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Rotational and translational diffusion in an interacting active dumbbell system
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We study the dynamical properties of a two-dimensional ensemble of self-propelled dumbbells with only
repulsive interactions. This model undergoes a phase transition between a homogeneous and a segregated phase
and we focus on the former. We analyze the translational and rotational mean-square displacements in terms of
the Péclet number, describing the relative role of active forces and thermal fluctuations, and of particle density.
We find that the four distinct regimes of the translational mean-square displacement of the single active dumbbell
survive at finite density for parameters that lead to a separation of time scales. We establish the Péclet number
and density dependence of the diffusion constant in the last diffusive regime. We prove that the ratio between the
diffusion constant and its value for the single dumbbell depends on temperature and active force only through
the Péclet number at all densities explored. We also study the rotational mean-square displacement proving the
existence of a rich behavior with intermediate regimes only appearing at finite density. The ratio of the rotational
late-time diffusion constant and its vanishing density limit depends on the Péclet number and density only. At
low Péclet number it is a monotonically decreasing function of density. At high Péclet number it first increases
to reach a maximum and then decreases as a function of density. We interpret the latter result advocating the
presence of large-scale fluctuations close to the transition, at large-enough density, that favor coherent rotation
inhibiting, however, rotational motion for even larger packing fractions.
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I. INTRODUCTION

Active matter includes different kinds of self-driven sys-
tems which live, or function, far from thermodynamic equi-
librium, by continuously converting internal energy sources
into work or movement [1,2]. Nature offers many examples
at very different scales: the cytoskeleton, bacterial colonies,
algae suspensions, bird flocks, and schools of fish among
others [1–10]. Self-propelled units can also be artificially
realized in the laboratory in many different ways, for example,
by surface treatment of colloidal particles [11].

Active matter is inherently out of equilibrium and exhibits
nontrivial properties that have no analog in passive, equi-
librium materials. For example, large-scale coherent motion
and self-organized dynamic structures have been observed
in colonies of bacteria in the absence of any attractive
interaction [12–18]. In addition, a phase separation into an
aggregate and a gaslike phase has been found in theoretical
models [19–27] and, recently, also in experiments [28] on
suspensions of self-motile particles only subject to steric
interactions.

The dynamical properties of a suspension are significantly
affected by self-propulsion. For instance, the comparison of the
diffusion constant D of a dilute solution of passive spherical
colloids with the one of run-and-tumble bacteria shows that
the Stokes-Einstein formula and the fluctuation-dissipation
theorem do not hold for the active system [13,29]. Indeed,
assuming the Stokes-Einstein relation, D is given by D =
kBT /(3πησ ), where T is the temperature, η the fluid viscosity,
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and σ the diameter of the colloids. The diffusion coefficient
in a three-dimensional system of run-and-tumble bacteria [5]
is evaluated as DA ≈ l2

run/(6τ ) where τ is the duration of each
run and lrun its length. Using τ ≈ 1 s, lrun ≈ 10 − 30 μm,
water viscosity η ≈ 10−3 Pa s, and σ ≈ 1 μm, one finds
DA/D ≈ 102.

This simple order-of-magnitude argument suggests that
we analyze more carefully how the diffusive behavior is
affected by self-propulsion. Actually, several experimental
studies addressed this question. Wu and Libchaber considered
the mean-square displacement of passive tracers coupled to a
dilute suspension of Escherichia coli and found that an initial
superdiffusive behavior crosses over to normal diffusion at
late times [13]. The superdiffusive behavior was interpreted
as being due to the presence of coherent structures in the
bacterial bath. A similar study was carried out by Leptos et al.
on a suspension of algae. These authors found a linear time
dependence of the passive tracer’s mean-square displacement
at all measured time lags [30]. The tracer’s diffusive constant
was found to depend linearly on the density of swimmers [30]
while, reducing the dimensionality to a filmlike geometry,
the density dependence was enhanced to the power 3/2 [31].
Results on the diffusion coefficient of tracers in contact with
bacterial suspensions with hydrodynamics playing a relevant
role were given in Refs. [32–34].

Other studies focused on the mean-square displacement
of the active particles themselves. A linear dependence of
the diffusion constant of the active swimmers on the so-called
active flux (active swimmers density times their mean velocity)
was found for different kinds of swimmers in contact with a
solid wall [35]. The simulations of Hernández-Ortı́z et al.
show ballistic behavior crossing over to normal diffusion
for the swimmer and passive tracer particles though with
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different density dependence of the diffusion constant in the
latter regime. The swimmer’s diffusion constant decreases
with density at low swimmer density while it increases at
large values; the diffusion constant of the passive tracer
has, instead, a monotonic dependence with density and it
consistently increases with it [15]. The lattice Boltzmann
study in Ref. [36] also shows a crossover between ballistic
and diffusive behavior at relative high self-propelled particle
density and a superdiffusive regime associated to the formation
of large-scale clusters at low densities.

A detailed study of diffusion properties in models for
self-propelled particles at different densities for the interesting
cases where self-propulsion has been recognized to be an
interaction capable of producing a phase transition is lacking in
the literature. Some results for the case of self-propelled polar
disks have been presented in Ref. [20]. The paper by Grégoire
et al. [37], who considered a model with particle interaction
that favors alignment à la Vicsek, can also be mentioned in this
respect. These authors interpreted the superdiffusive behavior
of Ref. [13] in terms of the crossover found in their model
close to the critical point.

Swimmers typically have elongated shape. We have there-
fore decided to study the diffusive properties of rotational
and translational degrees of freedom in a system of active
dumbbells. This model was introduced in Ref. [38] to describe
the experimental behavior of a bacterial bath coupled to
colloidal tracers. A first study of its phase diagram appeared in
Refs. [24,25], where it was shown that for certain (relatively
high) densities and active forces the system phase separates
into dense and loose spatial regions. A later work [39] focused
on the dumbbell effective temperature defined in terms of
a fluctuation-dissipation relation [40]. However, a detailed
analysis of the translational and rotational mean-square dis-
placements in the full range of time delays and varying the
three more relevant parameters (temperature, activity, and
density) simultaneously was not performed yet. We present
such a complete analysis in the homogeneous phase here.

The paper is organized as follows. In Sec. II the dumbbell
model is reviewed. The diffusion behavior of a single dumbbell
is described in Sec. III. In Sec. IV the numerical results for the
interacting active system are presented. The phase diagram is
analyzed in terms of the Péclet number. This is a preliminary
step needed to fix the region of the parameter space to be con-
sidered for the measurements of the diffusive properties. Then
the translational and rotational mean-square displacements
in the homogeneous phase are studied in all their dynamic
regimes. Special emphasis is put on the analysis of the param-
eter dependence of the diffusion coefficient in the asymptotic
limit. A discussion will complete the paper in Sec. V.

II. THE MODEL

A dumbbell is a diatomic molecule formed by two spherical
colloids with diameter σd and mass md linked together. The
atomic positions are noted r1 and r2 in a Cartesian system of
coordinates fixed to the laboratory. The colloids are subject to
internal and external forces.

Typically, one assumes that there is an elastic link between
the colloids modeled by the finite extensible nonlinear elastic

force,

Ffene = − kr

1 − (
r2/r2

0

) , (1)

with k > 0. The denominator ensures that the spheres cannot
go beyond the distance r0 with r the distance between their
centers of mass. An additional repulsive force is added to
ensure that the two colloids do not overlap. This is the Weeks-
Chandler-Anderson (WCA) potential [41],

Vwca(r) =
{
VLJ(r) − VLJ(rc) r < rc

0 r > rc
(2)

with

VLJ(r) = 4ε

[(
σd

r

)12

−
(

σd

r

)6]
, (3)

where ε is an energy scale and rc is the minimum of the
Lennard-Jones potential, rc = 21/6σd .

The active forces are polar. They act along the main
molecular axis n̂, are constant in modulus pointing in the
same direction for the two spheres belonging to the same
molecule [42] and read

Fact = Fact n̂. (4)

We take the interaction between the spheres in different
dumbbells to be purely repulsive and of the same WCA form
as for the two colloids composing one dumbbell.

The dynamic equations for one dumbbell are

md r̈i(t) = −γ ṙi(t) + Ffene(ri,i+1) + ηi

−
2N∑
j=0
j �=i

∂V
ij

wca

∂rij

rij

rij

+ Facti , (5)

md r̈i+1(t) = −γ ṙi+1(t) − Ffene(ri,i+1) + ηi+1

−
2N∑
j=0

j �=i+1

∂V
i+1,j

wca

∂ri+1,j

ri+1,j

ri+1,j

+ Facti , (6)

with i = 1,3, . . . ,2N − 1, rij = ri − rj , rij = |rij |, and
V

ij
wca ≡ Vwca(rij ) with Vwca defined in Eq. (2). Once the active

force is attached to a molecule, a sense of back and forth atoms
is attributed to them; Fact is directed from the ith colloid (tail)
to the i + 1th colloid (head). The active forces are applied to
all molecules in the sample during all their dynamic evolution.
Fact changes direction together with the molecule’s rotation.

The coupling to the thermal bath is modelled as usual, with
a friction and a noise term added to the equation of motion.
γ is the friction coefficient and we do not distinguish friction
along the main molecular axis and transverse to it, as done
in some publications [43]. The noise η is a Gaussian random
variable with

〈ηia(t)〉 = 0, (7)

〈ηia(t)ηjb(t ′)〉 = 2γ kBT δij δabδ(t − t ′), (8)

with kB the Boltzmann constant and T the temperature of the
equilibrium environment in which the dumbbells move; a and
b label the coordinates in d-dimensional space. An effective
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rotational motion is generated by the random torque due to
the white noise acting independently on the two beads. We
consider initial conditions at time t = 0 such that the initial
angle θ0 = θ (0), randomly distributed between [−π,π ], has
zero mean [θ0]ic = 0.

The surface fraction is

φ = N
Sd

S
(9)

with Sd the area occupied by an individual dumbbell, S the
total area of the box where the dumbbells move, and N their
total number. The spring is supposed to be massless and void of
surface. Therefore, in d = 2, Sd = πσ 2

d /2. We impose periodic
boundary conditions on the two directions.

The Péclet number, Pe, is a dimensionless ratio between
the advective transport rate and the diffusive transport rate.
For particle flow one defines it as Pe = Lv/D, with L a
typical length, v a typical velocity, and D a typical diffusion
constant. We choose L → σd , v → Fact/γ , and D → D

pd
c.m. =

kBT /(2γ ) of the passive dumbbell to be derived below; then,

Pe = 2σdFact

kBT
. (10)

This parameter is also a measure of the ratio between the work
done by the active force in translating the center of mass of the
molecule by a distance of 2σd and the thermal energy scale.
Another important parameter is the active Reynolds number,

React = mdFact

σdγ 2
, (11)

defined in analogy with the usual hydrodynamic Reynolds
number Re = Lv/ν, where ν is the kinematic viscosity of a
given fluid, representing the ratio between inertial and viscous
forces. Here we set L → σd , v → Fact/γ , and ν → γ σ 2

d /md .

III. A SINGLE DUMBBELL

Before studying the interacting problem with numerical
simulations in Sec. IV, we derive analytically the translational
and rotational mean-square displacements of the single dumb-
bell.

The equation of motion for the position of the center of
mass, rc.m. = (r1 + r2)/2, of a single dumbbell is

2md r̈c.m.(t) = −2γ ṙc.m.(t) + 2Fact(t) + ξ (t) (12)

with the new noise ξ (t) ≡ η1(t) + η2(t) with vanishing aver-
age, 〈ξa(t)〉 = 0, and correlation

〈ξa(t)ξb(t ′)〉 = 4γ kBT δabδ(t − t ′). (13)

This is the Langevin equation of a pointlike particle with mass
2md , under a force 2Fact, and in contact with a bath with
friction coefficient 2γ at temperature T .

The equation of motion for the relative position of the two
monomers, r = r1 − r2, is

md r̈(t) = −γ ṙ(t) + 2Fint(t) + ζ (t) (14)

with the new noise ζ (t) = η1(t) − η2(t) having zero average,
〈ζa(t)〉 = 0, and correlation

〈ζa(t)ζb(t ′)〉 = 4γ kBT δabδ(t − t ′) . (15)

Note that the noises ξ and ζ are independent, 〈ξa(t)ζb(t ′)〉 =
0, for all a,b at all time, and Fint includes the elastic and
repulsive forces internal to the single dumbbell.

Equation (14) controls the molecule’s elongation and its
rotational motion while Eq. (12) determines the translational
properties of the dumbbell. The internal force Fint affects
the elongation of the molecule while the thermal noise adds
fluctuations to it but, more importantly, it applies an effective
torque and induces rotations. Equations (12) and (14) are
coupled by the fact that Fact acts along the axis of the molecule,
the orientation of which changes in time in the presence of
thermal fluctuations.

A. Elongation and rotation

Let us call û‖ the instantaneous unit vector pointing from
monomer 1 to monomer 2 along the axis of the molecule, θ

the angle between û‖ and an axis fixed to the laboratory, and
û⊥ a unit vector that is perpendicular to û‖ at all times. Using
ṙ = ṙû‖ + r ˙̂u‖, with r the modulus of r, ˙̂u‖ = θ̇ û⊥, and ˙̂u⊥ =
−θ̇ û‖ (note that we use here the Stratonovich discretisation
scheme of stochastic differential equations [44] and we are
thus entitled to apply the usual rules of calculus) [45] one has

md (r̈ − rθ̇2) = −γ ṙ + 2Fint + ζ‖, (16)

md (2ṙ θ̇ + rθ̈) = −γ rθ̇ + ζ⊥, (17)

where we decomposed the noise into the parallel and perpen-
dicular directions, ζ = ζ‖û‖ + ζ⊥û⊥. The relations between
the unit vectors in the fixed laboratory and the comoving frame
are given by

ûx = cos θ û‖ − sin θ û⊥,
(18)

ûy = sin θ û‖ + cos θ û⊥.

With this, for any noise we write

ζ = (ζx cos θ + ζy sin θ ) û‖
+ (−ζx sin θ + ζy cos θ ) û⊥, (19)

and

ζ‖ = ζx cos θ + ζy sin θ,
(20)

ζ⊥ = −ζx sin θ + ζy cos θ.

The system of equations (16) and (17) for r and θ cannot
be solved exactly. We will assume that the internal and
viscous forces are such that the inertial contributions (all terms
proportional to md ) can be neglected. We then have

γ ṙ = 2Fint + ζx cos θ + ζy sin θ, (21)

γ rθ̇ = −ζx sin θ + ζy cos θ. (22)

Putting together r and θ into a vector y = (r,θ ), this set of
equations reads

ẏα = hα[y] + gαβ[y] ζβ (23)

where the index β is a Cartesian one, ζ1 = ζx and ζ2 = ζy , and
the index α yields y1 = r and y2 = θ . The components of the
vector h and the matrix g can be easily read from Eqs. (21)
and (22). In the last term the noise appears, multiplying a
function of the stochastic variable y.
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One can now average Eqs. (21) and (22) over the Cartesian
white noise by using the rules of Stratonovich stochastic
calculus described in Refs. [44,46,47]:

〈gαβζβ〉 = D

〈
gνβ

∂

∂yν

gαβ

〉
, (24)

where all factors are evaluated at the same time and D =
2γ kBT . The explicit calculation yields

γ
d〈r〉
dt

= 2〈Fint〉 + Dγ −1〈r−1〉, (25)

γ
d〈θ〉
dt

= 0. (26)

The first equation is independent of θ but it involves the average
of different functions of r . The second equation implies 〈θ〉 =
θ0 = θ (0) and, as we will take random initial conditions with
average [θ0]ic = 0, then [〈θ〉]ic = 0. The statistics of θ can be
further analyzed from the equation for the angular variance

γ
d

dt
〈θ2〉 = 2Dγ −1〈r−2〉. (27)

If we assume that r does not fluctuate around σd , otherwise
stated, that the molecule is approximately rigid [48]

r ≈ σd, (28)

this equation implies angular diffusion,

〈θ2〉 = θ2
0 + 2DRt, (29)

with the angular diffusion constant

DR = D

γ 2σ 2
d

= 2kBT

γ σ 2
d

. (30)

The same technique can be used to compute all moments of the
angular variable and thus show that it is Gaussian distributed
within the rigid molecule approximation.

It is interesting to compare our expression for the rotational
diffusion constant, which for the sake of clarity we call
Ddumb

R in this paragraph, with that for self-propelled hard
rods, as described in the Langevin approach by Baskaran
and Marchetti [43]. In the model of Ref. [43] the rotational
diffusion constant is given by Drod

R = (kBT m)/(Iγ ), where
I is the moment of inertia calculated along the main axis
of the rod and γ is a friction coefficient. If we identify the
latter γ with our friction coefficient, and we take for the
dumbbell the moment of inertia of two pointlike particles with
mass m = md and diameter σd = 2R, I = 2mR2, then our
expression for the rotational diffusion coefficient coincides
with the one in Ref. [43]. Consider now a rod of length l

with the same aspect ratio (l = 4R, σ = 2R) and the same
total mass 2md of the dumbbell. One finds I = 2mdR

2A with
A ≈ 2.94 [43], so that Ddumb

R = ADrod
R > Drod

R . On the other
hand, in the limit of a very long rod (l � R) one has I = ml2/6
and Ddumb

R = (Drod
R l2)/(12R2), so Ddumb

R � Drod
R as expected.

Therefore the comparison with the model of Ref. [43] suggests
that the rotational diffusion coefficient of a dumbbell is always
larger than the one of a rod in a suspension.

B. The center of mass

We now focus on the statistical properties of the center-
of-mass position and velocity that depend on the active force.
One readily solves Eq. (12),

rc.m.(t) =
(

r0 + v0md

γ

)
− v0md

γ
e
− γ

md
t

+ 1

2γ

∫ t

0
dt ′ [1 − e

− γ

md
(t−t ′)][2Fact(t

′) + ξ (t ′)],

(31)

vc.m.(t) = v0 e
− γ

md
t

+ 1

2md

∫ t

0
dt ′ e

− γ

md
(t−t ′) [2Fact(t

′) + ξ (t ′)], (32)

with r0 = rc.m.(0) and v0 = vc.m.(0).
From Eq. (32) and thanks to [〈cos θ〉]ic = [〈sin θ〉]ic = 0,

one finds [〈vc.m.〉]ic = 0 and, after some long but straightfor-
ward integrations,

2md

[〈
v2

c.m.x

〉]
ic

= kBT + F 2
act

γ
(
t−1
I + t−1

a

) (33)

with

tI = md

γ
,

(34)

ta = D−1
R = γ σ 2

d

2kBT
= σ 2

d

4D
pd
c.m.

,

in the long-time limit, beyond tI . The time scales tI and ta are
independent of the active force, and they are the usual inertial
time and a characteristic time associated to rotational diffusion
in the passive dumbbell, respectively. We also observe that in
the passive limit Eq. (33) reduces to the equipartition theorem
for the kinetic energy of a pointlike particle having the total
mass of the dumbbell 2md . As, typically, ta � tI , one has

2md

[〈
v2

c.m.x

〉]
ic

� kBT + mdF
2
act

γ 2
. (35)

With a similar calculation, starting now from Eq. (31), we
calculate the mean-square displacement (MSD)

〈
�r2

c.m.

〉
(t) = [〈(rc.m.(t + t0) − rc.m.(t0))2〉]ic (36)

with [. . . ]ic the average over initial conditions at time t = 0.
t0 is a sufficiently long time after preparation such that the sta-
tionary dynamics have been established and the mean-square
displacement is therefore independent of t0. Henceforth, t

denotes time delay.
In the limit t  tI ,

〈�r2
c.m.

〉
(t) = 2

〈
v2

c.m.x

〉
t2, (37)

where 〈v2
c.m.x〉 = [〈v2

c.m.x〉]ic is the velocity given in Eq. (33).
The factor 2 is due to the sum over the two Cartesian directions.

In the limit t � tI ,

〈�r2
c.m.

〉
(t) = 4Dpd

c.m. t +
(

Fact

γ

)2 2

DR

(
t − 1 − e−DRt

DR

)
, (38)
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where

Dpd
c.m. = kBT

2γ
(39)

is the diffusion constant in the passive limit, Fact = 0, see
Ref. [39]. This equation presents several time scales and limits.
(Similar calculations for an active ellipsoid were presented in
Ref. [49].) For tI  t  ta one finds

〈�r2
c.m.

〉
(t) = 4Dpd

c.m. t +
(

Fact

γ

)2

t2, (40)

which can still be split into the passive diffusive limit
〈�r2

c.m.〉 = 4D
pd
c.m. t for tI  t < t∗, and a ballistic regime

〈�r2
c.m.〉 = (Fact/γ )2 t2 for t∗ < t  ta , where the time scale

t∗ is given by

t∗ = 4D
pd
c.m.γ

2

F 2
act

= 2kBT γ

F 2
act

=
(

4

Pe

)2
σ 2

d

4D
pd
c.m.

=
(

4

Pe

)2

ta. (41)

Note that these two intermediate regimes do not exist if the
parameters are such that t∗ < tI or t∗ > ta . They can also be
easily confused with superdiffusion tα with 1 < α < 2 if they
are not well separated (tI � t∗ � ta). See Ref. [39] and Fig. 4
below for more details. In the large Pe limit one has t∗  ta . In
the last time-lag regime t � ta , we recover normal diffusion,〈�r2

c.m.

〉
(t) = 4DA t, (42)

with the diffusion coefficient

DA(Fact,T ,φ = 0) = kBT

2γ

[
1 + 1

2

(
Factσd

kBT

)2]
. (43)

In terms of the diffusion constant of the center of mass of the
passive dumbbell and the Péclet number the above equation
reads DA(Pe,φ = 0) = D

pd
c.m. (1 + Pe2/8).

In the figures with numerical results for the finite-density
problem shown in the next section we include data for φ = 0
that correspond to the single-dumbbell limit.

IV. FINITE-DENSITY SYSTEMS

In this section we present our numerical results. We focus
on three issues: the phase diagram, the translational diffusion
properties, and the rotational diffusion properties. Details
on the numerical method used for solving the dynamical
equations (5) are given in Refs. [39]. We set md = σd =
kB = ε = 1 in proper physical units and r0 = 1.5, k = 30,
γ = 10, assuring overdamped motion and negligible dumbbell
vibrations. Depending on the plots we used between 15 000
and 20 000 dumbbells in the simulations.

A. The phase diagram

Aspects of the phase diagram and the dynamics of this
system were already established in Refs. [24,25]. It was shown
in these papers that at sufficiently low temperature and large
active force the system phase separates into gaslike spatial
regions and clusters of agglomerated dumbbells.

The model has three important energy scales, ε, kBT , and
Factσd . There is another energy scale related to the elastic
constant k but, since we consider stiff dumbbells in this paper,
we do not vary k. Keeping also ε and the other parameters
listed at the beginning of this section fixed, we will try to
determine whether the phase diagram depends on kBT and
Factσd separately or only though their ratio, i.e., through the
Péclet number Pe, as usually assumed [22]. The other free
parameter to be varied is the global density of the sample, φ.

In the four panels in Fig. 1 we show the probability
distribution function, ρ, of the local density, φloc, for four
values of the active force, Fact = 0.05, 0.1, 0.5, 1. Each panel
contains results for the same set of Péclet numbers Pe(T ,Fact)
obtained by different combinations of temperature and active
force. The system has global packing fraction φ = 0.5. We
used the same operative definition of the local density as in
Refs. [24,25]. We divided the full system in square plaquettes
with linear size 10σd that is much smaller than the linear size
of the full sample and big enough to sample φloc correctly. We
improved the statistics by sampling over many different runs
of the same kind of system.

At low Pe the system is homogeneous and ρ is peaked
around φloc = φ = 0.5. The critical Pe at which the system
starts aggregating is approximately the same in all panels,
Pe � 65. Around this value the density distribution ρ not only
becomes asymmetric but starts developing a second peak at
φloc > 0.5 that characterizes the dense phase in the system.
Snapshots of typical configurations at Fact = 0.1 and four
values of Pe are shown in Fig. 2. The location of the central
peak at Pe less than the critical value is independent of all
parameters (apart from φ) while the location of the peak at
φloc > 0.5 is situated at different values of φloc for different
Fact and the same Pe (compare the different panels in Fig. 1).
The reason for this is that the strength of the interactions
between the dumbbells under different Fact differs as Fact/ε

varies with Fact. A larger active force permits the dumbbells
to be more compact, while a lower one favors looser clusters.

We repeated the analysis above for the cases with total
packing fractions φ = 0.3,0.4,0.6. We found the same values
for the densities of the separated phases at φ = 0.4,0.6 and
Pe = 100,200 and at φ = 0.3 and Pe = 200. At φ = 0.3 and
Pe � 100 the effects of the presence of the spinodal line require
a more elaborate analysis of the phase diagram, as discussed
in Ref. [25]. In Table I we report these density values for
the cases with Fact = 1,0.5,0.1,0.05 and Pe = 100,200. As
observed, the coexistence values get closer for smaller active
forces even though the Péclet number remains the same.

In Fig. 2 we show four snapshots of the system configura-
tion. The active force is Fact = 0.1 in all panels and temperature
is increased from left to right and from top to bottom. The
configuration in the upper-left panel (Pe = 200) shows phase
separation with large-scale clusters while the configuration in
the lower-right panel (Pe = 20) is clearly homogeneous. The
case Pe = 100 is in the segregated phase while the one for
Pe = 66 is close to critical.

B. Translational diffusion properties

In Ref. [13] the diffusion properties of a tracer immersed
in a bacterial bath were monitored. A crossover between a
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FIG. 1. (Color online) Probability distributions for the local density φloc at Péclet numbers given in the keys in the form Pe(T ,Fact) for
different temperatures, and Fact = 0.05,0.1,0.5,1 in the different panels. The global density of the system is φ = 0.5.

FIG. 2. (Color online) Snapshots of the system for Fact = 0.1
(see the upper right panel in Fig. 1) and T = 0.001,0.002,0.003,0.01
corresponding to Pe = 200,100, both phase separated, Pe = 66, close
to critical, and Pe = 20, homogeneous (from left to right and from
top to bottom). The global density is φ = 0.5.

superdiffusive regime at short time delays and a diffusive
regime at long time delays was reported. The crossover time
was found to increase linearly with the density of the active
medium, showing that the crossover is not due to the tracer’s
inertia but to the dynamical properties of the bacterial bath.
We explore here the same issues by focusing on the MSD
of the center of mass of the dumbbells, defined in Eq. (36).
We will consider, for the rest of the paper, sufficiently low
Péclet numbers such that the system will always be in the
homogenous phase even though fluctuation effects can be
relevant, as we will see.

1. Dumbbell trajectories

Several single-dumbbell trajectories are shown in Fig. 3 for
different values of the temperature and global density, under

TABLE I. Density values of the two coexisting phases measured
from the histograms in Fig. 1 at φ = 0.5. The first and the third
lines refer to the dilute phase while the two other lines correspond
to the aggregated phase. Similar values are obtained at φ = 0.4,0.6
(Pe = 100,200) and at φ = 0.3 (Pe = 200).

Pe Fact = 0.05 Fact = 0.1 Fact = 0.5 Fact = 1

200 0.37 0.34 0.21 0.049
0.70 0.71 0.80 0.890

100 0.44 0.41 0.37 0.096
0.66 0.68 0.77 0.870
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T=0.005, φ = 0.1 T=0.005, φ = 0.4

T=0.05, φ =0.1 T=0.5, φ =0.1

FIG. 3. (Color online) Several trajectories of one bead in dif-
ferent dumbbells. The active force is Fact = 0.1 and the evolution
time interval is t = 10 000 in all panels. The other parameters
are T = 0.005 and φ = 0.1,0.4 (upper panels, left and right), and
T = 0.05,0.5 and φ = 0.1 (lower panels, left and right). The values of
the single-dumbbell diffusion coefficient, as calculated from Eq. (43),
are DA = 0.050,0.0075,0.025 for the cases at T = 0.005,0.05,0.5,
respectively.

the same active force Fact = 0.1. The trajectories correspond to
a total time interval that includes the late diffusive regime (see
below). At low temperature and global density (T = 0.005 and
φ = 0.1, upper left panel) we see periods of long directional
motion. These are reduced at higher global density (φ = 0.4
upper right panel). Increasing temperature at φ = 0.1 (T =
0.05 and T = 0.5 lower-left and -right panels, respectively)
the trajectories become more similar to the typical ones of
passive diffusion. While the trajectories are very stretched at
T = 0.005, they become the most compact in the intermediate
case at T = 0.05 and again more elongated in the last case
at T = 0.5. This behavior corresponds to the nonmonotonic
behavior of the translational diffusion constant of Eq. (43) in
terms of temperature. It decreases going from T = 0.005 to
T = 0.05 while it increases going from T = 0.05 to T = 0.5.
The single-dumbbell diffusion coefficient, as calculated from
Eq. (43), is DA = 0.050,0.0075,0.025 for the cases at T =
0.005,0.05,0.5, respectively.

2. Four dynamic regimes

In Fig. 4 we show the center-of-mass MSD normalized by
time delay in such a way that normal diffusion appears as a
plateau. The four panels display data at four temperatures, T =
0.005,0.01,0.05,0.1, all under the same active force Fact =
0.1. Each panel has five curves in it, corresponding to five

different densities given in the key. In all cases md = 1 and
γ = 10, implying tI = 0.1. The characteristic times tI , t∗, ta
are shown with small vertical arrows in each panel. These plots
show several interesting features:

(i) In all cases there is a first ballistic regime (the dashed
segment close to the data is a guide to the eye) with a prefactor
that is independent of φ and increases with temperature as
given by Eq. (37) (the case t  tI of the single dumbbell.)

(ii) Next, the dynamics slow down and, depending on T

and φ, the normalized mean-square displacement may attain
a plateau associated to normal diffusion (low T ) or even
decrease, suggesting subdiffusion. (The case tI  t  t∗ 
ta of the single dumbbell.)

(iii) The dynamics accelerate next, with a second su-
perdiffusive regime in which the curves for all φ in each
panel look approximately parallel and very close to ballistic
at T = 0.005,0.01,0.05. (The case tI  t∗  t  ta of the
single dumbbell.)

(iv) Finally, the late normal diffusive regime is reached
with all curves saturating at a plateau that yields the different
DA coefficients. (The case tI  t∗, ta  t of the single
dumbbell.)

It is hard to assert whether the intermediate regime is
superdiffusive or simply ballistic as the time scales t∗ and
ta are not sufficiently well separated (and not even ordered
as t∗ < ta in the last panel). Moreover, in the last two panels
(high T or low Pe) the diffusion-ballistic-diffusion regimes are
mixed, due to the fact that the condition t∗  ta is no longer
satisfied. The effective slope in the intermediate superdiffusive
regime decreases when the density increases.

A rather good fit of the finite-density data in the limit Pe �
1 and for time delays such that t � t∗ is achieved by using the
single-dumbbell expression in Eq. (38),

〈�r2
c.m.

〉
(t) = 4D

φ

A

(
t − 1 − e−D

φ

Rt

D
φ

R

)
, (44)

without the first term (negligible if Pe � 1) and upgrading the
remaining parameters, D

φ

A and D
φ

R , to be density-dependent
fitting parameters, as done in Refs. [13,20]. This is shown
in Fig. 5 (left panel). For not-so-large values of Pe one
could recover the remaining parameter and use instead

〈�r2
c.m.〉(t) = 4D

pd,φ
c.m. t + 4D

φ

A(t − 1−e
−D

φ
R

t

D
φ

R

) with an additional

fitting parameter. Figure 5 (right panel) also shows a good
agreement between the values of D

φ

R found in these fits and
the values of the rotation diffusion coefficient DR(Fact,T ,φ)
coming from the late time-delay diffusive regime in the
rotational MSD discussed in Sec. IV C.

The crossover time delay between the last ballistic or
superdiffusive, and the diffusive regimes seems quite φ

independent in the first two panels T = 0.005,0.01 and it
increases, though rather weakly, with φ, in the last two panels,
T = 0.05,0.1, see the inclined dashed line in the last panel
that is also a guide to the eye. This crossover time delay is the
one that we could associate to the crossover time between a
superdiffusive regime and the last diffusive regime found in
the experiment in Ref. [13]. The strongest effect of density is,
though, on the first diffusive or subdiffusive regime.
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FIG. 4. (Color online) The center-of-mass MSD normalized by time delay, for an active system under Fact = 0.1 at T = 0.005,0.01,0.05,0.1
(Pe = 40,20,4,2), at the different densities given in the key. The Péclet number decreases from one panel to the other. It induces a strong
qualitative change in 〈�r2

c.m.〉, see the text for a detailed discussion. The two dashes in the first panel represent the ballistic dependence � t2.
The dashed line in the last panel is a guide to the eye for the density dependence of the last crossover time delay that increases weakly with
φ. The horizontal dotted lines at long times correspond to the values of the single-dumbbell diffusion constant DA from Eq. (43). The vertical
black arrows indicate the single-dumbbell time scales tI and ta , while the red arrows indicate the single-dumbbell characteristic time t∗, for
each case. In the case with Pe = 4 the times t∗ and ta coincide. The curves for φ = 0 are obtained from Eq. (38), valid in the limit t � tI = 0.1;
for this reason they start from the middle of the graph.
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FIG. 6. (Color online) The center-of-mass diffusion coefficient,
DA, as a function of temperature, T , at different densities φ given in
the key and fixed active force, Fact = 0.1. The triangular data points
joined by a dotted curve labeled φ = 0 are given by the theoretical
DA with σd = 0.96.

In summary, no large qualitative change in the center-of-
mass MSD behavior is observed in the range φ ∈ [0,0.6].
There is just a natural slowing down of the dynamics with
larger packing fractions that translates into a change from
diffusive to subdiffusive behavior in the second regime and a
general decrease of the diffusion constant in the last regime
for all Pe. We study the dependence of the diffusion constant
with Pe in detail below.

3. The late-epochs translation diffusion coefficient

Let us now discuss the normal diffusive regime at longest
time lags. In Ref. [39] we studied the translational diffusion
coefficient DA as a function of Fact and φ at fixed temperature.
In particular, we compared the φ dependence to the Tokuyama-
Oppenheim law for colloids [50]. Here we first examine,
instead, the T and φ dependence of DA for fixed active force,
Fact. Then we consider how the dependence of DA from T and
Fact can be re-expressed in terms of the Péclet number. The
main results for DA obtained in Ref. [39] will also be revisited
in this subsection.

The first question we want to answer is whether DA

depends on kBT as for the single-dumbbell case (φ = 0), the
functional form recalled in Eq. (43). For Factσd/kBT  1,
such that the quadratic term can be neglected, this equation
implies the linear growth of DA with kBT as in the passive
limit. Instead, when the second term dominates, i.e., for very
small thermal energy with respect to the work performed by
the active force, DA should decay as 1/(kBT ) with a slope
that is quadratic in Factσd .

In Fig. 6 we display DA as a function of T for various
values of φ given in the key and Fact = 0.1. The theoretical
values for φ = 0 are included in the figure (with open triangles
joined by a dotted curve). Here we used the measured value
for the distance between the centres of the two colloids, that
is, r ≈ 0.96 σd . In the rest of this section we simply call σd

the molecular length and we take σd = 0.96.
The error bars are smaller than the symbol size and we

do not display them. The curves show a minimum located at

kBTmin = Factσd/
√

2 for φ = 0 that weakly increases with φ.
The two regimes, Pe  1 and Pe � 1, still exist and DA is
dominated by thermal fluctuations in the former and by the
work done by the active force in the latter as in the single-
dumbbell limit. We see a saturation of DA at small values
of T for φ > 0.2 and therefore the breakdown of the single-
dumbbell 1/(kBT ) behavior at low temperatures. Instead, at
high temperatures DA seems to retain the linear growth with
temperature of the single dumbbell at least for the temperatures
used in the simulations.

Figure 6 also shows that for the Pe that we used DA is a
decreasing function of φ at all fixed temperatures. This fact
can be better appreciated in the left panel in Fig. 7, where DA

is plotted as a function of φ for various temperatures given in
the key. (Recall that the φ dependence of DA at fixed T and
for different active forces was discussed in Ref. [39] where
it was shown how the Tokuyama-Oppenheim [50] law of the
passive system was simplified under activation to a decay that
is close to a simple exponential. We will come back to this
issue below.)

The nonmonotonicity of DA as a function of T already
discussed in Fig. 6 is confirmed by the data presentation
in Fig. 7, with the minimum situated around T � 0.07. In
the right panel we observe the opposite behavior in the
ratio DA(Fact = 0.1,T ,φ)/DA(Fact = 0.1,T ,0), first growing
for increasing T to reverse its trend at around T � 0.05–0.07.
Consistently with the behavior found in Ref. [39], there are
temperatures such that the data for the above ratio cross
each other when the density is increased, see, for example,
T = 0.01,0.1 (or Pe = 2,20). The right panel in Fig. 7 also
shows that a very small density can have relevant effects on
the behavior of the diffusion coefficient.

We have repeated this analysis for a stronger active force
and we found that the results are consistent, with a crossover
temperature that grows with Factσd , as predicted by the
single-dumbbell equation, though we cannot assert that the
dependence be linear.

Next we analyze in Fig. 8 whether the ratio of diffusion
coefficients of the active system at finite density and single pas-
sive dumbbell DA(Fact,T ,φ)/Dpd

c.m. depends only on the Péclet
number, as it does for the single-dumbbell problem. With this
aim, we fix Fact and we vary T , and the values Pe = 4,20,40,66
in each panel are obtained from three different combinations
of Fact and T . In all panels the collapse of data is very good.
Note the change in concavity of the collapsed data that occurs
at Pe = 20. This value is relatively far from the transition
between homogeneous and segregated phases estimated in
Refs. [25,39], and the system configurations are still homo-
geneous, see the last panel in Fig. 2, though with a distribution
of local densities, φloc, with a certain width, see Fig. 1.

These results suggest

DA(Fact,T ,φ) = kBT fA(Pe,φ) (45)

with fA(Pe,0) = (2γ )−1(1 + Pe2/8) = DA(Fact,T ,0)/(kBT )
and fA a decreasing nonlinear function of φ at fixed Pe. This
relation is equivalent to

DA(Fact,T ,φ)

DA(Fact,T ,0)
= fA(Pe,φ)

fA(Pe,0)
. (46)
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FIG. 7. (Color online) Center-of-mass diffusion constant at various T given in the key (left panel) and center-of-mass diffusion constant
over the one for one dumbbell (right panel) both as a function of φ. The smallest densities considered are φ = 0 in the left panel and φ = 0.001
in the right panel. The active force is fixed to Fact = 0.1. The symbol convention is the same in the two panels.

The left-hand side is what we studied in Ref. [39] as a
function of Fact and φ, keeping T fixed, and we proposed

DA(Fact,T ,φ)

DA(Fact,T ,0)
= e−b(Fact)φ (47)

with b a nonmonotonic fitting function of Fact. Knowing now
that DA/(kBT ) depends on Fact and T only through Pe, we
deduce

DA(Fact,T ,φ) = Dpd
c.m. (1 + Pe2/8)e−b(Pe)φ. (48)
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FIG. 9. (Color online) The angular MSD for the Pe numbers in the labels and, with different lines, various densities given in the keys to
each panel. The dash in the first panel highlights the initial ballistic behavior. The vertical arrows indicate the characteristic times tI , t∗, ta .
The horizontal dotted lines at long times correspond to the values of the single-dumbbell diffusion constant DR from Eq. (30). Note that the
vertical scale differs in the two panels above and in the two panels below.

Note that in Ref. [39] the maximum in b appeared at Fact � 0.1
that, for the temperature used, T = 0.05, corresponds to Pe �
4. Thus, fA(Pe,φ) should be monotonically increasing with Pe,
at all fixed φ, as it results when comparing the data on the dif-
ferent panels in Fig. 8. In Fig. 8 we included, with dotted black
lines, the exponential fits in Eq. (48) where the only free param-
eter is b(Pe). The values of b(Pe) are 1.1,1.6,2.8,4.1 for Pe =
4,20,40,66, in agreement with what we reported in Ref. [39].

However, while we see that the exponential fit is very good
at all φ for Pe = 40 and Pe = 66, it is not as good for the
smaller Pe data. The red line points in Fig. 8 represent, instead,
the result of the fit

DA(Fact,T ,φ) = DA(Fact,T ,0)[1 + a1(Pe) φ + a2(Pe) φ2].

(49)

This functional form gives a better representation of the data
than the exponential for Pe = 4 and Pe = 20, which is, in a
sense, natural since one expects to recover a rather complex
Tokuyama-Oppenheim-like form in the limit Pe → 0. The
exponential and polynomial fits are of equivalent quality for
Pe = 40, while the polynomial fit is clearly worse than the
exponential one for Pe = 66. The fitting parameters are given
in the keys. One notices that a1 is negative in all cases while a2

changes sign from negative at Pe < 20 to positive at Pe > 20
(leading to a growing behavior at large φ that is not physical).
At Pe = 20 the density dependence is almost linear as a2 is
very close to zero.

C. Rotational diffusion properties

Having discussed in detail the translational diffusion prop-
erties we turn now to the rotational ones.

1. Dynamic regimes

In Fig. 9 we display the angular MSD normalized by
time delay. The four panels show data obtained for the same
parameters as the ones used in Fig. 4 with Fact = 0.1. Each
panel, corresponding to the cases with T = 0.005,0.01,0.05,1
(Pe = 40,20,4,2, respectively), includes curves for five finite
densities, φ = 0.1,0.2,0.3,0.4,0.5, and the single-dumbbell
limit, φ = 0, as labeled in the key. These plots also show
several interesting features:

(a) In all cases there is a first ballistic regime with
a prefactor that is independent of φ and increases with
temperature (the case t  tI = md/γ of the single dumbbell).
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FIG. 10. (Color online) Angular diffusion constant as a function of T for Fact = 0.1 at fixed φ in logarithmic scale (left panel) and a
zoom on the low-temperature behavior in linear scale (right panel). The data points joined with a line for φ = 0 represent the theoretical
expectation (30).

(b) Next the dynamics slow down and, depending on T

and φ, the normalized MSD may attain an ever-lasting plateau
associated to normal diffusion for low φ at any temperature,
or even decrease, suggesting subdiffusion, at high-enough φ.

(c) At low temperature T = 0.005,0.01 (Pe = 40,20) and
sufficiently high density the dynamics accelerate next, with
a second superdiffusive regime that crosses over to a final
diffusive regime.

(d) In the late normal diffusive regime all curves saturate
and the height of the plateau yields the different DR coefficients
that we discuss below.

The effect of Pe and φ are stronger on the rotational MSD
than on the translational MSD. New regimes appear in the
rotational collective motion with respect to the individual
molecular limit. In the phase-separated regime the dumbbell
clusters rotate [24,25]. It is possible that strong fluctuations at
Pe = 20 and Pe = 40, not far from the critical point at Pe � 65,
have an important rotational component than enhances or
advects rotational diffusion, giving rise to an observable
contribution to displacement also manifesting itself in the
appearing of new dynamical regimes.

2. The late-epochs rotation diffusion coefficient

We now study whether the linear temperature dependence
of the single-dumbbell angular diffusion constant, Eq. (30),
survives the interactions between dumbbells in the finite-
density problem, see Fig. 10. The data points are compatible
with a linear behavior at sufficiently high temperature, with
a slope that depends on φ. The trend in the curves reverses
below the crossover at T � 0.01 with larger values of DR

for larger values of φ (see the right panel in the same
figure).

From Fig. 11 one easily concludes that the Fact inde-
pendence of DR is lost as soon as the interaction between
dumbbells is switched on at finite density. This fact can be seen,
for instance, by comparing the T = 0.1 data, one of the two
temperatures included in both panels, sharing the same value,
slightly larger than 10−2, at φ = 0. While in the case Fact = 0.1
(left panel) DR clearly decreases with φ, in the case Fact = 1
(right panel) DR is almost constant. These figures also show
the change in trend operated at an Fact-dependent T : at high
temperature DR decreases with φ while at low temperature
DR increases with φ. The change occurs at T � 0.01 for
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FIG. 11. (Color online) Angular diffusion constant for various T under the same active force Fact = 0.1 (left panel) and Fact = 1 (right
panel). The only common temperatures on the two panels are T = 0.05,0.1 and, consistently, DR at these temperatures is the same at φ = 0.
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FIG. 12. (Color online) Rotational diffusion constant over kBT for Pe = 4,20,40,66 as shown in the keys. For each value of the Péclet
number three couples of values of Fact and T were used. All master curves take the value 2/(γ σ 2

d ) ≈ 0.215 at φ = 0. At small φ, there is a
noticeable change in trend at Pe � 20. At sufficiently large φ all curves decrease with increasing φ.

Fact = 0.1 and at T � 0.1 for Fact = 1, suggesting that the
change is controlled by Pe.

Finally, we analyze whether DR/(kBT ) depends on Fact

only via Pe. To this end, in Fig. 12 we repeat the analysis
shown in Fig. 8 for DA. The four panels show DR/(kBT )
against φ for Pe = 4,20,40,66. In each panel we include data
for three pairs of Fact and T , leading to the same Pe. We see
that the data points collapse on different master curves in each
panel. This suggests

DR(Fact,T ,φ) = kBT fR(Pe,φ) (50)

with fR(Pe,0) = fR(0,0) = 2/(γ σ 2
d ). The data also show a

change in trend of the function fR at around Pe = 20. At low
densities, while the master curve decreases with φ for Pe < 20,
it becomes flat at Pe = 20 and it increases with φ for Pe > 20.
This would suggest:

fR(Pe,φ) � 2

γ σ 2
d

+ a(Pe,φ), (51)

with a(Pe,φ) almost linear in φ and the slope changing sign at
Pe � 20 for small φ. All panels, i.e., at all Pe, show a crossover
at high-enough densities after which the rotational diffusion
constant decreases with increasing density.

A possible explanation of the different density depen-
dencies of DR at small and large Péclet can be found
from following the evolution of a single tracer dumbbell at
intermediate densities, φ ≈ 0.4, for example, as it can be seen
in the supplemental movies in Ref. [51]. One observes that
at low Pe (Pe = 2) the system is very uniformly distributed
and the movement of the tracer dumbbell is inhibited by
the “cages” formed by surrounding dumbbells. Collisions are
frequent but each of them only produces a small angular
displacement. In this case the effect of increasing the density
is to decrease both the rotational and translational diffusion
coefficients. On the other hand, at high Peclet (Pe = 40),
small fluctuating clusters can be observed (their presence is
also signalled by a peak in the structure factor [39]). This has
relevant effects on the behavior of the tracer dumbbell. First,
there are particle depleted regions which are large enough
to allow significant angular displacements without collisions.
Second, angular displacements appear to be enhanced when
the tracer dumbbell meets a cluster and is advected by its
motion. On the other hand, at still higher densities the cage
effect becomes again preeminent so rotations are inhibited and
DR decreases. Note that both DR and DA change behavior at
Pe = 20 (the translational diffusion coefficient DA is a convex
function of density for Pe < 20 and changes curvature for
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Pe > 20). We find the fact that these crossovers occur at the
same Péclet is notable, even though it is difficult to argue about
its implications.

V. CONCLUSIONS

We presented a thorough study of the translational and
rotational MSD of a system of interacting active dumbbells.
We focused on the regimes where the global system is homo-
geneous. Higher densities than the ones used in Refs. [13,30]
have been considered with the Péclet number small enough
(possibly much smaller than in the experiments) to keep the
system in the homogenous phase.

We first analyzed the single-molecule dynamics as a
benchmark to later characterize the finite-density effects. In
the passive case, Pe = 0, the translational and rotational MSDs
show a standard crossover from ballistic motion to normal
diffusion at the inertial time tI = md/γ . Under the active force,
the normal diffusion of the center of mass is accelerated after a
time scale t∗ ∝ ta/Pe2 with ta = γ σ 2

d /(2kBT ) and, still later,
after ta , a new diffusive regime is reached with a diffusion
constant that is enhanced with respect to the one in the passive
limit as a quadratic function of the Péclet number. Instead, the
rotational properties of the active dumbbell are not modified
by the longitudinal active force; all torque is exerted by the
thermal noise.

Then we turned to the analysis of the mixed density and
active force effects on the collective motion of the interacting
system.

The rich dynamic structure of the center-of-mass transla-
tional motion of the single molecule, with the four distinct
time regimes summarized above, survives under finite densi-
ties with modified parameters. The superdiffusive behavior
shown in Ref. [13] is reminiscent of the second ballistic
regime in the interacting active dumbbell system at finite
densities. The diffusion constant DA in the last diffusive
regime has a nonmonotonic dependence on temperature, as
for the single-dumbbell case, and it decreases with increasing
self-propelled particle density at all temperatures. Moreover,
the ratio DA/(kBT ) depends on temperature and active force
only through the Péclet number at all densities explored. This
ratio, at fixed density, is an increasing function of Pe. All

these results are consistent with those found in our previous
paper [39] where it was also shown that the ratio between the
translational coefficient diffusion at finite density and the one
for the single dumbbell had a nonmonotonic Pe dependence.

Next we moved to the analysis of the rotational MSD. While
in the single-dumbbell case its time-delay dependence is rather
simple, with a single crossover between ballistic and diffusive
behavior, intermediate regimes, roughly for tI  t  t∗ and
t∗  t  ta , appear at finite densities. The late epochs
diffusion constant DR increases with temperature (though
not linearly) at all densities and active forces simulated. The
independence on active force is lost at finite densities. The
ratio DR/(kBT ) depends on temperature and activity only
through the Péclet number. At low densities, its dependence on
density changes from decreasing at low Pe to increasing at high
Pe. This change in behavior can be related to the large-scale
density fluctuations that appear close to the transition from
the homogeneous phase to the aggregated phase at a critical
Pe. In the aggregated phase large and rather compact clusters
rotate coherently [24,25]. Not far from the transition, in the
homogenoues phase, fluctuating clusters with some coherent
rotation are observable and these may be the cause for the
increase of DR with φ. On the other hand, at large-enough
densities rotations are strongly inhibited and the value of DR

decreases for all Pe.
The fluctuations of translational and rotational displace-

ments have been characterized in Ref. [52]. Special emphasis
was put on the identification of the regimes in which the fluc-
tuations are non-Gaussian. See this reference for more details.

After this work we plan to analyze the motion of tracers
in contact with this active sample and, especially, to analyze
the existence of a parameter to be interpreted as an effective
temperature from the mobility and diffusive properties of the
sample and the tracers, in the manner done in Refs. [29,53–61]
for different active systems.
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