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Abstract

We study isometric immersions into an almost contact metric manifold

which falls in the Chinea-Gonzalez class C5 ⊕ C12, under the hypothesis

that the Reeb vector �eld of the ambient space is normal to the considered

submanifolds. Particular attention to the case of a slant immersion is paid.

We relate immersions into a Kähler manifold to suitable submanifolds of

a C5 ⊕C12-manifold. More generally, in the framework of Gray-Hervella,

we specify the type of the almost Hermitian structure induced on a non

anti-invariant slant submanifold. The cases of totally umbilical or austere

submanifolds are discussed.
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1 Introduction

The theory of slant submanifolds, started by B. Y. Chen in 1990 in the context
of almost Hermitian Geometry, has been extended to immersions into a Rie-
mannian manifold endowed with an additional structure ([11, 3, 14, 15, 12]). In
particular, in 1996 A. Lotta introduced the concept of a slant submanifold of
an almost contact metric (a.c.m.) manifold, showing that there are two types
of non anti-invariant slant submanifolds, depending on the position of the Reeb
vector �eld ξ of the ambient space. More precisely, given a non anti-invariant
slant submanifold N of an a.c.m. manifold M , with dimN = n, one has: n is
even (resp. n is odd) if and only if ξ is normal (resp. ξ is tangent) to N . If n
is even, then N inherits from M an almost Hermitian (a.H.) structure.

Slant immersions have been intensively studied when the dimension of the
submanifolds is odd and the structure of the ambient space is of a particular
type, namely it is cosymplectic, or Sasakian, or α-Kenmotsu ([10], [2], [7] and
References therein).

As for as we know, up to now a detailed study of even-dimensional slant
submanifolds has not been developed. Note that the condition on the dimension
of the submanifold implies a restriction on the a.c.m. structure of the ambient
space. In fact, any submanifold N of a contact metric manifold such that ξ is
normal to N is anti-invariant ([11]). This makes meaningful the investigation
of even-dimensional slant submanifolds only when the a.c.m. structure of the
ambient space in not contact.
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In this work, we relate immersions in a.H. manifolds to submanifolds of
suitable a.c.m. manifolds. Firstly, starting by a slant submanifold (N̂ , f̂) of an

a.H. manifold M̂ , for any smooth positive function λ : M̂ → R and any open
interval I ⊂ R, we consider a particular slant immersion fλ : N̂ → I × M̂ , with
the same slant angle as f̂ . The manifold I × M̂ is endowed with an a.c.m.
structure naturally associated with the a.H. structure on M̂ , the Reeb vector
�eld is orthogonal to N̂ and, if M̂ is a Kähler manifold, then I × M̂ falls in the
Chinea-Gonzalez class C12. We also explain a method to construct a family of
slant immersions into a C5-manifold starting by a pair (f̂ , λ), f̂ being a slant
immersion into a Kähler manifold and λ a smooth positive function.

More generally, we study slant immersions into a C5⊕C12-manifold such that
the Reeb vector �eld is normal to the considered submanifolds. In particular, we
prove that the a.H. structure induced on a slant submanifold is almost Kähler
and state a condition on the behavior of the Weingarten operators. This allows
us to prove that the a.H. structure on the considered submanifold is of Kähler
type, under additional hypotheses. The cases of totally umbilical or austere
submanifolds are examined in detail, also.

In this work all manifolds are assumed to be connected.

2 Preliminaries

Given an a.H. manifold (M̂, Ĵ , ĝ), let f̂ : (N̂ , ĝ′) → (M̂, ĝ) be an isometric im-

mersion. For any x ∈ N̂ , X ∈ TxN̂ , we adopt the identi�cations x ≡ f̂(x)

and X ≡ (f̂∗)xX, (f̂∗)x being the tangential map. For any X ∈ TN̂ , one

puts ĴX = P̂X + F̂X, where P̂X and F̂X denote the tangential and nor-
mal components of ĴX, respectively. Analogously, for any V ∈ T⊥N̂ , we put
ĴV = t̂V + n̂V , t̂V , n̂V being the tangential and normal components of ĴV .
So, one de�nes smooth maps P̂ : TN̂ → TN̂ , F̂ : TN̂ → T⊥N̂ , t̂ : T⊥N̂ → TN̂ ,
n̂ : T⊥N̂ → T⊥N̂ , that induce linear maps on each �bre. For any X,Y ∈ TN̂
one has ĝ′(P̂X, Y ) = −ĝ′(X, P̂Y ), so that at any point x ∈ N̂ the operator

Q̂ = P̂ 2 is a self-adjoint endomorphism of TxN̂ , whose non-zero eigenvalues
belong to [−1, 0[ and have even multiplicity. We denote by the same symbol the

tensor �elds on N̂ determined by P̂ , Q̂.
For any x ∈ N̂ , X ∈ TxN̂ , X 6= 0, the angle θ(X) ∈ [0, π2 ] between ĴX

and TxN̂ is called the Wirtinger angle of X. The immersion f̂ is called a slant
immersion if the angle θ(X) is a constant θ, namely it is independent of the

choice of (x,X) ∈ TN̂ . In this case, one says that θ is the slant angle of N̂ in

M̂ and writes sla(N̂) = θ. If sla(N̂) = θ 6= π
2 , then the dimension of N̂ is even

and ( 1
cos θ P̂ , ĝ

′) is an a.H. structure on N̂ .
Let (M,ϕ, ξ, η, g) be an a.c.m. manifold and f : (N, g′) → (M, g) an iso-

metric immersion. For any X ∈ TN , one puts ϕX = PX + FX, PX and FX
denoting the tangential and normal components of ϕX. Also, for any V ∈ T⊥N ,
we put ϕV = tV +nV , tV and nV being the tangential and normal components
of ϕV . This allows us to de�ne smooth maps P : TN → TN , F : TN → T⊥N ,
t : T⊥N → TN , n : T⊥N → T⊥N inducing linear maps on each �bre. In partic-
ular, for any X,Y ∈ TN one has g′(PX, Y ) = −g′(X,PY ), hence at any point
x ∈ N Q = P 2 is a self-adjoint endomorphism of TxN , its non-zero eigenvalues
belong to [−1, 0[ and have even multiplicity. Furthermore, if the Reeb vector
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�eld ξ is normal to N , the maps P , t, F , n are related by

P 2 + tF = −ITN , FP + nF = 0,

P t+ tn = 0, F t+ n2 = −IT⊥N + η ⊗ ξ.
(2.1)

As in [11], the immersion f is said to be a slant immersion if for any x ∈ N ,
X ∈ TxN , such that X, ξ are linearly independent, the angle θ(X) ∈ [0, π2 ]
between ϕX and TxN is a constant θ. In this case, we put sla(N) = θ, θ is
named the slant angle of N in M and (N, f) is called a slant submanifold of M .
In particular, if θ = 0 (resp. θ = π

2 ), (N, f) is an invariant (resp. anti-invariant)
submanifold. If sla(N) = θ 6= 0, π2 , (N, f) is called a proper slant submanifold.

Given an isometric immersion f : (N, g′) → (M,ϕ, ξ, η, g) such that ξ is
normal to N , one has: (N, f) is slant if and only if there exists a constant
λ ∈ [0, 1] such that Q = −λITN . Moreover, if sla(N) = θ, then λ = cos2 θ and
for any X,Y ∈ TN one gets

g′(PX,PY ) = (cos2 θ)g′(X,Y ), g(FX,FY ) = (sin2 θ)g′(X,Y ). (2.2)

It follows that, if θ 6= π
2 , then (J = 1

cos θP, g
′) is an a.H. structure on N , called

the a.H. structure induced on N by f ([2], [11]).
In [11], the author links slant submanifolds of an a.H. manifold with slant

submanifolds of a suitable a.c.m. manifold. More precisely, given an a.H. mani-
fold (M̂, Ĵ , ĝ), we endow the product manifold M̂ ×R with the a.c.m. structure
(ϕ, ξ, η, g) de�ned by

ϕ(X, a
∂

∂t
) = (ĴX, 0), η(X, a

∂

∂t
) = a,

ξ = (0,
∂

∂t
), g = ĝ + dt⊗ dt,

(2.3)

for any X ∈ Γ(TM̂), a ∈ F(M̂ × R). If f̂ : (N̂ , ĝ′) → (M̂, ĝ) is an isometric

immersion, one considers the immersion f0 : N̂ → M̂ × R such that f0(x) =

(f̂(x), 0), for any x ∈ N̂ . Obviously, the vector �eld ξ is normal to (N̂ , f0).

Moreover, (N̂ , f̂) is slant in M̂ with sla(N̂) = θ if and only if (N̂ , f0) is slant in

M̂ × R with sla(N̂) = θ.
Now, we focus on a wider class of a.c.m. manifolds strictly related to a.H.

manifolds. Given an a.H. manifold (M̂, Ĵ , ĝ), an open inteval I ⊂ R and two

smooth positive functions λ1, λ2 : I × M̂ → R, on the product manifold I × M̂
one considers the a.c.m. structure (ϕ, ξ, η, g(λ1,λ2)) given by

ϕ(a
∂

∂t
,X) = (0, ĴX), η(a

∂

∂t
,X) = aλ1,

ξ =
1

λ1
(
∂

∂t
, 0), g(λ1,λ2) = λ21π

∗
1(dt⊗ dt) + λ22π

∗
2(ĝ),

(2.4)

for any a ∈ F(I × M̂), X ∈ Γ(TM̂), π1 : I × M̂ → I, π2 : I × M̂ → M̂ denoting
the canonical projections. Note that g(λ1,λ2) is the double-twisted product of

the Euclidean metric g0 and ĝ ([13]). The a.c.m. manifold I ×(λ1,λ2) M̂ =

(I × M̂, ϕ, ξ, η, g(λ1,λ2)) is named the double-twisted product manifold of (I, g0)

and (M̂, Ĵ , ĝ) by (λ1, λ2). If λ1 ≡ 1, then I ×(1,λ2) M̂ , which is denoted by
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I ×λ2 M̂ , is called the twisted product manifold of (I, g0) and (M̂, Ĵ , ĝ) by λ2
([8]). If λ2 ≡ 1, the manifold I ×(λ1,1) M̂ is denoted by λ1

I × M̂ . Furthermore,
when λ1 is independent of the coordinate t and λ2 only depends on t, g(λ1,λ2) is

just the double-warped product metric of g0 and ĝ by (λ1, λ2) and I ×(λ1,λ2) M̂

is called a double-warped product manifold, as well as I ×λ2
M̂ is said to be a

warped product manifold. Obviously, the warped product manifold of (R, g0)

and (M̂, Ĵ , ĝ) by λ2 ≡ 1 is identi�ed with the product manifold M̂ ×R endowed
with the structure de�ned in (2.3).

Applying the theory developed in [6, 8], we are also able to specify the
Chinea-Gonzalez class of the just mentioned manifolds. Firstly, in Table 1 we
list the de�ning conditions of any a.c.m. manifold (M,ϕ, ξ, η, g) which falls in
the Chinea-Gonzalez class C1−5⊕C12 =

⊕
1≤i≤5

Ci⊕C12 or in suitable subclasses.

We also use the symbols C1−5 =
⊕

1≤i≤5
Ci and C1−4 ⊕ C12 =

⊕
1≤i≤4

Ci ⊕ C12.

Putting dimM = 2m + 1, these conditions are formulated in terms of the
covariant derivatives ∇ϕ, ∇η, ∇ denoting the Levi-Civita connection of M .

Table 1

Classes De�ning conditions

C1−5 ⊕ C12
(∇ξϕ)Y = −η(Y )ϕ(∇ξξ)− (∇ξη)ϕY ξ,

(∇Xη)Y = − δη
2mg(ϕX,ϕY ) + η(X)(∇ξη)Y

C1−5 ∇ξϕ = 0, (∇Xη)Y = − δη
2mg(ϕX,ϕY )

C1−4 ⊕ C12
(∇ξϕ)Y = −η(Y )ϕ(∇ξξ)− (∇ξη)ϕY ξ,
(∇Xη)Y = η(X)(∇ξη)Y

C5 ⊕ C12
(∇Xϕ)Y = − δη

2m{g(ϕX, Y )ξ − η(Y )ϕX}
−η(X){(∇ξη)ϕY ξ + η(Y )ϕ(∇ξξ)}

C5 (∇Xϕ)Y = − δη
2m{g(ϕX, Y )ξ − η(Y )ϕX}

C12 (∇Xϕ)Y = −η(X){(∇ξη)ϕY ξ + η(Y )ϕ(∇ξξ)}

Considering an a.H. manifold (M̂, Ĵ , ĝ), any double-twisted product manifold

I ×(λ1,λ2) M̂ belongs to C1−5 ⊕C12 and any twisted product manifold I ×λ2
M̂

falls in C1−5. If λ1 is independent of the coordinate t, the manifold λ1
I × M̂

falls in the class C1−4 ⊕ C12. Furthermore, under suitable restriction on the

Gray-Hervella class of (M̂, Ĵ , ĝ), I ×(λ1,λ2) M̂ falls in a particular subclass of

C1−5 ⊕ C12. In particular, we assume that (Ĵ , ĝ) is a Kähler structure. Then,

if λ2 is constant on M̂ , I ×(λ1,λ2) M̂ is a C5 ⊕ C12-manifold and when λ1 is

independent of the Euclidean coordinate, the manifold λ1
I × M̂ belongs to C12.

Finally, we recall that any warped product manifold I ×λ2 M̂ is a C5-manifold
and it is called an α-Kenmotsu manifold, where α = − 1

2mδη = ξ(log λ2).

3 Some methods to construct slant immersions

In this section, �rstly we extend the procedure given in Section 2 that allows us
to obtain even-dimensional slant submanifolds of an a.c.m. manifold, starting
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by a slant immersion into an a.H. manifold.
Let (M̂, Ĵ , ĝ) be an a.H. manifold and f̂ : (N̂ , ĝ′) → (M̂, ĝ) an isometric

immersion. Given an open interval I ⊂ R, 0 ∈ I, and a smooth positive function
λ : M̂ → R, the map

fλ : (N̂ , ĝ′)→ (I×M̂, g(λ,1) = λ2dt⊗dt+ĝ), fλ(x) = (0, f̂(x)), x ∈ N̂ (3.1)

is an isometric immersion. Hence Nλ = (N̂ , fλ) is a Riemannian submanifold

of the a.c.m. manifold λI × M̂ . For any x ∈ N̂ , X ∈ TxN̂ one has ((fλ)∗)xX =

(0, (f̂∗)xX) ≡ (f̂∗)xX, so the tangent spaces TxNλ, TxN̂ are identi�ed. As for

as regard the normal spaces T⊥x Nλ, T
⊥
x N̂ , one has T⊥x Nλ

∼= I×T⊥x N̂ . It follows
that the vector �eld ξ|

N̂
= 1

λ◦f̂
( ∂∂t , 0) is a section of T⊥Nλ, that is ξ is normal

to Nλ. To relate the second fundamental forms h, hλ of N̂ , Nλ we recall that
the Levi-Civita connection ∇ of λI × M̂ acts as

∇XY = ∇̂XY, ∇ξξ = −grad log λ,

∇Xξ = 0, ∇ξX = X(log λ)ξ,
(3.2)

for any X,Y ∈ Γ(TM̂), where ∇̂ is the Levi-Civita connection of (M̂, ĝ) and
grad is evaluated with respect to the metric g(λ,1) ([8, 13]). Applying (3.2) and
the Gauss equation, we get

hλ(X,Y ) = (0, h(X,Y )) ≡ h(X,Y ), X, Y ∈ Γ(TN̂). (3.3)

It follows that the Weingarten operators corresponding to the immersions fλ, f̂
are related by

(Aλ)VX = AV−η(V )ξX, x ∈ N̂ , X ∈ TxN̂ , V ∈ T⊥x Nλ. (3.4)

By (3.3), (3.4) one easly proves the equivalences:

i) (N̂ , f̂) is totally geodesic if and only if Nλ is totally geodesic.

ii) (N̂ , f̂) is totally umbilical (resp. austere) if and only if Nλ is totally
umbilical (resp. austere).

For any X ∈ TN̂ , let PλX (resp. FλX) be the tangential (resp. normal)

component of ϕX. Since ϕX ≡ ĴX = P̂X + F̂X, we get

PλX = P̂X, FλX = F̂X. (3.5)

Proposition 3.1. Let (M̂, Ĵ , ĝ) be an a.H. manifold, (N̂ , f̂) a submanifold of

M̂ , I ⊂ R an open interval, 0 ∈ I, and λ : M̂ → R a smooth positive function.
Then, (N̂ , f̂) is a slant submanifold with sla(N̂) = θ if and only if Nλ is a slant
submanifold with sla(Nλ) = θ.

Proof. Given x ∈ N̂ , X ∈ TxN̂ , X 6= 0, we denote by θλ(X) the angle between
ϕX and TxNλ. By (2.4), (3.5), we have

cos θλ(X) =
g(λ,1)(ϕX,PλX)

||ϕX||λ||PλX||λ
=
||P̂X||
||X||

= cos θ(X),

where || · ||λ denotes the norm induced by g(λ,1) and θ(X) is the Wirtinger angle
of X.
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Since the a.c.m. manifold λI × M̂ falls in the Chinea-Gonzalez class C1−4⊕
C12, by Proposition 3.1 we get a method to construct a family of slant sub-
manifolds of C1−4 ⊕ C12-manifolds, starting by a slant submanifold of an a.H.
manifold. In particular, if I ⊂ R is an open interval and 0 ∈ I, a slant immersion
f̂ : N̂ → M̂ into a Kähler manifold gives rise to the family of slant immersions
{fλ;λ ∈ C∞(M̂), λ > 0} into the manifolds λI × M̂ , λ ∈ C∞(M̂), λ > 0, which
belong to the class C12.

We remark that, considering a slant submanifold (N̂ , f̂) of a Kähler manifold

M̂ with sla(N̂) = θ 6= π
2 , ( 1

cos θ P̂ , ĝ
′) is an almost Kähler structure and it

coincides with the a.H. structure ( 1
cos θPλ, ĝ

′) induced on N̂ by fλ. In particular,

if dim N̂ = 2, (N̂ , 1
cos θ P̂ , ĝ

′) is a Kähler manifold.
Many explicit examples can be obtained starting by the main examples of

slant immersions given in [4], [5]. In next Examples 3.1, 3.3 we provide families of
austere, but non-totally geodesic, slant immersions as well as, for any α ∈ [0, π2 ],
in Example 3.2 we obtain a family of totally geodesic slant immersions with slant
angle α.

Example 3.1. The map f̂ : R2 → R4 such that

f̂(x1, x2) = (x1, x2, ex
1

cosx2, ex
1

sinx2)

de�nes a holomorphic immersion into the Kähler manifold (R4, Ĵ , g0), g0 being

the Euclidean metric and Ĵ acting as

Ĵ(y1, y2, y3, y4) = (−y2, y1,−y4, y3).

Moreover (R2, f̂) is austere, but non-totally geodesic. So, given an open interval
I ⊂ R with 0 ∈ I, for any λ ∈ C∞(R4), λ > 0, the map fλ : R2 → λI × R4

acting as fλ(x1, x2) = (0, f̂(x1, x2)) is an austere invariant immersion into a
C12-manifold.

Example 3.2 ([4]). For any α ∈ [0, π2 ] the map f̂α : R2 → R4 acting as

f̂α(x1, x2) = (x1 sinα, x2, 0, x1 cosα)

is an isometric totally geodesic immersion with respect to the Euclidean metrics
g′0 and g0 on R2, R4, respectively. Let J0 be the canonical almost complex struc-

ture on R4 and Xi = (f̂α)∗(
∂
∂xi ), i ∈ {1, 2}. By direct calculus the tangential

components of J0(X1), J0(X2) are given by

P̂X1 = − cosαX2, P̂X2 = cosαX1.

This implies that P̂ = − cosαJ0 and (R2, f̂α) is a slant submanifold of the
Kähler manifold (R4, J0, g0) with slant angle α. It follows that, for any pair
(I, λ), I being an open interval, with 0 ∈ I, and λ ∈ C∞(R4), λ > 0, the map

fαλ : R2 → λI × R4 such that fαλ (x1, x2) = (0, f̂α(x1, x2)) is a totally geodesic
slant immersion with slant angle α.

Example 3.3. Let f = (f̂ , f̂0) : R4 → R8 be the Riemannian product immer-

sion of the immersions f̂ given in Example 3.1 and f̂α, α = 0, occurring in
Example 3.2. So, f acts as

f(x1, x2, x3, x4) = (x1, x2, ex
1

cosx2, ex
1

sinx2, 0, x4, 0, x3).
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On R8 we consider the a.H. structure (J, g0), g0 being the Euclidean metric and

J = (Ĵ , J0) acting as

J(y1, y2, y3, y4, y5, y6, y7, y8) = (−y2, y1,−y4, y3,−y7,−y8, y5, y6).

One proves that (R8, J, g0) is a Kähler manifold and f is a holomorphic non-
totally geodesic austere immersion. Let I ⊂ R be an open interval, with 0 ∈ I.
For any smooth positive function λ : R8 → R the manifold λI×R8 is in the class
C12 and the map fλ : R4 → λI × R8, fλ(x) = (0, f(x)), is an invariant austere
immersion.

Now, we explain a method to obtain examples of slant immersions into a
C5-manifold.

We recall that, if (M,ϕ, ξ, η, g) is a manifold in the class C5, dimM =
2m + 1, putting α = − δη

2m , one has ∇Xξ = α{X − η(X)ξ}. It follows that
the distribution D associated with the subbundle Kerη of TM is integrable and
de�nes an umbilical foliation. If (M, i) is a leaf of D, i : M → M being the
inclusion map, its second fundamental form acts as h(X,Y ) = −α|M g(X,Y )ξ
and, if m ≥ 2, α|M is constant. Moreover, for any m, (J = ϕ|TM

, i∗g) is a Kähler
structure.

Theorem 3.1. Let (M,ϕ, ξ, η, g) be an α-Kenmotsu manifold and (M, i) a leaf
of the distribution D. Assume that N = (N, f) is a submanifold of M and put
∼
f = i ◦ f ,

∼
N = (N,

∼
f ). Then, the following properties hold

i) The second fundamental forms
∼
h, h of

∼
N , N are related by

∼
h(X,Y ) = h(X,Y )− (α ◦

∼
f )g(X,Y )ξ.

ii) N is a slant submanifold with sla(N) = θ if and only if
∼
N is a slant

submanifold and sla(
∼
N) = θ. Moreover, if sla(

∼
N) = θ 6= π

2 , then
∼
N

inherits from M an almost Kähler structure.

Proof. Firstly, we observe that TM|M = D⊕ < ξ > and T⊥
∼
N = T⊥N⊕ < ξ >.

Since h(X,Y ) = −α|M g(X,Y )ξ, i) directly follows by the Gauss equation.

For any X ∈ TN , since JX ≡ ϕX, one gets PX ≡
∼
PX, PX (resp.

∼
PX) denot-

ing the tangential component of JX (resp. ϕX) with respect to N (resp.
∼
N).

This entails the equivalence in ii). Finally, since (M,J, i∗g) is a Kähler mani-

fold, if sla(N) = θ 6= π
2 , the a.H. structure ( 1

cos θP , g = f
∗
(i∗g)) = ( 1

cos θ

∼
P ,
∼
f∗g)

is almost Kähler.

Let (M̂, Ĵ , ĝ) be a Kähler manifold, I ⊂ R an open interval and λ : I → R a
smooth positive function. As remarked in Section 2, the warped product mani-
fold I×λ M̂ is an α-Kenmotsu manifold, α = ξ(log λ) = λ′

λ . Using the canonical

identi�cation X ≡ (0, X), for any X ∈ TM̂ , we get that the distribution D on

I ×λ M̂ is identi�ed with TM̂ . Thus, given a point (t0, x0) ∈ I × M̂ , the leaf

of D through (t0, x0) is the submanifold (M̂, ft0), ft0 : M̂ → I × M̂ acting as

ft0(x) = (t0, x), and the α-Kenmotsu structure on I ×λ M̂ induces on (M̂, ft0)
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the Kähler structure (Ĵ , λ(t0)
2
ĝ). By Theorem 3.1, considering a slant subman-

ifold (N, f) of M̂ , with sla(N) = θ, we get that
∼
f = ft0 ◦ f : N → I ×λ M̂ is

slant with angle θ.
The next example clari�es this procedure.

Example 3.4. Given k ∈ R, k > 0, let f : R2 → R4 be the map acting as

f(x1, x2) = (ekx
1

cosx1 cosx2, ekx
1

sinx1 cosx2, ekx
1

cosx1 sinx2,

ekx
1

sinx1 sinx2).

It is easy to see that f is a slant immersion into the Kähler manifold (R4, J0, g0),
(J0, g0) being the canonical Hermitian structure and sla(R2) = arccos( k√

k2+1
).

On R2 we consider the metric ĝ′ represented, with respect to the natural frame,
by the matrix (

(k2 + 1)e2kx
1

0

0 e2kx
1

)
.

Given an open inteval I , let λ : I → R be a smooth function, λ > 0, and (t0, x0)
a point of I × R4. The leaf of the distribution D =< ξ >⊥ on the warped
product manifold I ×λ R4 through (t0, x0) is identi�ed with (R4, J0, λ(t0)

2
g0).

By Theorem 3.1 the isometric immersion
∼
f : (R2, J0, λ(t0)

2
ĝ′) → I ×λ R4 act-

ing as
∼
f (x1, x2) = (t0, f(x1, x2)) de�nes a slant submanifold with angle θ =

arccos( k√
k2+1

).

4 Submanifolds of a C5 ⊕ C12-manifold

The content of Section 3 motivates the study of slant immersions into C5 ⊕
C12-manifolds. We recall some properties of these manifolds, that are locally
described in [8].

Let (M,ϕ, ξ, η, g) be an a.c.m. manifold in the class C5 ⊕ C12 and ∇ its
Levi-Civita connection. We put dimM = 2m + 1, α = − δη

2m . The function α
determines the C5-component of ∇ϕ, as well as ∇ξξ de�nes its C12-component.
In fact, for any X,Y ∈ Γ(TM) one has

(∇Xϕ)Y =α{g(ϕX, Y )ξ − η(Y )ϕX}
− η(X){η(Y )ϕ(∇ξξ) + g(∇ξξ, ϕY )ξ}.

(4.1)

It follows dη = η∧∇ξη, so the distributionD associated with the subbundle Kerη
of TM is integrable. Generally, if ∇ξξ 6= 0 and dimM ≥ 5, α is not constant
on the leaves of D. In fact, being dΦ = 2αη ∧ Φ, where Φ is the fundamental
2-form of M , one gets (dα − α∇ξη) ∧ η = 0 and for any X orthogonal to ξ we
have X(α) = αg(∇ξξ,X).

Now, we consider an isometric immersion f : (N, g′) → (M,ϕ, ξ, η, g) such
that ξ is normal to N . Let ∇′ (resp. ∇⊥) be the Levi-Civita (resp. normal)
connection of (N, g′) and P , F , t, n the smooth maps associated with (N, f),
that are de�ned is Section 2. We recall that the mixed covariant derivatives
∇F , ∇t are de�ned by

(∇XF )Y = ∇⊥XFY − F (∇′XY ),

(∇Xt)V = ∇′XtV − t(∇⊥XV ),
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for any X,Y ∈ Γ(TN), V ∈ Γ(T⊥N).
We are going to relate the covariant derivatives ∇′P , ∇F , ∇t, ∇⊥n to the
second fundamental form h and the Weingarten operators AV . Hereinafter, if
there is no danger of confusion, we will denote the metric g′ by g, again.

Proposition 4.1. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold and (N, f) a sub-
manifold of M such that ξ is normal to N . Then, for any X,Y ∈ Γ(TN),
V ∈ Γ(T⊥N), one has

i) AξX = −(α ◦ f)X, ∇⊥Xξ = 0,

ii) (∇′XP )Y = AFYX + th(X,Y ),

iii) (∇XF )Y = nh(X,Y )− h(X,PY ) + (α ◦ f)g(PX, Y )ξ,

iv) (∇Xt)V = AnVX − P (AVX)− (α ◦ f)η(V )PX,

v) (∇⊥Xn)V = −h(X, tV )− F (AVX) + (α ◦ f){g(FX, V )ξ − η(V )FX}.

Proof. By (4.1), for any X ∈ Γ(TN) we have ∇Xξ = (α ◦ f)X. Then i) follows
applying the Weingarten equation. Given X,Y ∈ Γ(TN), using (4.1), the Gauss
and Weingarten equations, we have

(α ◦ f)g(PX, Y )ξ = (∇Xϕ)Y =(∇′XP )Y −AFYX − th(X,Y ) + (∇XF )Y

+ h(X,PY )− nh(X,Y ).

Comparing the tangential and normal components, we get ii), iii). Analogously,
considering V ∈ Γ(T⊥N), X ∈ Γ(TN), one has

(α ◦ f){g(FX, V )ξ − η(V )PX} − (α ◦ f)η(V )FX = (∇Xϕ)V

= (∇Xt)V −AnVX + P (AVX) + (∇⊥Xn)V + h(X, tV ) + F (AVX).

Then, iv), v) follow.

The next result provides a characterization of slant submanifolds of any
a.c.m. manifold which involves the behavior of the tensor �elds Q = P 2 and
∇′Q.

Proposition 4.2. Let (M,ϕ, ξ, η, g) be an a.c.m. manifold and (N, f) a sub-
manifold of M such that ξ is normal to N . The following conditions are equiv-
alent

i) (N, f) is slant.

ii) ∇′Q = 0 and at any point of N the endomorphism Q admits only one
eigenvalue.

Moreover, if (N, f) is slant with sla(N) = θ, the unique eigenfunction λ of Q is
constant and λ = − cos2 θ.

Proof. If (N, f) is slant, then Q = (− cos2 θ)ITN is parallel and the only eigen-
function of Q is the constant function − cos2 θ.

Conversely, assume that ∇′Q = 0 and Q = λITN . For any X,Y ∈ Γ(TN)
one has 0 = (∇′XQ)Y = X(λ)Y . It follows that λ : N → [−1, 0] is a constant
function. Hence, there exists θ ∈ [0, π2 ] such that λ = − cos2 θ and (N, f) is
slant.
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Corollary 4.1. Let (N, f) be a slant submanifold of a C5 ⊕ C12-manifold
(M,ϕ, ξ, η, g) such that ξ is normal to N . For any X,Y ∈ TN , we have

AFPXY +AFPYX −AFXPY −AFY PX = 0.

Proof. By Propositions 4.1, 4.2, for any Y, Z ∈ Γ(TN) we have

0 = (∇′ZQ)Y = (∇′ZP )PY + P ((∇′ZP )Y )

= AFPY Z + th(Z,PY ) + P (AFY Z) + Pth(Z, Y ).

Thus, for any X,Y, Z ∈ TN we obtain

0 = g(AFPY Z,X)− g(h(Z,PY ), FX)− g(AFY Z,PX) + g(h(Z, Y ), FPX)

= g(AFPYX −AFXPY −AFY PX +AFPXY,Z).

Theorem 4.1. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold and (N, f) a slant
submanifold of M such that sla(N) = θ 6= π

2 and ξ is normal to N . Then, the
a.H. structure induced on N by f is almost Kähler.

Proof. We consider the a.H. structure (J = 1
cos θP, g) on N and prove that

the fundamental 2-form Ω, Ω(X,Y ) = g(X, JY ), is closed. In fact, applying
Proposition 4.1, for any X,Y, Z ∈ Γ(TN) one has

dΩ(X,Y, Z) = −1

3
σ

(X,Y,Z)
g((∇′XJ)Y,Z)

= − 1

3 cos θ
σ

(X,Y,Z)
g(AFYX + th(X,Y ), Z)

= − 1

3 cos θ
σ

(X,Y,Z)
g(AFY Z −AFZY,X) = 0. (4.2)

Corollary 4.2. In the same hypotheses of Theorem 4.1, for any X,Y ∈ TN
one has

P (AFYX −AFXY ) +AFPYX −AFXPY = 0.

Proof. By Theorem 4.1, (N, J, g) is an almost Kähler manifold, therefore for
any Y, Z ∈ TN we have (∇′ZJ)Y + (∇′JZJ)JY = 0 ([9]). Hence, also applying
Proposition 4.1, for any X,Y, Z ∈ TN we have

0 = g((∇′ZP )Y + (∇′JZP )JY,X)

= g(AFY Z + th(Y,Z), X) +
1

cos2 θ
g(AFPY PZ + th(PY, PZ), X)

= g(AFYX −AFXY,Z)− 1

cos2 θ
g(P (AFPYX −AFXPY ), Z).

It follows that

(cos2 θ)(AFYX −AFXY )− P (AFPYX −AFXPY ) = 0

and, applying P , we obtain the statement.
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Remark 4.1. We recall that any a.H. structure on a 2-dimensional manifold is
a Kähler structure. Hence, considering a submanifold (N, f) as in Theorem 4.1
with dimN = 2, we get that (N, 1

cos θP, g) is a Kähler manifold and Propo-
sition 4.1 entails that, for any X,Y ∈ TN AFXY = AFYX. It follows that
Corollary 4.2 is trivial.

We observe that any submanifold (N, f) of a C5⊕C12-manifoldM such that
ξ ∈ Γ(T⊥N) satis�es the condition Aξ ◦P = P ◦Aξ. Now, we are going to study
slant submanifolds for which all the Weingarten operators AFX commute with
P .

Theorem 4.2. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold and (N, f) a slant
submanifold of M such that sla(N) = θ 6= π

2 and ξ is normal to N . Assume
that for any X ∈ TN AFX ◦P = P ◦AFX . Then, all the Weingarten operators
AFX , X ∈ TN , vanish and (N, J = 1

cos θP, g) is a Kähler manifold.

Proof. We know that (N, J, g) is an almost Kähler manifold. Hence, applying
Proposition 4.1, for any X,Y ∈ TN we have

AFYX + th(X,Y ) +AFJY JX + th(JX, JY ) = 0.

By this equation, taking the skew-symmetric component, we get

AFYX −AFXY +AFJY JX −AFJXJY = 0.

Now, we apply J and the hypothesis, so obtaining

AFY JX −AFXJY −AFJYX +AFJXY = J(AFYX −AFXY
+AFJY JX −AFJXJY ) = 0.

Then, by Corollary 4.1, one gets AFXJY = AFJXY and, for any Z tangent to
N , we obtain

g(Jth(X,Y ), Z) = g(h(X,Y ), FJZ) = g(AFZJX, Y )

= −g(AFZX,JY ) = g(th(X, JY ), Z).

It follows

th(X, JY ) = Jth(X,Y ) = th(Y, JX), X, Y ∈ TN. (4.3)

On the other hand, using the hypothesis, for any X,Y, Z ∈ TN we obtain

g(th(JX, Y ), Z) = −g(AFZJX, Y ) = g(AFZX, JY ) = −g(th(X, JY ), Z).

This implies th(JX, Y ) = −th(X, JY ) and, combining with (4.3), for any
X,Y ∈ TN we have th(X,Y ) = 0, AFX = 0. This proves the statement.

5 Slant immersions and second fundamental

form

Let (N, f) be a submanifold of an a.c.m. manifold (M,ϕ, ξ, η, g) such that ξ is
normal to N and denote by µ the vector subbundle of T⊥N whose �bre, at any
x ∈ N , is the orthogonal complement to < ξx > ⊕F (TxN) in T⊥x N . So we can
consider the orthogonal splitting

TM |N = TN⊕ < ξ > ⊕F (TN)⊕ µ. (5.1)
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Lemma 5.1. Let (N, f) be a submanifold of an a.c.m. manifold (M,ϕ, ξ, η, g)
such that ξ is normal to N . For any V ∈ Γ(T⊥N), we have

i) V ∈ Γ(µ)⇒ ϕV ∈ Γ(µ).

ii) V ∈ Γ(< ξ > ⊕µ)⇔ ϕV = nV ⇔ tV = 0.

Proof. If V ∈ Γ(µ), by (2.1), (5.1), for any X ∈ Γ(TN) one has g(ϕV,X) =
−g(V, FX) = 0, g(ϕV, FX) = −g(V, nFX) = g(V, FPX) = 0. Then i) follows.

If V ∈ Γ(< ξ > ⊕µ), then for any X ∈ Γ(TN) we have g(tV,X) =
−g(V, FX) = 0. It follows tV = 0, equivalently ϕV = nV .
Conversely, if ϕV = nV , for any X tangent to N one has g(V − η(V )ξ, FX) =
g(V, FX) = −g(nV,X) = 0. It follows that V − η(V )ξ ∈ Γ(µ), that is,
V ∈ Γ(< ξ > ⊕µ).

We observe that, if (N, f) is a proper slant submanifold of M such that
dimN = 2n, then rankF (TN) = 2n. Applying (5.1) it follows that dimM ≥
4n+ 1 and dimM = 4n+ 1 if and only if µ is trivial.

The next result puts in evidence the interplay between µ and the second
fundamental form.

Theorem 5.1. Let (N, f) be a proper slant submanifold of a C5⊕C12-manifold
(M,ϕ, ξ, η, g) such that sla(N) = θ and dimN = 2n. Assume that for any
V ∈ T⊥N AV ◦ P = P ◦AV . Then, the following properties hold

i) If dimM = 4n + 1, (N, f) is totally umbilical in M and H = −(αξ)|N is
its mean curvature vector �eld.

ii) If dimM > 4n + 1 and ∇⊥X(h(Y, Z)) ∈ Γ(< ξ > ⊕µ) for any X,Y, Z ∈
Γ(TN), then (N, f) is totally umbilical in M with mean curvature vector
�eld H = −(αξ)|N .

Moreover, in both cases i) and ii), if (N, f) is not totally geodesic, then H is
parallel if and only if ∇ξξ ∈ Γ(F (TN)⊕ µ).

Proof. By Theorem 4.2, for any X ∈ TN we have AFX = 0, equivalently
th(X,Y ) = 0, for any X,Y ∈ Γ(TN). Therefore, Lemma 5.1 entails that
h(X,Y ) ∈ Γ(< ξ > ⊕µ).

If dimM = 4n+ 1, since µ is trivial, by Proposition 4.1 we have h(X,Y ) =
g(h(X,Y ), ξ)ξ = −(α ◦ f)g(X,Y )ξ and i) holds.

Now, we suppose that dimM > 4n + 1 and, for any X,Y, Z ∈ Γ(TN),
∇⊥X(h(Y, Z)) ∈ Γ(< ξ > ⊕µ). By Proposition 4.1, for any X,Y, Z,W ∈ Γ(TN)
one has

g((∇XF )Y, nh(Z,W )) =g(h(X,Y ), h(Z,W ))− (α ◦ f)2g(X,Y )g(Z,W )

− g(h(X,PY ), nh(Z,W )).
(5.2)

On the other hand, being h(Z,W ) ∈ Γ(< ξ > ⊕µ), we also have nh(Z,W ) =
ϕ(h(Z,W )) ∈ Γ(µ) as well as n(∇⊥X(h(Z,W ))) = ϕ(∇⊥X(h(Z,W ))) ∈ Γ(µ). By
Proposition 4.1 and (2.2) we have

g((∇XF )Y, nh(Z,W )) = g(∇⊥XFY, nh(Z,W )) = −g(FY, (∇⊥Xn)h(Z,W ))

= (sin2 θ){g(h(X,Y ), h(Z,W ))

− (α ◦ f)2g(X,Y )g(Z,W )}.
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Comparing with (5.2) we obtain

g(h(X,PY ), nh(Z,W )) = (cos2 θ){g(h(X,Y ), h(Z,W ))

− (α ◦ f)2g(X,Y )g(Z,W )}.
(5.3)

Since the right hand side in (5.3) is symmetric with respect to X,Y , we get

g(h(X,PY ), nh(Z,W )) = g(h(PX, Y ), nh(Z,W )).

On the other hand, we have

g(h(X,PY ), nh(Z,W )) = g(Anh(Z,W )PY,X)

= −g(Anh(Z,W )Y, PX) = −g(h(PX, Y ), nh(Z,W )).

It follows g(h(X,PY ), nh(Z,W )) = 0 and (5.3) implies that

g(h(X,Y ), h(Z,W )) = (α ◦ f)2g(X,Y )g(Z,W ).

In particular, for any X,Y ∈ Γ(TN) one has ||h(X,Y )||2 = (α ◦ f)2g(X,Y )
2

=

g(h(X,Y ), ξ)
2
, so that h(X,Y ) = g(h(X,Y ), ξ)ξ = −(α ◦ f)g(X,Y )ξ. Hence

(N, f) is totally umbilical and the mean curvature vector �eld is H = −(αξ)|N .
Finally, since dimM ≥ 5, for any X ∈ Γ(TN) we have

∇⊥XH = −X(α ◦ f)ξ = −(α ◦ f)g(∇ξξ,X)ξ.

Taking into account (5.1), it follows that if (N, f) is not totally geodesic, namely
if α ◦ f 6= 0, then H is parallel if and only if ∇ξξ ∈ Γ(F (TN)⊕ µ).

Remark 5.1. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold. If (N, f) is an invariant
submanifold of M with dimN = 2n, we have T⊥N =< ξ > ⊕µ and dimM ≥
2n+ 1. It follows that either (N, f) is an hypersurface of M or dimM > 2n+ 1.
In the �rst case, it is obvious that (N, f) is totally umbilical in M and H =
−(αξ)|N . Otherwise, we also assume that all the Weingarten operators commute
with P = ϕ|TN

. Using the same technique as in Theorem 5.1, one proves that
(N, f) is totally umbilical, H = −(αξ)|N and, if (N, f) is not totally geodesic,
then H is parallel if and only if ∇ξξ ∈ Γ(µ).

Now, we explain some consequences of Theorems 4.2, 5.1.

Corollary 5.1. Let (N, f) be a proper slant submanifold of a C5⊕C12-manifold
(M,ϕ, ξ, η, g) such that dimN = 2n, dimM = 4n+ 1. The following properties
are equivalent

i) For any X ∈ TN , AFX ◦ P = P ◦AFX .

ii) (N, f) is totally umbilical in M .

Moreover, if one of the previous conditions holds, the mean curvature vector
�eld of (N, f) is H = −(αξ)|N .

Proof. The statement i)⇒ ii) follows by Theorem 5.1.
Conversely, we assume that h(X,Y ) = g(X,Y )H. For any X,Y, Z ∈ TN we

have

g(AFXPY,Z) = g(H,FX)g(PY,Z) = −g(H,FX)g(Y, PZ) = g(P (AFXY ), Z).

Thus, the Weingarten operators commute with P .
The last part of the statement follows by Theorem 5.1.
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Corollary 5.2. Let (N, f) be a proper slant submanifold of a C5⊕C12-manifold
(M,ϕ, ξ, η, g) such that dimN = 2n and dimM > 4n + 1. If (N, f) is totally
umbilical in M with mean curvature vector �eld H, one has

i) For any V ∈ T⊥N , AV ◦ P = P ◦AV and H ∈ Γ(< ξ > ⊕µ).

ii) For any X ∈ Γ(TN), ∇⊥XH ∈ Γ(< ξ > ⊕µ) if and only if H = −(αξ)|N .

Proof. As in Corollary 5.1, for any V ∈ T⊥N one has AV ◦ P = P ◦ AV .
By Theorem 4.2 it follows that for any X ∈ TN AFX ≡ 0, and then tH ≡
0. Therefore H ∈ Γ(< ξ > ⊕µ). By Proposition 4.1 we have g(H, ξ)X =
AξX = −(α ◦ f)X, for any X ∈ TN . This implies η(H) = −(α ◦ f). Applying
Proposition 4.1 again, for any X ∈ Γ(TN) one has

t(∇⊥XH) = −(∇Xt)H = P (AHX) + (α ◦ f)η(H)PX = (||H||2 − (α ◦ f)2)PX.

It follows that for any X ∈ Γ(TN) ∇⊥XH ∈ Γ(< ξ > ⊕µ) if and only if ||H||2 =
(α ◦ f)2 = g(H, ξ)2 if and only if H = −(αξ)|N .

The next result is a consequence of Theorem 5.1 and Corollaries 5.1, 5.2.

Proposition 5.1. Let (N, f) be a proper slant submanifold of a C12-manifold
(M,ϕ, ξ, η, g) such that dimN = 2n. The following properties hold

i) If dimM = 4n+ 1, then (N, f) is totally geodesic in M if and only if for
any X ∈ TN AFX ◦ P = P ◦AFX .

ii) If dimM > 4n + 1, then (N, f) is totally geodesic in M if and only if
for any V ∈ T⊥N AV ◦ P = P ◦ AV and for any X,Y, Z ∈ Γ(TN)
∇⊥X(h(Y,Z)) ∈ Γ(< ξ > ⊕µ).

Now, we consider a submanifold (N, f) of a C5⊕C12-manifold such that the
Reeb vector �eld ξ is normal to N . By Proposition 4.1, one easily obtains that,
if (N, f) is totally umbilical with mean curvature vector �eld H = −(αξ)|N ,

then ∇′P = ∇F = ∇t = ∇⊥n = 0. In order to see if the converse statement
holds, we characterize the condition ∇F = 0.

Proposition 5.2. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold and (N, f) a sub-
manifold of M such that ξ is normal to N . The following conditions are equiv-
alent

i) ∇F = 0.

ii) For any V ∈ T⊥N , AnV = −AV ◦ P − (α ◦ f)η(V )P .

iii) For any V ∈ T⊥N , AnV = P ◦AV + (α ◦ f)η(V )P .

iv) ∇t = 0.

Moreover, if F is parallel and (N, f) is slant with sla(N) = θ 6= π
2 , for any

X,Y ∈ TN we have

h(X,Y ) +
1

cos2 θ
h(PX,PY ) = −2(α ◦ f)g(X,Y )ξ (5.4)

and H = −(αξ)|N is the mean curvature vector �eld of (N, f).
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Proof. By Proposition 4.1, for any X,Y ∈ Γ(TN), V ∈ Γ(T⊥N) we have

g((∇XF )Y, V ) = g((α ◦ f)η(V )PX + P (AVX)−AnVX,Y ) = −g((∇Xt)V, Y ).

On the other hand, it is easy to prove the relation

g(AnVX +AV (PX) + (α ◦ f)η(V )PX, Y )

= g(AnV Y − P (AV Y )− (α ◦ f)η(V )PY,X).

Hence, the required equivalences hold. Finally, we assume that sla(N) = θ 6= π
2

and ∇F = 0. Therefore, P 2 = (− cos2 θ)ITN , dimN = 2n and, by Proposi-
tion 4.1, (2.2), for any X,Y ∈ Γ(TN) we have

0 = (∇Y F )PX − (∇PXF )Y =(cos2 θ)h(X,Y ) + h(PX,PY )

+ 2 cos2 θ(α ◦ f)g(X,Y )ξ.

This entails (5.4) and, considering a local orthonormal frame {ei, en+i = Pei
cos θ}

on N , one has

n∑
i=1

{h(ei, ei) + h(en+i, en+i)} = −2n(α ◦ f)ξ.

It follows that −(αξ)|N is the mean curvature vector �eld of (N, f).

Proposition 5.3. Let (N, f) be a proper slant submanifold of a C5 ⊕ C12-
manifold (M,ϕ, ξ, η, g) such that ξ is normal to N and ∇⊥n = 0. The following
properties hold

i) For any X,Y ∈ Γ(TN), h(X,Y ) ∈ Γ(< ξ > ⊕F (TN)).

ii) The a.H. structure induced on N by f is a Kähler structure.

iii) For any V ∈ Γ(µ), AV = 0.

iv) ∇t = 0 if and only if for any X ∈ TN AFX ◦ P = −P ◦AFX .

Proof. Let sla(N) = θ. By Proposition 4.1, (2.1), (2.2) for any X,Y ∈ Γ(TN)
we have

0 = (∇⊥Xn)FY = (sin2 θ){h(X,Y ) + (α ◦ f)g(X,Y )ξ} − F (AFYX).

It follows

h(X,Y ) + (α ◦ f)g(X,Y )ξ =
1

sin2 θ
F (AFYX). (5.5)

So, we obtain i) and, applying again Proposition 4.1, (2.1) we get

(∇′XP )Y = th(X,Y ) +AFYX =
1

sin2 θ
tF (AFYX) +AFYX = 0.

Thus J = 1
cos θP is parallel and ii) holds. By Proposition 4.1, for any V ∈ Γ(µ),

X ∈ Γ(TN) we have 0 = (∇⊥Xn)V = −F (AVX), hence AVX = 0. Therefore
iii) is proved. Note that, by Lemma 5.1, for any V ∈ Γ(µ) we also have AnV = 0
and then (∇Xt)V = 0. Moreover (∇Xt)ξ = −P (AξX) − (α ◦ f)PX = 0. This
implies that ∇t = 0 if and only if (∇Xt)FY = 0, for any X,Y ∈ Γ(TN). We
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also remark that, being ∇′P = 0, for any X,Y ∈ TN one has AFXY = AFYX
and Corollary 4.2 entails AFPYX = AFXPY . Using Proposition 4.1 and (2.1)
we obtain

(∇Xt)FY = −AFPYX − P (AFYX) = −AFXPY − P (AFXY ).

Thus, iv) is proved.

Proposition 5.4. Let (N, f) be a proper slant submanifold of a C5 ⊕ C12-
manifold (M,ϕ, ξ, η, g) such that ξ is normal to N and ∇F = 0. The following
properties hold

i) For any V ∈ Γ(µ), AV = 0.

ii) F (TN) is a parallel subbundle of T⊥N .

iii) ∇⊥n = 0 if and only if the a.H. structure induced on N by f is a Kähler
structure.

Proof. Since ∇F = 0, by Proposition 4.1 one has

g(h(X,Y ), nV ) + g(h(X,PY ), V ) = 0, V ∈ Γ(µ), X, Y ∈ Γ(TN). (5.6)

So, also applying (2.1) and Lemma 5.1, for any V ∈ Γ(µ), X,Y ∈ Γ(TN), we
have

g(AVX,Y ) = −g(h(X,Y ), n2V ) = g(h(X,PY ), nV )

= −g(h(X,P 2Y ), V ) = (cos2 θ)g(AVX,Y ),

where sla(N) = θ 6= 0. This implies i). Now, considering X,Y ∈ Γ(TN), we
have g(∇⊥XFY, ξ) = 0 and for any V ∈ Γ(µ) g(∇⊥XFY, V ) = g((∇XF )Y, V ) = 0.
Therefore ∇⊥XFY ∈ Γ(F (TN)) and ii) is proved. By direct calculus, applying
Proposition 4.1 and i), for any X ∈ Γ(TN), V ∈ Γ(µ) we have (∇⊥Xn)V = 0.
Since ∇⊥Xξ = 0, we also obtain (∇⊥Xn)ξ = 0. It follows that n is parallel if and
only if for any X,Y ∈ Γ(TN) (∇⊥Xn)FY = 0. Now, we prove the following
formula

(sin2 θ){h(X,Y ) + (α ◦ f)g(X,Y )ξ} = −Fth(X,Y ), X, Y ∈ TN. (5.7)

In fact, by (2.1), Proposition 4.1 and the hypothesis, given X,Y ∈ TN one has

Fth(X,Y ) + h(X,Y ) + (α ◦ f)g(X,Y )ξ = −n2h(X,Y )

= −nh(X,PY ) = −h(X,P 2Y ) + (α ◦ f)g(PX,PY )ξ

= (cos2 θ){h(X,Y ) + (α ◦ f)g(X,Y )ξ}.

It follows Fth(X,Y )+(1−cos2 θ){h(X,Y )+(α◦f)g(X,Y )ξ} = 0 and then (5.7).
Finally, by Proposition 4.1, (2.1) and (5.7) for any X,Y ∈ Γ(TN) we obtain

(∇⊥Xn)FY = (sin2 θ){h(X,Y ) + (α ◦ f)g(X,Y )ξ} − F (AFYX)

= −F ((∇′XP )Y ).

It follows that ∇⊥n = 0 if and only if ∇′P = 0.

The next result is a direct consequence of Propositions 5.2, 5.3, 5.4.
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Corollary 5.3. Let (N, f) be a proper slant submanifold of a C5⊕C12-manifold
(M,ϕ, ξ, η, g) such that ξ is normal to N , ∇F = 0 and ∇⊥n = 0. Then,
H = −(αξ)|N is the mean curvature vector �eld of N , (J = 1

cos θP, g) is a

Kähler structure on N and ∇t = 0.

Finally, we relate the condition ∇F = 0 to the property of austere subman-
ifold.
Given a submanifold (N, f) of a C5 ⊕ C12-manifold (M,ϕ, ξ, η, g) such that
ξ ∈ Γ(T⊥N), we know that at any point x ∈ N the only eigenvalue of Aξ is
−α(f(x)). It follows that, if α ◦ f 6= 0, the set of eigenvalues of Aξ is not in-
variant under multiplication by -1, so N cannot be austere. As in Section 2, for
any x ∈ N , X ∈ TxN , X 6= 0, we denote by θ(X) ∈ [0, π2 ] the angle between
ϕX and TxN .

Proposition 5.5. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold, (N, f) a subman-
ifold of M such that ξ is normal to N , α ◦ f = 0 and for any X ∈ TN the angle
θ(X) ∈ [0, π2 ). If ∇F = 0, then (N, f) is austere.

Proof. Since α ◦ f = 0 and F is parallel, applying Proposition 5.2 we have
AV ◦ P + P ◦AV = 0, for any V ∈ T⊥N . Given x ∈ N , we consider V ∈ T⊥x N
such that AV 6= 0 and an eigenvalue β 6= 0 of AV . Thus, there exists X ∈ TxN ,
X 6= 0, such that AVX = βX. Since θ(X) 6= π

2 , we have PX 6= 0 and
AV (PX) = −βPX. It follows that −β is an eigenvalue of AV .

Corollary 5.4. Let (N, f) be a slant submanifold of a C12-manifold such that
sla(N) = θ 6= π

2 and dimN = 2n. If ∇F = 0, then (N, f) is austere.

Remark 5.2. Given an open interval I ⊂ R, 0 ∈ I, for any λ ∈ C∞(R4), λ > 0,
the submanifold (R2, fλ) of the C12-manifold λI×R4 considered in Example 3.1
ful�lls the hypothesis of Corollary 5.4. In fact, since (R2, fλ) is invariant, one
has Fλ ≡ 0.
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