of which data have been reduced and then effectively available for approximate query 
processing, the user can create queries and execute them in order to obtain (approximate) query answers (cf., the 
query processing interface in Figure 5).  
4.2 Advanced Features 
In addition to the fundamental features related to the basic methodology, ADAP has the following further 
features: 
SQL Generator 
When the user requires real values instead of approximate ones, ADAP traduces the aggregate query into an SQL 
instruction and passes it to the DBMS that manages the DW. The kind of queries supported by ADAP is of the 
following form, expressed according to the Backus-Naur Form: 

  <aggregate query> ∷= SELECT <aggregate function> FROM <relation> 
    WHERE <conditions>; 
 <aggregate function> ∷= <function>(<field>)  
 <function> ∷= SUM | AVG | COUNT  
 <relation> ∷= table_name  
 <field> ∷= field_name  
 <conditions> ∷= <condition> | <conditions> <logical operator> <conditions>  
 <condition> ∷= <field> | <relational operator> <comparison term>  
 <comparison term> ∷= numeric_constant  
 <relational operator> ∷= <= | >=  
 <logical operator> ∷= AND | OR  

Dashboard 
For providing support in decision making on the basis of a set of key performance indicators (Scheer & Nüttgens, 
2000), the Report Browser component is equipped with a dashboard creator. The dashboard is a useful Business 
Intelligence tool, able to represent data in a very synthetic way, that contains all the elements really necessary for 
the business performance reporting process (Palpanas, Chowdhary, Mihaila, & Pinel, 2007). In the user interface, 
the indicators are visualized with a graphical support, represented by gauges, lines, and histograms charts. A 
gauge is a chart that shows a single scalar value, aggregated on an interval. A red traffic light indicates whether 
this value is out of a predetermined range, meaning that it represents a critical value. Histogram is a chart that 
shows a set of aggregate values. A lines chart is used for monitoring the trend of a value in a given period of time. 
The graphical user interface of the dashboard is shown in Figure 6. 
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Figure 4. Administration interface 

 

 
Figure 5. (Approximate) Query Processing interface 

 
5. Experimental Set-Up 
The data warehouse chosen for the experimentation is the multi-dimensional database distributed with the 
MicroStrategy Business Intelligence Platform. It contains real data about a fictitious e-commerce company, that 
sells retail electronics items, books, music and film CDs. The historical data stored in the database cover years 
2002 to 2003. For the case study, we considered the relation order_detail, whose logical schema is shown in 
Figure 7. It is a fact table containing data about the sold items, and its cardinality is about 400 000 records.  
For the analytical process, we defined the following three metrics as business indicators: 

1) sum(unit_price), 
2) avg(unit_price), 
3) count(orderID), 

and we chose to aggregate the data of the fact table according to the following three dimensions: 
1) order, 
2) employ, 
3) customer. 
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Figure 6. ADAP Dashboard 

 

 
Figure 7. Part of the logical schema of the experiment DW 

 
Accordingly, the Canonical Coefficients have been generated on the schema R(orderID, empID, customerID, 
unit_price), corresponding to a view on the order_detail relation. 
5.1 Experimental Plan 
We divided the experiment into three sections I, II and III: in each section, we calculated the three metrics, for a 
total of nine launches (see, Table 2). In the first section, we created the queries generating random intervals on 
orderID. In the second section, we generated random intervals on orderID and empID. In the third section, we 
generated random intervals on orderID, empID, and customerID. 
Random intervals were generated according to given widths. For example, if min(orderID) = 1 and max(orderID) 
= 50, then possible random intervals, which accord to the chosen widths, are shown in Table 3. Note that, in the 
first row, (3, 48) is an interval of width equals to the 90% of the original interval. 
For each launch, we calculated: 

• the error between the real value and the approximate one, and 
• the difference between the response time for obtaining the real value and that for the approximate 

value 
by varying the interval width and the approximation degree. 
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Table 2. Experimental plan 

   metrics  

Experiment aggregation/grouping Attribute SUM (unit_price) AVG (unit_price) COUNT (orderID)

Section I orderID cf, Figure 8a cf, Figure 8b cf, Figure 8c 
Section II orderID, empID cf, Figure 9a cf, Figure 9b cf, Figure 9c 
Section III orderID, empID, customerID cf, Figure 10a cf, Figure 10b cf, Figure 10c 
 
Table 3. Random interval sample 

Width (%) Absolute width Random interval (inf, sup) 
90 45 (3, 48) 
80 40 (2, 42) 
70 35 (6, 41) 
60 30 (20, 50) 
50 25 (17, 42) 
40 20 (12, 32) 
30 15 (29, 44) 
20 10 (26, 36) 
10 5 (19, 24) 

 
Given an aggregate function and one or more attributes, the pseudo-code of Algorithm 1 describes a single query 
launch, where each query is repeated z times. 
 
Algorithm 1. Query launch (pseudo-code) 

W = {90%, 50%, 10%} // set of the width 
maxdegree = 27 // approximation degree 
z = 100   // number of repetitions of the query 
 
for each x in W 
  for i = 1 to maxdegree 
   for j = 1 to z 
    generate a random interval of width x for the selected field(s)
    calculate realv as the real value 
    calculate realt as the response time for the real value 
    calculate apprv as the approximate value 
    calculate apprt as the response time for the approximate value 
   next j 
   calculate δv as the mean value of (realv − apprv) 
   calculate δt as the mean value of (realt − apprt) 
  next i 
next x 

 
5.2 Experimental Results 
Each experiment consists of a query launch that calculates the mean relative error and the mean response time, at 
the varying of three kinds of query range width (namely 90%, 50%, and 10%) and the approximation degree 1 to 
27. Therefore, for each query launch, two charts had produced and each chart shows the trend of three functions. 
Figure 8a reports the charts of the relative error and response time of the first experiment relative to the first 
metrics sum(unit_price) and random query ranges generated on the (domain of) attribute orderID. This 
experiment shows that the first function—the one related to the 90% width—has a very low relative error, even 
if a low degree of approximation is used. On the other hand, the relative error tends to increase as the interval 
width decreases. In fact, for the interval width of 10% (that is, the third function), the degree of approximation 
must be greater than 10 in order to obtain good approximate answer to queries.  
Figure 8a also reports the trend of the response time calculated as the difference between the time required for 
obtaining the real answer and the response time for the computing the approximate one. The chart shows that the 
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difference tends to decrease in favour of the real value as the degree of approximation increases. In fact, the 
higher the degree, the more coefficients are (loaded and) used by the system for computing answers. Moreover, 
the third function has lower response times than the others because it corresponds to a low selectivity factor and, 
then, the query optimizers of DBMSs allow performing a strong filtering of data before the computation starts 
(Jarke & Koche, 1984). As a consequence, the response time difference between the real value and the 
approximate one is lower than usual whenever the interval width is small. 
The results of the first experiment were confirmed by the similar second one, relative to the metrics 
avg(unit_price). In fact, Figure 8b shows that the performance of the AVERAGE algorithm is quite similar to the 
SUM algorithm as concerns both the relative error and the response time. 

relative error: (real – approx) / real     Δ-response time: (timereal – timeapprox) sec. (*)

(a)

(b)

(c)

Figure 8. Experimental results: Section I 

(*) Legend.  
Aggregation by (orderID) attribute.  
Interval width:   90%,   50%,   10%.  
Metrics: (a) SUM(unit_price); (b) AVG(unit_price); (c) COUNT(orderID).  

 
In the third similar experiment, the metrics measured was count(orderID). This experiment, summarized in 
Figure 8c, shows that the relative error in the computation of the COUNT algorithm is generally very low, 
although the third function reports an error considerably greater than the others. The response time chart is 
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coherent with the previous ones. 
The next three experiments measured the same metrics respectively, but involved the generation of random 
intervals on both attributes orderID and empID, and they are summarized in Figure 9. The charts in Figures 9a-b 
highlight that both SUM and AVERAGE algorithms determined very high relative errors whenever the interval 
width is small. This trend did not change even if a high degree of approximation is used. Approximate values 
were only acceptable in case of wide interval widths and approximation degrees greater than 8. The response 
time charts showed that the distances among the three functions are more evident, because the query optimizers 
work well as concerns the selectivity of two (or more) attributes. However, the response time for approximate 
answers is lower than for the real ones, since the functions were not negative. 

relative error: (real – approx) / real     Δ-response time: (timereal – timeapprox) sec. (*)

(a)

(b)

(c)

Figure 9. Experimental results: Section II 
(*) Legend.  

Aggregation by (ordered, empID) attributes.  
Interval width:   90%,   50%,   10%.  
Metrics: (a) SUM(unit_price); (b) AVG(unit_price); (c) COUNT(orderID).  

 
As concerns the COUNT algorithm, the charts in Figure 9c showed that the relative error is quite acceptable in 
every case, although the third function had always the greatest relative error. The response time was in line with 
the previous ones. 
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At last, the next three experiments regarded the same three metrics, but involved the generation of random 
intervals on attributes orderID, empID, and customerID. As concerns the relative error, the charts of Figure 10 
confirmed the results of the previous experiment. On the other hand, relative to the response time of the SUM and 
the AVERAGE algorithms, Figures 10a-b showed that the function is negative when the interval width is 10% and 
the degree of approximation is greater than 19. The negative function means that the response time of the 
approximate answer is greater than the one of the real value. On the other hand, the chart in Figure 10c showed 
that the approximation degree should be greater than 24 for the COUNT algorithm in order to have a negative 
function. 

relative error: (real – approx) / real     Δ-response time: (timereal – timeapprox) sec. (*)

(a)

(b)

(c)

Figure 10. Experimental results: Section III 
(*) Legend.  

Aggregation by (ordered, empID, customerID) attributes.  
Interval width:   90%,   50%,   10%.  
Metrics: (a) SUM(unit_price); (b) AVG(unit_price); (c) COUNT(orderID).  

 
To summarize, the evaluation of the system allows us to state that the best performance is gained with analytical 
queries relative to intervals with wide ranges. In this case, a low degree of approximation suffices and, therefore, 
the response time is very low. Furthermore, sum and the average functions exhibit the same trend, but the count 
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function always performs better than the others two. 
6. Conclusions 
In this paper, we have presented the architecture of approximate query answering systems, showing also the 
meta-model for the representation of metadata. This meta-model is general and methodology-independent. 
Therefore, it is possible to apply the architecture and the meta-model to every methodology by only creating 
both the opportune components and necessary metadata.  
Furthermore, we have presented the ADAP system, which implements this architecture. The system 
methodology is based on orthonormal series. Then, the data synopsis is represented by a set of polynomials 
coefficients and the approximate query engine adopts the Canonical Coefficients methodology. 
The system can be used in decision making process as a tool able to perform analytical processing in a fast 
manner. Experimental results showed that generally the approximation error relies in an acceptable range and 
that the ADAP approximate query answering system can effectively be considered a valid OLAP tool, whenever 
decision makers do not need total precision in answers but prefer to obtain reliable responses in short times. In 
this way, response times remain almost constant as they do not depend on the cardinality of the DW tables but 
only on that of the computed synopses, whose cardinality is known a-priori. 
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