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Abstract

Forecasting in geophysical time series is a challenging problem with numerous applications. The presence of

correlation (i.e. spatial correlation across several sites and time correlation within each site) poses difficulties

with respect to traditional modeling, computation and statistical theory. This paper presents a cluster-

centric forecasting methodology that allows us to yield a characterization of correlation in geophysical

time series through a spatio-temporal clustering step. The clustering phase is designed for partitioning time

series of numeric data routinely sampled at specific space locations. A forecasting model is then computed by

resorting to multivariate time series analysis, in order to predict the future values of a time series by utilizing

not only its own historical values, but also information from other cluster-time series. Experimental results

highlight the importance of dealing with both temporal and spatial correlation and validate the proposed

cluster-centric strategy in the computation of a multivariate time series forecasting model.

Keywords: Time Series Forecasting, Spatio-Temporal Clustering, Multivariate Time Series Analysis,

1. Introduction

Natural processes and physical variables (e.g. rainfall, humidity and solar radiation) are being increasingly

observed over time and across space. The ubiquity of this kind of spatio-temporal data, namely geophysical

time series, has motivated us to investigate and develop appropriate models to analyze and forecast them.

Forecasting can be useful in providing information to decision-makers. For example, accurate forecasts can

be used, in order to anticipate actions (e.g. the prediction of solar radiation in a region allows us to define

the best strategy to maximize profit in the energy market).

In the last two decades, the challenge of predicting the future by looking at the past has led to a

variety of time series forecasting algorithms [12, 22, 28]. They determine a time series model by accounting
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for temporal information, estimate the model parameters and provide accurate point estimates of future

values of time series. Although the majority of these algorithms is robust to unusual time series patterns

and applicable to large numbers of series without user intervention, they disregard, in general, the spatial

dimension of data. On the other hand, the temporal information within a site and the spatial information

across distinct sites are both informative in a geophysical forecasting context.

The scenario we consider here is that of data which are routinely sampled at fixed-to-ground locations

for a physical numeric field. The analysis of both spatial and temporal correlations is more complicated than

modeling purely spatial or purely temporal correlations. On the other hand, the classes of spatio-temporal

dependence structures differ from each other in the way in which space and time are coupled. At one

extreme, space and time are considered to be independent, giving rise to the separable covariance model

that allows us to represent the spatio-temporal correlation function as the product of a spatial and temporal

term. Otherwise, at the cost of a heavier computational burden, non-separable space-time models can be

considered by including suitable parameters, that indicate the strength of the interaction between the spatial

and temporal components [18]. In addition, as non-stationarity and anisotropy are usual characteristics of

geophysical data, if they are present and unaccounted for in the geo-statistical model development, they can

result in poorly specified models, as well as in inappropriate spatial-temporal inferences and predictions.

In view of the prohibitive costs of monitoring spatially and temporally dense networks, a spatio-temporal

continuous model (based on observations at a limited number of monitoring stations) can be developed. Such

a model provides spatial interpolation of the involved random fields and makes short-term daily predictions

[32]. However, if spatial interpolation is not the primary objective and there is a target for forecast accuracy

along the temporal dimension, it is often useless to have a model with a spatially continuous variable. On the

other hand, there is no doubt that spatio-temporal interpolation, in whatever form it comes, can potentially

provide more accurate predictions than temporal forecasting alone.

To this end, we take a different approach that attempts to convey correlation information along both

the temporal and a discrete spatial dimension of data. We illustrate a novel spatio-temporal forecast-

ing methodology, called cVAR (spatio-temporal Cluster-based Vector AutoRegressive model), that learns a

spatio-temporal model of historical geophysical time series data and uses this model to yield accurate fore-

casts of these time series, considering that the temporal distribution of a random field can undergo a slow

spatial change. We propose a data-driven approach, including a clustering phase and a forecasting phase.

The clustering phase is data-driven by the spatial location of the time series, as well as by the time-

stamped values of the time series. It constructs a spatio-temporal cluster model of the past data. Each

cluster collects time series whose observations exhibit (almost approximately) stationary correlation over

space in each time point of the series. Simultaneously, the behavior of a cluster is not necessarily stable

over time, as observations can change over consecutive time points. However, intra-cluster series will exhibit

similar temporal patterns (for example, strongly-interacting time series show potential movement in one

series when the other time series move, as well as a strong concordance of the signs of increments).

The forecasting phase is inspired by the idea that temporal and spatial correlations govern data grouped
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in a cluster. Spatially-coupled variables are constructed from the clustered time series. They are observed

along the time series points defining a set of suitably defined time series, which are introduced into the

information set of each geosensor site, in order to deal with temporal and spatial correlations simultaneously.

In this study, clustering is done using a partition-based machine learning technique with a newly defined

spatio-temporal dissimilarity. The dissimilarity treats space and time independently, giving more similarity

to closest pairs of geo-locations, with the additional constraint that similarity of one pair is strengthened if

exponential smoothing of the corresponding time series leads to similar one-step-ahead forecasts. Regarding

multivariate forecasting, we consider the stationary vector auto-regressive (VAR) model [49], in order to

analyze the structure of this multivariate system of variables. In this way, forecasts for a given target

time series are a linear combination of past target data, as well as of past spatially-coupled background

data which summarize spatio-temporal information of the network. A stationary model VAR has some

limitations, and without modification standard VARs miss nonlinearities, periodic components, as well as

stochastic drifts. Given that cycles of a regular nature are a minor problem that can be easily incorporated in

VARs, we deliberately disregard verifying whether other non-standard and non-stationary dynamic patterns

are present or not (and eventually incorporate them into the model). Although the proposed algorithm

should be considered a heuristic, we can demonstrate that our multivariate system (without any human

intervention and manual parameter setting) is often more accurate than existing univariate time series

models.

In short, the specific contributions of this paper are highlighted as follows: (1) We describe a spatio-

temporal dissimilarity measure that gives more similarity to the closest pairs of geo-locations that exhibit

the most similar one-step-ahead forecasts of the measured variable. (2) We define a system that couples

an observation site with a multivariate system including the target time series observed at the site and a

number of cluster-defined spatially-coupled time series. (3) We apply a multivariate time series solution to

each site, in order to analyze the structure of this system of variables and construct an accurate predictor of

the target time series, with the help of the spatially coupled variables. (4) We demonstrate the importance

of dealing with both temporal and spatial correlation, in order to yield accurate forecasts of geophysical

data and validate the accuracy of the proposed cluster-centric strategy in the computation of a multivariate

time series forecasting model.

The paper is organized as follows. The related work will be briefly reviewed in Section 2. The math-

ematical notation is introduced in Section 3. The clustering step is described in Section 4, while the

spatio-temporal multiple variable synthesis is presented in Section 5. A description of the multivariate fore-

casting step, based on VAR modeling, is reported in Section 6. The time-complexity analysis of the proposed

algorithmic pipeline is analyzed in Section 7. Experiments with real data are presented in Section 8, where

discovered cluster structures are inspected and forecasting results are discussed. Finally, Section 9 refocuses

on the purpose of the research, draws conclusions and proposes future developments.
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2. Background

We review the state-of-the-art in spatio-temporal clustering and time series forecasting, as they are the

key ingredients of our proposal.

2.1. Spatio-temporal clustering

A few algorithms have been developed to cluster different types of spatio-temporal data (see [25] for a

recent survey). Putting their differences aside and focusing on clustering geophysical time series, we consider

clustering algorithms based on dissimilarity measures. Their measures include both temporal dissimilarity

and spatial dissimilarity, as well as the interaction between temporal and spatial information.

Qui et al. [40] have formulated a distance measure, including both spatial dissimilarity and temporal

dissimilarity. They have incorporated the proposed dissimilarity into fuzzy C-means clustering. Birant

and Kut [7] have extended the standard density-based clustering by introducing two different distance

parameters: the former is used to measure the spatial closeness of two points; the latter is used to measure

the similarity of non-spatial values. Liu et al. [27] have defined a spatio-temporal density-based algorithm,

called STSNN (Spatio-Temporal Shared Nearest Neighbor). The algorithm resorts to a similarity measure

that counts the number of neighbors shared on a data window. More recently, Appice et al. [1] have

defined a clustering technique, called SUMATRA, that segments the geophysical time series into temporal

windows. It computes clusters of spatially-close geo-referenced data, which vary according to a similar trend

along the window time horizon. An incremental version of this clustering procedure is illustrated in [2].

Finally, Appice et al. [3] have defined an algorithm to detect spatial clusters by processing local indicators

of spatial autocorrelation of data observed at a specific time point. Spatio-temporal clusters are constructed

by grouping time series, whose sites are repeatedly assigned to the same spatial cluster over a time window.

All the algorithms described above may produce a model, in both space and time, of the correlation

structure. Sometimes they deal with the spatial and temporal dimensions separately in progressive clustering

steps. Sometimes they deal with both dimensions simultaneously in a single clustering step. The latter

approach, that is faster, is closely followed in this paper. However, in all the algorithms described above,

clustering is driven by the past data, without looking at the forecast evolution of the correlation structure.

2.2. Time series forecasting

Time series forecasting is often an empirical procedure that identifies the model (from a larger class of

models) which is more suitable to the data at hand. This model can be used to extrapolate predictions

of the future observations in the series. The model can be iteratively improved by human intervention, in

terms of its empirical average forecasting error at several forecasting horizons. Several well-known models

have been formulated in univariate time series analysis [29], when a single variable is observed over time, as

well as in multivariate time series analysis [28], when a system of variables is monitored over time.

Multiple geophysical time series are traditionally dealt with separately, so that the forecasting model

associated with a specific site is learned by neglecting the spatial-aware information enclosed in the excluded
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sites. However, in recent years, research has started investigating specific techniques, which accommodate

the spatial correlation in the forecasting model. Existing studies are mainly based on the univariate analysis,

and a few studies have accounted for developments in multivariate analysis for this kind of data.

By focusing on univariate analysis, the first approach considering spatial correlation is investigated in [24].

This approach, called STARIMA, considers space-time auto-regressive integrated moving average models. It

models a geosensor time series as a linear combination of past observations and disturbances at neighboring

sites. Through the specification of a weighting matrix, STARIMA can reflect the standard idea that near sites

exert more influence over each other than distant ones. More recently, Pravilovic et al. [38] have formulated

a technique, called sARIMA, to identify the order of an ARIMA model, without any human intervention.

sARIMA accounts for the property of spatial correlation to determine the number of ARIMA coefficients for

a specific time series. It uses a spatial-aware formulation of the AICc automatic order-selection criterion,

which is computed on data recorded on both a given geosensor and its neighboring stations (see Subsection

8.4.2 for additional details). Pokrajac and Obradovic [37] have produced spatio-temporal forecasts using

a generalization of the standard spatial auto-regression and including a disturbance term modeled as a

temporal auto-regression. A further approach has been investigated in [45], in which linear mixed models

(LMMs) with spatial random effects are proposed in a Bayesian framework. The spatial correlation is taken

into account with a Conditional Auto Regressive (CAR) prior distribution for spatial effects. Finally, Ohashi

and Torgo [33] have described an approach sharing a few similarities with the one presented in this paper.

They determine forecasts of each series based on the past values of the series up to a certain time window

of fixed length, as well as a set of technical indicators (e.g. tendency, acceleration and momentum). These

technical indicators, which are very frequently used in financial forecasting, are computed for each time

stamp as summaries of certain properties of the time series in a neighborhood. They can also be regarded

as additional descriptors of the dynamic behavior of the time series to forecast.

Considering the multivariate analysis, De Luna and Genton [10] propose a suitable VAR model identi-

fication strategy, taking advantage of the spatial location of the different time series, which is particularly

useful when data is rich in the time dimension but sparse in the spatial dimension, and the main objective

is to provide time-forward predictions (as in our case). A strategy based on multivariate VAR models is

discussed in [5] as well.

All the techniques described above deal with the spatial information in the time series analysis. In any

case, all assume that spatial correlation is stationary over a circular/conic neighborhood with fixed size.

This static analysis of spatial correlation may suffer from serious limitations, as spatial correlation can often

be manifested with different underlying latent structures of the space, which can vary in shape and size

over data. This limit is overcome in [39], where a meaningful model of the data structure is discovered by

resorting to a spatio-temporal clustering step. The cluster information is integrated in the ARIMA model,

yielding accurate forecasts (see Subsection 8.4.2). In the following, we further elaborate on this idea.
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Figure 1: Block diagram of cVAR (spatio-temporal Cluster-based Vector AutoRegressive model).

3. Data and methodology definition

Let D(K,Y, T ) be a geophysical time series dataset, so that: K is a set of geo-locations over a given

spatial domain, Y is a numeric geophysical variable and T is the size of a temporal window that is discretized

in equally-spaced time points denoted as t = 1, 2, . . . , T . In this data setting, y(k, t) denotes the sequence

of geo-referenced measures of Y collected at a certain projected geolocation k ∈ K for each time point

t = 1, 2, . . . , T . We present a novel spatio-temporal forecasting methodology, called cVAR (see Figure 1),

which inputs dataset D(K,Y, T ) and consists of a pipeline of three algorithmic steps:

1. A clustering pattern P(C) partitioning K into distinct clusters on the ground of the spatial and

temporal similarity of the time series of D (see Section 4 for details). A peculiarity of our approach is

the definition of a novel spatio-temporal dissimilarity (see Subsection 4.1), which includes both time

series dissimilarity and spatial distance as separate contributions. The objective is that the time series

of D which manifest a high degree of spatio-temporal correlation are grouped into the same cluster,

while those series which manifest abrupt variation with each other are grouped into different clusters.

2. A feature expansion mechanism synthesizing the additional time series, borrowing from the spatial

and temporal-aware information that is enclosed in the clustering pattern P(C) (see Section 5). The

Principal Component Analysis (PCA) transforms the multiple variables constructed per geosensor into

a set of latent orthogonal factors, which are useful to improve forecasting of the target series.

3. A stationary model VAR ŷ(k, t) (see Section 6) for each target time series y(k, t), constructed by

exploiting the additional time series defined in the previous step. This model can be used to forecast

new data points ŷ(k, T + 1), . . . , ŷ(k, T +N) for a suitable forecasting horizon N .

4. Spatio-temporal clustering

The clustering step is performed by resorting to a partition-based algorithm that accepts dissimilarity

data. In particular, time series are partitioned around representative medoids (i.e. representative time series

of the dataset), which are selected so that total dissimilarity of all time series to their nearest medoid is

minimal. The dissimilarity is evaluated over space and time simultaneously. The number of final clusters is

determined by looking for a local maximum of quality of clustering.

6



4.1. Spatio-temporal dissimilarity

Let ki and kj be two geo-locations (ki, kj ∈ K), so that (x
(i)
1 , x

(i)
2 ) and (x

(j)
1 , x

(j)
2 ) denote the spatial

coordinates of ki and kj , respectively. The spatio-temporal dissimilarity between the time series y(ki, t) and

y(kj , t) is determined by computing the spatial distance between spatial coordinates (Sdiss(·, ·) of ki and

kj), as well as a suitable dissimilarity between the time series values (Tdiss(·, ·) of ki and kj). Formally,

diss(ki, kj) = Sdiss(ki, kj) + Tdiss(ki, kj). (1)

The spatial dissimilarity Sdiss(ki, kj) is computed, with squared Euclidean distance, from the normalized

spatial coordinates of ki and kj , that is,

Sdiss(ki, kj) = (x̃
(i)
1 − x̃

(j)
1 )2 + (x̃

(i)
2 − x̃

(j)
2 )2. (2)

To compute Formula 2, spatial coordinates are constrained to [−1, 1]× [−1, 1] as follows:

x̃h =
xh − 〈xh;K〉

max(|xh − 〈xh;K〉|) , with h = 1, 2, (3)

where 〈xh;K〉 is the average value of the corresponding component of the spatial coordinates falling in K.

The temporal dissimilarity Tdiss(k1, k2) is computed with simple exponential smoothing (SES) from the

time series of the squared element-wise Euclidean distances, calculated between the suitably transformed

time series values of ki and kj , that is:

Tdiss(ki, kj)
def
= Tdiss(ki, kj , T ), with (4)

Tdiss(ki, kj , T ) = α [ỹ(ki, T )− ỹ(kj , T )]
2 + (1− α)Tdiss(ki, kj , T − 1) (5)

...

Tdiss(ki, kj , 2) = α [ỹ(ki, 2)− ỹ(kj , 2)]
2 + (1− α)Tdiss(ki, kj , 1),

Tdiss(ki, kj , 1) = α [ỹ(ki, 1)− ỹ(kj , 1)]
2 + (1− α)ℓ0, (6)

where 0 ≤ α ≤ 1 is a smoothing parameter and ℓ0 = Tdiss(ki, kj , 0). Formula 5, that represents the one-

step-ahead forecast at time T +1, can be written as the following weighted average of all past observations:

Tdiss(ki, kj , T ) =

T−1∑

u=0

α(1− α)u [ỹ(ki, T − u)− ỹ(kj , T − u)]
2
+ (1− α)T ℓ0. (7)

Measuring the dissimilarity between the values, which have been forecasted for the compared time

series, is a way to quantify the strength of the correlation between data that we expect to observe in

the near future. In particular, the more the one-step-ahead forecasts (see Formula 4) are close to zero,

the more the corresponding time series are considered to be similar. The rate at which the weights in

Formula 7 decrease is controlled by the parameter α (see [21] for details). If α is close to zero then more

weight is given to observations from the distant past. If α is close to 1 then more weight is given to the

more recent observations. If α = 1, then the one-step-ahead forecast coincides with the näıve forecast
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Tdiss(ki, kj , T ) = [ỹ(ki, T )− ỹ(kj , T )]
2
. The set-up of α is discussed in Subsection 4.2. In Formulae 5-6,

ỹ(k, t) is computed by applying a normalization function to [−1,+1], using a transformation mathematically

equivalent to Formula 3 and defined as follows:

ỹ(k, t) =
y(k, t)− 〈y(k, t)〉t

max(|y(k, t)− 〈y(k, t)〉t|)
, (8)

where 〈y(k, t)〉t is the time average of the time series collected at geo-location k ∈ K.

4.2. Setting the smoothing parameter α and the initial value ℓ0

A standard, computationally fast set-up is α = 0.5, ℓ0 = Tdiss(ki, kj , 0)
def
= [ỹ(ki, 1)− ỹ(kj , 1)]

2
. An

alternative is to estimate α along the initial value ℓ0 from the observed data [21]. Let us consider the

one-step-ahead in-sample forecasting errors, which are defined as follows for t = 2, . . . , T :

ˆ̃e(ki, kj , t) = [ỹ(ki, t)− ỹ(kj , t)]
2 − Tdiss(ki, kj , t− 1) =

= [ỹ(ki, t)− ỹ(kj , t)]
2 −

t−2∑

u=0

α(1 − α)u [ỹ(ki, t− u− 1)− ỹ(kj , t− u− 1)]
2
+ (1− α)t−1ℓ0,

while, for t = 1, we simply have ˆ̃e(ki, kj , 1) = [ỹ(ki, 1)− ỹ(kj , 1)]
2 − ℓ0. For each pair, ki and kj , we find the

smoothing parameter α and the initial value ℓ0 which minimize the in-sample sum-of-squares error:

SSE(α, ℓ0) =

T∑

t=1

ˆ̃e(ki, kj , t)
2. (9)

The range of summation in Formula 9 is meaningful, given that ℓ0 is the one-step-ahead forecast for

t = 1. The minimization of the quadratic form in Formula 9 is a non-linear minimization problem that does

not admit closed-form solutions. It is solved numerically using the Levenberg-Marquardt algorithm [22].

The automatic procedure performs a global choice to set-up α. In fact, a global value α is determined,

independently of time t, in order to optimize the performance of the smoothing parameter with t varying

between 1 and T [8]. As an alternative, a local choice of the smoothing parameter can be considered [8, 52].

A local choice would aim at choosing a local value α(t), that depends on time t, in order to optimize the

performance of the smoothing parameter at each time point t. In this way, every α(t) (with t varying between

1 and T ) would be selected from data collected up to t and then used in the computation of Formulae 4–6.

As observed in [8], a local choice of any smoothing parameter is more flexible than the global one and the

resulting smoothing is more capable of adapting to the dynamic change of the underlying time series. At the

same time, the local choice is harder and more variable, since only the local data are involved in choosing the

estimates. Based upon this analysis, we have favored simplicity and stability by opting for the global choice.

In any case, the viability of this decision is also investigated in the empirical study, where we compare the

performance of the proposed forecasting approach with the choice of a global value α to that of the same

approach with the choice of local values α(t) (see details in Section 8.4.3).
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4.3. Clustering algorithm

As a partition-based algorithm, we consider PAM (Partitioning AroundMedioids) [43, 48]. This algorithm

is selected as the existing distance-based clustering approaches can be extended to the considered data setting

only when the distance function can be defined via a suitable inner product between two data points. In

fact, in this case, we are able to kernelize the algorithm (kernel k-means being the prototypical example).

However, it is not immediately apparent how to express the spatio-temporal dissimilarity (see Formula 1)

in terms of a suitable inner product. On the other hand, PAM, that requires only an arbitrary matrix of

dissimilarities as input, seems to be a mathematically simpler alternative than kernel k-means in our setting.

More specifically, PAM inputs: (1) an integer g (with gmin ≤ g ≤ |K|) (by default gmin = 2), that is, the

number of clusters to discover and (2) a |K| × |K| dissimilarity matrix D, where diss(ki, kj) = diss(kj , ki)

measures the ‘difference’ between ki and kj computed according to Formula 1. It outputs a clustering

pattern P(C), that is, a set of g clusters C1, C2, . . . , Cg, such that: (1) ∅ /∈ P(C),
⋃

Ci∈P(C)

Ci = K and (2)

∀ Ci, Cj ∈ P(C), if i 6= j then Ci ∩ Cj = ∅. This pattern is determined by partitioning the geo-location set K

around a subset of medoid geo-locations {km1
, . . . , kmg

} ⊂ {k1, k2, . . . , k|K|}, which minimize the objective

function

|K|∑

i=1

min
ℓ=1,2,...,g

diss(ki, kmℓ
).

Procedurally, the medoid set M = {km1
, . . . , kmg

} is determined by resorting to the steepest ascent hill

climber. Unlike other partition-based clustering algorithms (such as k-means and k-medoids), PAM does

not need initial random guesses for the cluster centers. In fact, it constructs a ‘reasonable’ initial medoid

set, with a deterministic building phase, at the cost of a mild additional complexity. Then, in each iteration

of the swap phase, it attempts to improve the medoid set and increase the quality of the clustering. This is

done by selecting pairs (ki, kmj
) ∈ (K −M)×M that produce the best decrease in the objective function

when their roles are switched. Each ki ∈ K is assigned to the cluster corresponding to the nearest medoid.

4.4. Choosing the number of clusters

To automate the choice of g, we use the Silhouette index to measure how well each time series lies

within its cluster [44]. The Silhouette index for geosensor ki, given a cluster set P(C), is computed as

Sil(ki,P(C)) = b(ki)−a(ki)
max{b(ki),a(ki)}

, where a(ki) is the average spatio-temporal dissimilarity (computed according

to Formula 1) of ki from every other kj in the same cluster, while b(ki) is the lowest average spatio-temporal

dissimilarity of ki to any other cluster of which ki is not a member. Sil(ki,P(C)) ranges in [−1, 1]. As b(ki)

captures the degree to which ki is spatio-temporally separated from other clusters, a value of Sil(ki,P(C))
closer to 1 means that the cluster containing ki is compact and that ki is ‘far away’ from other clusters.

The average index over all geo-locations ki ∈ K is a clustering quality index, measuring how tightly all

the geophysical time series are grouped. It is formulated as follows:

Sil(K,P(C)) = 1

|K|
∑

ki∈K

Sil(ki,P(C)). (10)
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The average index is used to determine the number of clusters as follows. We start with the number

of clusters set equal to an initial gmin guess, apply PAM with the specified number of clusters and use the

discovered clustering model, in order to compute Sil(K,P(C)). We iterate the execution of PAM by varying

the number of cluster g between gmin and gmax, so that 2 ≤ gmin ≤ gmax ≤ |K| − 1. Finally, we select the

number of cluster gest, for which Sil(K,P(C)) achieves a global maximum peak on [gmin, gmax]. According to

the subjective interpretation of Sil(K,P(C)) reported in [48], a significant clustering structure can be found

whenever Sil(K,P(C)) > 0.5 in the final partition P(C).
We note that the average Silhouette index is an internal measure of clustering quality based on a given

spatio-temporal dissimilarity and, as such, is not suitable for detecting irregularly shaped clusters. In

particular, it will tend to agree with distance or dissimilarity-based algorithms, such as PAM, which cannot

identify clusters of irregular shapes. This phenomenon can be seen as a subtle form of overfitting, which may

create a tendency to overestimate the true number of clusters. However, this problem could be alleviated by

the the peculiar structure of the proposed spatio-temporal dissimilarity, as the compactness of the obtained

clusters may not coincide with the spatial geometric compactness and connectivity of clustered geo-locations.

In Section 9, we briefly mention a possible external solution to these difficulties.

5. Spatio-temporal multiple variable synthesis

Although multivariate time series models often yield forecasts that are superior to those from univariate

models [53], the application of a multivariate framework to a geosensor system is not straightforward. One

possibility is to learn a simultaneous multivariate model, including all geosensor locations. However, this

model building strategy still disregards the spatial dependence structure inherent to a geosensor network.

As an alternative, we can consider a multivariate system for each geosensor location. This strategy is

common, for example, in technical analysis of financial time series, where a single univariate time series is

transformed into a multiple time series system consisting of various technical indicators, such as oscillators

and momentum/volatility time series. However, also in this case, we should estimate and forecast |K|
separate multivariate models, without accounting for the spatial dimension.

In this study, this issue is addressed by borrowing knowledge from the spatial and temporal clustering

pattern P(C). There are many non-equivalent ways of generating multiple variables per geosensor. By

resorting to a weakly stationary model (e.g. the one proposed in Section 6), it is natural to consider second-

order characteristics (i.e. mean and variance as a function of time) of the underlying data, averaged over

the sensors grouped in each cluster C(k) (in accordance with the hypothesis that series which are grouped

in the same cluster manifest a coherent temporal evolution). Using a cluster-wise mean, we can also define

a cluster-wise speed measuring the local rate of change of each series included in the same cluster. In fact,

speed is often unrelated to variance and can be seen as a useful independent predictor.

On the other hand, computing cluster-wise mean, variance and speed allows us to construct the same

multivariate system for each geosensor falling into the same subset of the partition P(C). Our point of view is
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that constraining sensors spanned across a possibly large cluster region to the same multivariate system can

be seen as a modeling limit. Therefore, we consider it appropriate to add a geosensor-specific transformed

series, that is constructed by means of a suitable distance-based averaging of the values recorded for the

time series grouped in the same cluster (giving less weight to more distant sensors, see also [33]). In this

way, a geosensor-specific speed series can be defined as well.

Formally, let P(C) be a spatio-temporal clustering pattern of dataset D(K,Y, T ). For each time series

location k ∈ K, denoting as C(k) (with C(k) ∈ P(C)) the cluster that groups the transformed time series

ỹ(k, t) (according to Formula 8), five additional time series can be defined by accounting for the spatial

and temporal-aware information enclosed in C(k). These variables are introduced, in order to yield a more

accurate forecast for y(k, t). They are calculated for all time points t ∈ T and denoted as:
(
µC(k)(t), σC(k)(t), µk,C(k)(t), ωC(k)(t), ωk,C(k)(t)

)
. (11)

Mean variable µC(k)(t). This defines the time series measuring the average value of the values recorded for

the time series grouped in cluster C(k). Formally,

µC(k)(t) =
1

|C(k)|
∑

ki∈C(k)

ỹ(ki, t). (12)

Standard deviation variable σC(k)(t). This defines the time series measuring the standard deviation of the

values recorded for the time series grouped in cluster C(k). Formally,

σC(k)(t) =

√√√√ 1

|C(k)|
∑

ki∈C(k)

(
ỹ(ki, t)− µC(k)(t)

)2
. (13)

Weighted mean variable µk,C(k)(t). This defines the time series measuring a weighted average of the values

recorded for the time series grouped in cluster C(k). Unlike µC(k)(t) and σC(k)(t), which assume constant

values inside cluster C(k), the indicator defined below varies across geo-locations k ∈ K. Formally,

µk,C(k)(t) =

∑

ki∈C(k)

Sdiss(ki, k)ỹ(ki, t)

∑

ki∈C(k)

Sdiss(ki, k)
, t = 1, . . . , T, (14)

where Sdiss(·, ·) is the spatial distance, computed as described in Formula 2. For example, supposing that a

cluster groups sensors indexed as k = 1, 3, 4 (hence C(1) = C(3) = C(4)), we have:

µ1,C(1)(t) ∝ Sdiss(1, 1)ỹ(1, t) + Sdiss(3, 1)ỹ(3, t) + Sdiss(4, 1)ỹ(4, t)

µ3,C(3)(t) ∝ Sdiss(1, 3)ỹ(1, t) + Sdiss(3, 3)ỹ(3, t) + Sdiss(4, 3)ỹ(4, t)

µ4,C(4)(t) ∝ Sdiss(1, 4)ỹ(1, t) + Sdiss(3, 4)ỹ(3, t) + Sdiss(4, 4)ỹ(4, t).

Speed variable ωC(k)(t). This defines the time series measuring the ratio of the average values recorded in

µC(k)(t). Formally,

ωC(k)(t) =
µC(k)(t)

µC(k)(t− 1)
, t = 2, . . . , T. (15)
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Figure 2: Variable Air Temperature (TCEQ geosensor network, T = 336, see Section 8 for further details) recorded by a

geosensor. The partition algorithm (see Section 4) has been run with α = 0.5. Left: the transformed time series ỹ(k, t) and the

five additional time series (see Formula 11), defined to account for spatial and temporal information enclosed in cluster C(k),

to which geosensor k is assigned. Right: transformed time series ỹ(k, t) and principal component scores of the additional time

series. These are ordered so that PC1 has the largest sample variance, PC2 has the second largest sample variance, and so on.

Figure 3: Variable Wind Speed (TCEQ geosensor network, T = 336, see Section 8 for further details). The partition algorithm

(see Section 4) has been run with α = 0.5. Left: average correlation matrix, averaged across sensors, of the correlation matrices

of the full information set
(

ỹ(k, t), µC(k)(t), σC(k)(t), µk,C(k)(t), ωC(k)(t), ωk,C(k)(t)
)

. Right: average correlation matrix, aver-

aged across sensors, of the correlation matrices of the partially orthogonalized information set (ỹ(k, t),PC1(k, t), . . . ,PC5(k, t)).

Weighted speed variable ωk,C(k)(t). It defines the time series measuring the ratio of the weighted average

values recorded in µk,C(k)(t). In the same way as µk,C(k)(t) and unlike ωC(k)(t), the latter assuming constant

values inside cluster C(k), the indicator defined below varies across geo-locations k ∈ K. Formally,

ωk,C(k)(t) =
µk,C(k)(t)

µk,C(k)(t− 1)
, t = 2, . . . , T. (16)
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5.1. Post-processing

We note that variables µC(k)(t) and µk,C(k)(t) may be strongly contemporaneously correlated with each

other. At each time point, they can be interpreted as a linear combination of the same set of observations (i.e.

the observations from time series falling into the same subset of the clustering pattern P(C)). In particular,

Formulae 12 and 14 differ from each other only in the coefficients of the linear combination. An illustration of

this phenomenon is shown on the left side of Figure 2. As a further illustration of the presence of collinearity,

we can see the left side of Figure 3. It shows the average correlation matrix, averaged across sensors, of

the correlation matrices of the full information set
(
ỹ(k, t), µC(k)(t), σC(k)(t), µk,C(k)(t), ωC(k)(t), ωk,C(k)(t)

)
,

including both the observed time series and the newly generated ones. On average, as k varies, there is a

strong contemporaneous correlation between ỹ(k, t) and µC(k)(t), as well as between ỹ(k, t) and µk,C(k)(t)

(and such a correlation pattern is independent of the peculiar dataset). Taking this view, suppose that, for

each geosensor ki, the forecasting problem now includes the following multivariate system of time series:

z(ki, t) =
(
z(1)(ki, t), . . . , z

(s)(ki, t)
)
=

(
ỹ(ki, t), µ

C(ki)(t), σC(ki)(t), µki,C(ki)(t), ωC(ki)(t), ωki,C(ki)(t)
)
.

(17)

We can try to learn a weakly stationary VAR (vector auto-regression, [28]) model of this multiple time

series and use it, in order to forecast the target series z(1)(ki, t) ≡ ỹ(ki, t) up to N -step ahead. The general

form of a model VAR includes a set of s lagged equations, which can be written in the following vector form:

(I−Φi(L))z(ki, t)
⊤ = ci + ε(ki, t), (18)

in which ε(ki, t) is an s-dimensional White Noise with independent components, Φi(L) = Φi1L+Φi2L
2 +

· · ·+Φipi
Lpi , with each Φij (j = 1, 2, . . . , pi) being an s× s matrix of coefficients, pi the order of the model

of geosensor i and ci ∈ R
s×1 a vector of intercepts (with s = 6). For each geosensor, matrices Φij are

supposed to satisfy a stability condition ([28], pg. 70), in order to prevent the set of simultaneous difference

equations in Formula 17 from having unbounded non-stationary solutions.

Unfortunately, when a multivariate time series includes a subset of strongly redundant variables, both

least squares (LS) estimation of a linear time series model and forecasting with the estimated model can

become highly problematic. To show that this statement holds true, we need to introduce a little more

notation. Let Bi = (ci,Φi1,Φi2, . . . ,Φi2, . . . ,Φipi
) and βi = vec(Bi). Suppose also that pi presample

values z(ki,−pi + 1), . . . , z(ki, 0) are available (in practice, the first pi values of the training set are used as

presample values). We now define Zi = (Zi0, . . . , Zi,T−1), where for t = 0, 1, . . . , T − 1:

Zit = (1
... z(ki, t)

⊤
... . . .

... z(ki, t− pi + 1)⊤)⊤.

We can now formulate a technical result which ensures that under mild conditions the LS estimator β̂i

converges at rate
√
T in distribution to a limiting multivariate Gaussian distribution, that is [28]:

√
T
(
β̂i − βi

)
d−→ N

(
0,Γ−1

i ⊗ Σεi

)
, (19)
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where Σεi
is the covariance matrix of the White Noise ε(ki, t) (see [28], p. 73, for an explicit expression of

matrix Γi). In order to assess the asymptotic covariance matrix of the LS estimator in finite samples, we

need to estimate matrices Γi and Σεi
. A consistent estimator of Γi is [28]:

Γ̂−1
i = T

(
ZiZ

⊤
i

)−1
. (20)

If at least any two series of the multivariate system are perfectly redundant, then ZiZ
⊤
i is singular.

Moreover, if at least any two series are strongly redundant, then the diagonal entries of ZiZ
⊤
i will be very

large. In the latter case, the parameter estimator β̂i will be asymptotically correct from a theoretical point

of view, but highly imprecise in practice. This result has a direct impact on forecasting with the estimated

model, in the sense that the forecast uncertainty, implied by parameter estimation, can be neglected only

asymptotically. In finite samples, precise forecasts require precise estimators, and if this requirement is not

satisfied, the estimated model will suffer from a highly erratic forecast [28]. Irrespective of the particular

dataset, we actually found imprecise forecasts from the estimated model (see Formula 18) with input variables

(see Formula 17).

In view of the above discussion, after generating multiple variables per geosensor, a natural post-

processing step consists of converting the additional data into uncorrelated principal components using

a standard orthogonal transformation. An example of the effect of this transformation can be seen on the

right side of Figure 3. The principal components are contemporaneously uncorrelated with each other and,

on average, are weakly correlated with the target variable ỹ(k, t). This set of almost orthogonal components

may have nonzero lagged cross-correlations, which can be exploited by the simultaneous linear model (18)

to forecast the target variable, without over-inflating the asymptotic variance of parameter estimates [31].

6. A partially orthogonalized model VAR

The actual learning process considers, for each geosensor ki ∈ K, a multivariate time series system

defined as follows:

y(ki, t) =
(
y(1)(ki, t), y

(2)(ki, t), . . . , y
(s′)(ki, t)

)
=

(
ỹ(ki, t),PC1(ki, t), . . . ,PCs′−1(ki, t)

)
, (21)

where PC1(ki, t), . . . ,PCs′−1(ki, t) are the first s′ − 1 principal component scores of the additional time

series synthesized over the cluster aggregating ki, with s′ ≤ s. In particular, only the first s′ − 1 principal

components, which explain at least 95% of the original series, are retained. What is the motivation behind

this choice? As explained in Subsection 5.1, the principal components can be interpreted as latent orthogonal

factors useful to improve the forecasting of the target series. However, given the strong contemporaneous

correlation existing between µC(k)(t) and µk,C(k)(t), the first four principal components are expected to

explain a very high proportion of the total variability exhibited by the original series. For example, the right

panel of Figure 2 shows that the time series of scores associated with the smallest eigenvalue, PC5(k, t),

is noisy and unlikely to contain useful information. It can most likely be interpreted as a small irregular
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component, containing the variation uncommon to µC(k)(t) and µk,C(k)(t), which has not been captured by

PC1(k, t). For these reasons, despite the small scale of the involved variables, we apply a noise reduction

based on the choice of the principal components that account for a given quota of the total variability, thus

shrinking the smallest eigenvalues toward zero. As we empirically investigate in Subsection 8.5, modeling

with denoised input variables generally improves the forecasting accuracy of the proposed model. Therefore,

we now learn the following VAR model of the partially orthogonalized multiple time series in (21):

(I−Φi(L))y(ki, t)
⊤ = ci + ε(ki, t), (22)

and use it to forecast the target series y(1)(ki, t) ≡ ỹ(ki, t) up to N -step ahead. We observe that, in this

way, every multivariate system includes s′ ≤ 6 (instead of s = 6 as before) time series, for each geosensor in

K.

We also note that it is immaterial whether raw y(ki, t) or normalized ỹ(ki, t) are entered into the model

and subsequently forecasted. We would rather see normalized series being used, thus making it possible to

safely average scale-dependent forecast accuracy measures across geosensors, as well as to compare these

average accuracies across multiple datasets (see Section 8 for details on the experimental setup).

The selection of the order pi is based on the minimization of the determinant of the one-step ahead forecast

mean square error matrix. This corresponds to the final prediction error criterion (FPE(pi), expressed as a

function of the number of lagged differences pi). Details on the FPE criterion, the ordinary least squares

estimation of model coefficients and the form of estimated optimal linear predictors can be found in [28].

6.1. Some inherent limitations

Periodic change patterns. The presence of a stable periodic pattern of changes in the target time series,

repeated over m time periods, can be accommodated by adding m seasonal dummy variables [35] to the

VAR model so that, at any time period t, one of the seasonal dummies equals 1, while the others equal 0

(plus some identifiability constraints, see [28] for details).

Drifting data. Under certain conditions, a stationary VAR model may be unsuitable after differencing a

system of drifting time series, and even principal component analysis is often unsuited to remove non-

stationarity. When we analyze each time series separately, as a univariate time series, we can easily identify

the type of non-stationarity and adopt a suitable transformation of the training data to remove it. For

example, this procedure is an integral part of auto.ARIMA, that is an algorithm defined for univariate time

series data. In auto.ARIMA the original time series are differentiated for an appropriate number of times,

until a test for the presence of unit roots ceases to provide statistically significant signals and the transformed

data can finally be considered (at least approximately) stationary. However, in multivariate cases, when

we simultaneously analyze a set of time series, we will deal with various additional issues. A multivariate

system with a long-run equilibrium relationship cannot drift too far from this equilibrium. These series are

cointegrated, as they share common stochastic trends. In these cases, a VAR model on the (first or second)
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differences is known to be inconsistent and we must resort to vector error correction models (VECM) [30].

These models have the positive characteristic that the deviation of the current state from its long-run

relationship is seen as a part of the short-run dynamics. In any case, applying a VECM model is often a

difficult process, which makes it unsuitable for automatic implementation. For example, determining the

number of co-integration relationships requires a careful application of some non-standard likelihood ratio

tests [20]. As a result of these difficulties, we disregard verifying whether non-standard and non-stationary

dynamic patterns are present and eventually incorporating them into the model. It would appear that,

under these circumstances, the proposed algorithm should be considered no more than a heuristic. This key

issue will be discussed further in Section 8.5.

7. Learning complexity

Let us consider that: (1) dataset D(K,Y, T ) comprises |K| geophysical time series and each time series

includes T time-stamped measures of a geophysical variable Y ; (2) algorithm PAM is used to construct a

spatio-temporal clustering model P(C) of D and an execution of PAM performs NIter iterations, at worst;

number gest of clusters constructed in P(C) may vary between gmin and |K| − 1; gest is determined by

maximizing the average Silhouette index computed according to Formula 10; the dissimilarity matrix D

is computed according to Formula 2; (3) algorithm PCA is used to remove the collinearity in a system of

s− 1 cluster-coupled spatio-temporal time series constructed for each geosensor (s − 1 = 5, in this study);

(4) algorithm VAR is used to construct a forecasting model of a multivariate system, which consists of a

geophysical time series and the principal component representation of its cluster-coupled spatial time series.

Based on these premises, the computational complexity of cVAR is computed by summing up the cost

of performing spatio-temporal clustering, synthesizing spatio-temporal variables, computing the principal

components of the systems of spatio-temporal variables and constructing the spatial multivariate forecasting

models.

Spatio-temporal clustering phase. This takes dataset D as input, computes the spatio-temporal dissimilarity

matrix D, determines the number of clusters gest and returns the clustering model P(C) discovered from

D with the number of clusters gest and the dissimilarity matrix D. The execution of PAM is repeated by

varying the number of constructed clusters g between gmin and gmax, with gmin ≥ 2 and gmax ≤ |K| − 1. At

each execution of PAM, the average Silhouette index of the constructed clustering model is evaluated. The

time cost of building D is K + (|K|2−|K|)(T+2)
2 , where K is the cost of scaling the time series, (|K|2 − |K|)/2

is the number of distinct pairs of time series in D, while T + 2 is the cost of computing the spatio-temporal

distance between the scaled time series. Therefore, the time complexity of building D is O(|K|2T ). The

time complexity of executing PAM, in order to discover g clusters in D, is O(NIterg(|K| − g)2).1 The time

1 In the implementation, we used the optimized version of PAM, where every medoid can be removed just once before the

addition of all potential alternative medoids. Although this optimization produces a real reduction of the learning times (see

[43], Section 8.4, pages 486-488), it does not change the asymptotic computation complexity of the clustering algorithm.
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complexity of computing the average Silhouette index (see Formula 10) is O(|K|2). In short, the cost of this

phase is |K|2T +

gmax∑

g=gmin

(NIterg(|K| − g)2 + |K|2). By considering that |K| − g < |K|, this cost is |K|2T +

NIter|K|2
gmax∑

g=gmin

g+(gmax− gmin+1)|K|2. Let us consider that
gmax∑

g=gmin

g ≤
gmax∑

g=1

g =
gmax(gmax + 1)

2
≤ g2max as

gmax > 1, while gmax−gmin+1 ≤ gmax as gmin > 1. Hence, the cost of clustering is O(|K|2T+NIterg
2
max|K|2).

Spatio-temporal variable synthesis phase. This constructs one collection of spatially-coupled time series as-

sociated with every geophysical time series of D. Spatially coupled time series are constructed by accounting

for the spatio-temporal clustering model P(C) discovered from D. In fact, they are defined on the basis of:

• the sets of mean variables µP(C)(
def
= {µC(k)(t)|C(k) ∈ P(C)}), standard deviation variables σP(C) (

def
=

{σC(k)(t)|C(k) ∈ P(C)}) and speed variables ωP(C) (
def
= {ωC(k)(t)|C(k) ∈ P(C)}), which are constructed

at the level of a single cluster C(k) ∈ P(C), for all geosensors k ∈ C(k);

• the sets of weighted mean variables µK,P(C) (
def
= {µk,C(k)(t)|k ∈ K and C(k) ∈ P(C), such that k ∈

C(k)}) and weighted speed variables ωK,P(C) (
def
= {ωk,C(k)(t)| with k ∈ K and C(k) ∈ P(C), such that

k ∈ C(k)}), which are constructed at the level of a single time series k ∈ K.

The time cost of constructing µP(C) is O(|K|T ). The time cost of constructing σP(C) is O(|K|T ). The time

cost of constructing ωP(C) is O(gestT ), where the speed values are computed from the mean values associated

to µP(C). The time cost of constructing µK,P(C) is O(|K|2T ), in the worst case, that is, one time series is

compared to every other time series in D (i.e. two clusters are constructed: one cluster groups |K| − 1 time

series, the other cluster groups one time series). The time cost of constructing ωK,P(C) is O(|K|T ), where
the weighted speed values are computed from the weighted mean values associated to µK,P(C). Therefore,

the time cost of populating the systems of spatio-temporal variables coupled to the geophysical time series

is 3|K|T + gestT + |K|2T . As the term |K|2T is asymptotically more complex than 3|K|T as |K| ≥ 3, the

time cost of this phase is O(|K|2T ), in the worst case.

Spatio-temporal principal component construction phase. This inputs, for each geophysical time series, the

system of its cluster-coupled spatial time series and outputs the principal components of this system. Ac-

cording to the theory reported in [16], the principal components of a system of s− 1 variables, for which T

samples are collected, can be determined by computing the Singular Value Decomposition (SVD) of a data

matrix T × (s− 1). This requires the covariance matrix computation and its eigenvalue decomposition. The

cost of covariance matrix computation is O(T (s− 1)2) [16], while the cost of its eigenvalue decomposition

is O((s − 1)3) [16]. By considering that, in general, T ≥ s − 1, the cost of determining the system of

spatio-temporal principal components, for each geophysical time series, is O(|K|T (s− 1)2). By considering

that, in this study, we construct s − 1 = 5 spatio-temporal variables, we can treat s− 1 as a constant and

drop it from the O expression. Therefore, the time complexity of this phase can be rewritten as O(|K|T ).
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Spatial multivariate forecasting model construction phase. This inputs, for each geophysical time series, the

system composed of this time series and the principal components of its s − 1 cluster-coupled spatial time

series. Let us consider that, in the worst case, the number of principal components is equal to s− 1 (that is,

when s−1 = s′−1), so that the number of variables in the system is equal to s. For each geosensor ki, a VAR

model of this multivariate system is constructed with order pi (pi ≤ pmax). The coefficients of the VAR model

are estimated by resorting to the OLS algorithm [28]. According to the theory reported in [28] (Section

3.2.1), the time cost of determining the coefficients of a VAR(pi) model is O(s3p3i + s2p2iT ). Let us consider

that the actual order pi−est is automatically determined by varying pi between 1 and pmax and choosing

the value that minimizes the FPE criterion [28]. By accounting for this additional cost to determine pi−est,

the total time cost is s3
pmax∑

pi=1

p3i + s2T

pmax∑

pi=1

p2i , that is, s3
p2max(pmax + 1)2

4
+ s2T

pmax(pmax + 1)(2pmax + 1)

6

as

pmax∑

p=1

p3 =
p2max(pmax + 1)2

2
and

pmax∑

p=1

p2 =
pmax(pmax + 1)(2pmax + 1)

6
. Therefore, the cost of constructing

a VAR model, for each geophysical time series, is O(|K|(s3p4max + s2Tp3max)). By taking that into account,

in this study, s ≤ 6, we can treat s as a constant and drop it from the O expression. Therefore, the time

complexity of this phase can be rewritten as O(|K|(p4max + Tp3max)).

Global time cost. The global cost is the sum of the cost of the spatial clustering phase (|K|2T+NIterg
2
max|K|2),

the cost of the spatio-temporal variable synthesis phase (|K|2T ), the cost of the spatio-temporal variable

dimensionality reduction phase (|K|T ) and the cost of the spatial multivariate forecasting model construction

phase (|K|(p4max + Tp3max)). Therefore, the global cost is O(NIterg
2
max|K|2 + |K|2T + |K|p4max + |K|Tp3max).

In any case, it is O(NIterg
2
max|K|2 + |K|2T + |K|Tp3max) under the hypothesis that T ≥ pmax.

Final remarks. The time complexity analysis highlights that the time cost is quadratic in the network

size (K) and linear in the time series length (T ). The optimization of the efficiency of the algorithm is an

important challenge to address, in order to scale the computation on large, data intensive geosensor networks.

We note that the majority of the computation time is spent calculating the dissimilarity matrix, the clustering

model and the forecasting models. This is confirmed by the analysis of the running times spent to complete

these phases and reported in the empirical study (see Tables 2 and 6 in Section 8.5). By following the main

stream of recent research in data mining and statistics [14], an effective means to speed up the learning

process may be the use of big data technologies, in order to design the proposed algorithm. This is supported

by recent studies, which show that implementations designed for specific parallel processing architectures

(e.g. MapReduce) can contribute to scale the computation of various similarity measures [13, 46], as well as

to improve the efficiency of clustering algorithms like PAM [51]. In addition, recent studies in statistics have

started the investigation of efficient parallel versions of algorithms to learn univariate forecasting models

(e.g. ARIMA, [26]). In any case, the investigation of how parallel processing architectures can be employed

in the design of the presented algorithm is out of the current scope of this paper.
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8. Empirical evaluation and discussion

8.1. Data sets

We consider twelve geosensor data sets measured at equally-spaced discrete time intervals across six

geosensor networks. The collected data are characterized by a wide range of different dynamic behaviors

(see Figure 4). We observe that this study does not attempt to perform any exploratory data analysis

or subjective model identification based on autocorrelation properties. It relies upon automatic forecasting

algorithms, in order to determine an appropriate time series model, estimate the parameters and compute the

optimal linear forecasts.For each data set, the length of both the training and the testing phase (respectively

T and N), as well as the unit of measurement (UM) and the sampling interval ∆ are summarized in Table

1. A description of the networks and the measured variables is reported in the following.

TCEQ (Texas) geosensor network. This (http://www.tceq.state.tx.us/) was used to measure three

variables, namely Wind Speed, Air Temperature and Ozone Concentration, through |K| = 26 geosensors,

installed in Texas. For each variable, data were measured hourly from May 5 to 19, 2009. We used data

from 2009-05-05 00:00 to 2009-05-18 23:00 for the training phase (T = 336) and data from 2009-05-19 00:00

to 2009-05-19 23:00 for the testing phase (N = 24).

MESA air pollution study geosensor network. This (http://depts.washington.edu/mesaair/) was used

to measure the variable NOx Concentration, through |K| = 20 geosensor, installed in California. Data were

measured every two weeks from January 13, 1999 to September 23, 2009. We used data from January 13,

1999 to April 8, 2009 for the training phase (T = 268) and data from April 22, 2009 to September 23, 2009

for the testing phase (N = 12).

NREL eastern U.S. geosensor network. This (http://www.nrel.gov/) was used to measure the variable

Wind Speed, through |K| = 1326 geosensors, installed in the eastern area of the United States. Data were

measured at 80 meters above sea level, every 30 minutes, from January 1 to 4, 2004. We used data from

2004-01-01 00:00 to 2004-01-03 23:30 for the training phase (T = 144) and data from 2004-01-04 00:00 to

2004-01-04 23:30 for the testing phase (N = 48).

SAC geosensor network. This (http://climate.geog.udel.edu/~climate/) was used to measure the vari-

able Air Temperature, through |K| = 900 geosensors, installed in South America. Each time series collected

monthly-averaged measures from January 1999 to December 2010. We used data from January 1999 to

December 2009 for the training phase (T = 132) and data from January 2010 to December 2010 for the

testing phase (N = 12).

NSRDB geosensor network. This (http://www.ncdc.noaa.gov/data-access/land-based-station-data/

land-based-datasets/solar-radiation) was used to measure three variables, namely Global Solar Radi-

ation, Direct Solar Radiation and Diffuse Solar Radiation, through |K| = 1071 geosensors, installed across
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Data title Region Phenomenon UM |K| T N ∆

TCEQ Texas, U.S Wind Speed mph 26 336 24 1 hour

Air Temperature F◦ 26 336 24 1 hour

Ozone Concentration ppb 26 336 24 1 hour

MESA Los Angeles, U.S. NOx Concentration ppb 20 268 12 2 weeks

NREL Eastern U.S. Wind Speed m/s 1326 144 48 30 mins

SAC South America Air Temperature C◦ 900 132 12 1 month

NREL/NSRDB U.S. Global Solar Radiation W/m−2 1071 77 24 1 hour

Direct Solar Radiation W/m−2 1071 77 24 1 hour

Diffuse Solar Radiation W/m−2 1071 77 24 1 hour

NCDC U.S Air Temperature C◦ 72 93 12 1 month

Precipitation mm 72 93 12 1 month

Solar Energy MJ/m−2 72 93 12 1 month

Table 1: Twelve sets of geosensor data, collected via six geosensor networks. Legend: UM ≡ Unit of measurement; |K| ≡

Number of geosensors; T ≡ Length of the training phase; N ≡ Length of the testing phase; ∆ ≡ Sampling interval.

Figure 4: Training data of a subset of the normalized time series ỹ(k, t), measured across two geosensor networks. Top: variable

Air Temperature (TCEQ geosensor network, T = 336) – Data are characterized by a well-defined daily periodicity, with varying

amplitudes across the geosensors and non-stationary waveforms. Bottom: Variable Wind Speed (NREL eastern U.S. geosensor

network, T = 144) – Data exhibit erratic patterns, resembling the dynamic behavior of a random walk without drift.

the United States. Data were hourly measured from July 17 to 21, 2004. We used data from 2004-07-17

01:00 to 2004-07-20 05:00 for the training phase (T = 77) and data from 2004-07-20 06:00 to 2004-07-21

05:00 for the testing phase (N = 24).

NCDC geosensor network. This (http://www.ncdc.noaa.gov/data-access/land-based-station-data/

land-based-datasets/climate-normals) was used to measure three variables, namely Air Temperature,

Precipitation and Solar Energy, through |K| = 72 geosensors installed in the United States. Data were

measured monthly from August 2005 to April 2014. We used data from August 2005 to April 2013 for the

training phase (T = 93) and data from May 2013 to April 2014 for the testing phase (N = 12).

8.2. Experimental setup

We have compared cVAR to various univariate forecasting techniques, such as auto.ARIMA [22], which

neglects spatial autocorrelation, as well as to its spatial competitors sARIMA [38] and cARIMA [39], which
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account for spatial correlation in a univariate time series setting. In addition, we have evaluated the perfor-

mance of cVAR along the choice of the smoothing parameter α and the initial value ℓ0. In particular, we have

analyzed cVAR in combination with both the fast choice α = 0.5, ℓ0 = Tdiss(ki, kj , 0)
def
= [ỹ(ki, 1)− ỹ(kj , 1)]

2

and the automatic choice of global values of α and ℓ0 computed with the minimization of the in-sample

sum-of-squares error (see details in Section 4.2). We have also evaluated cVAR in combination with

ℓ0 = Tdiss(ki, kj , 0) and the choice of local values α(t). This local choice is performed by adapting the

local estimation method presented in [52], in order to determine a local value α(t) for each time point t. A

few details on all these competing algorithms are reported in Section 8.4.

For each data set, the time series are split into training and testing data sets. The pre-processing

parameters are determined on the training data (including the scaling parameter reported in Formula 8 for

data normalization) and subsequently applied to the testing data. We run the compared algorithms on the

training data and use the learned models to forecast the testing data. The learning phases are conducted

on normalized training data ỹ(ki, t). As mentioned in Section 6, this allows us to average scale-dependent

forecast accuracy measures across geosensors, as well as to make sensible comparisons involving multiple data

sets. In addition, normalized forecast data ˆ̃y(ki, t) can be easily back-transformed to the original scale. If

{ˆ̃e(ki, t)} indicates a set of out-of-sample forecast errors, based on forecasts ˆ̃y(1)(ki, T+1), . . . , ˆ̃y(1)(ki, T+N)

of the normalized target series, we evaluate forecast accuracy using a standard metric, such as [23]:

Root Mean Square Error = RMSE =

√
mean

{
ˆ̃e(ki, t)2

}
. (23)

Before carrying out the model-building phase, the unknown period mi of a geosensor ki is estimated by

resorting to a model-free procedure, called Enright’s periodogram. For this purpose, we adopt a popular

implementation [47], known as ‘chi square’ periodogram (see also [42]), that uses the χ2 distribution. When-

ever a stationary periodic component with period mi > 1 is estimated, the current non-seasonal model is

suitably extended to a seasonal one.

8.3. Some difficulties with extended input data computation

We note that a cluster C(k) may be discovered as a singleton cluster (i.e. it groups time series k only).

Since, in this case, weighted average µk,C(k)(t) (see Formula 14) diverges, it is replaced by the normalized

series recorded in geosensor k. In addition, in the presence of a singleton cluster C(k), we have that

µC(k)(t) ≡ µk,C(k)(t) ≡ ỹ(k, t), σC(k)(t) ≡ 0 and ωC(k)(t) ≡ ωk,C(k)(t). In this case, the additional multivariate

time series in Formula 11 has rank 2 and, consequently, s′ − 1 is equal to 2 in Formula 21.

Finally, if average value µC(k)(t) is equal to 0 at time t− 1, then speed ωC(k)(t) is infinite. We perform a

correction of this variable, in order to replace infinite values with suitable ones. The easiest way to deal with

this case is to consider each divergent velocity as missing and replace it with the median of the observed

values for that variable. Although this strategy can lead to underestimating both the in-sample standard

error and the out-of-sample mean square prediction error [15], divergent speeds are so rare that they cannot

affect the forecasting results significantly. Even more occasionally, the same problem can occur for ωk,C(k)(t).
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8.4. Competing algorithms

8.4.1. auto.ARIMA

This algorithm uses a multiplicative seasonal ARIMA(pi, di, qi) × (Pi, Di, Qi)mi
process with seasonal

period mi to model the time evolution of a time series [4]. This specification can be compactly written as:

φi(B)Φi(B
mi)∇di∇Di

mi
ỹ(ki, t) = ci + θi(B)Θi(B

mi)ε(ki, t), (24)

where ε(ki, t) is a White Noise process, φi(z) and θi(z) are AR and MA polynomials of orders pi and qi

respectively and Φi(z) and Θi(z) are seasonal polynomials of orders Pi and Qi respectively (it is assumed

that both polynomials have no roots inside the unit circle, |z| < 1) Furthermore, ∇ỹ(ki, t) = (1−B)ỹ(ki, t)

is the lag-1 differencing operator, which is a special case of the more general lag-h differencing operator

∇hỹ(ki, t) = (1 −Bh)ỹ(ki, t). In this study, we have set Di = 0 for each geosensor ki. This is equivalent to

the assumption that any cyclical pattern, whenever present in the data, is stationary over time.

The estimation of seasonal ARIMA is analogous to that for ARMA. The first step is the model order

identification, in order to determine parameters (pi, qi, Pi, Qi, di). For this purpose, Hyndman and Khan-

dakar [22] propose a step-wise algorithm to transverse the model-space efficiently, according to few order

constraints. These constraints are provided over (pi, qi, Pi, Qi), in order to determine the model with the

lowest corrected Akaike Information Criterion (AICc) value. For non-seasonal ARIMA models, the AICc can

be written as [21]:

AICc(i) = AIC(i) +
2(pi + qi + ui + 1)(pi + qi + ui + 2)

T − pi − qi − ui − 2
, (25)

where ui = 1 if ci 6= 0 and ui = 0 if ci = 0, AIC(i) = −2 log(L̂i) + 2(pi + qi + ui + 1) is the standard Akaike

Information Criterion and L̂i is the maximized likelihood of the data. Therefore, AICc equals AIC plus a

penalty for extra-parameters. This discourages the selection of overly complex models. For seasonal models,

the number Pi +Qi of seasonal parameters can be suitably taken into account in Formula 25.

A detailed description of the steps is reported in [21, 22]. Preliminarily, the number of differences di is

determined using repeated applications of the KPSS second-order stationarity test [29]. Then, the general

specification (see Formula 24) can be restricted to non-seasonal models, in which mi = 1 for each geosensor

and there is the following implied standard ARIMA model:

ϕi(B)∇di ỹ(ki, t) = ci + ϑi(B)ε(ki, t), (26)

with ϕ(B) = Φ(B)φ(B) and ϑ(B) = θ(B)Θ(B). Subsequently, the seasonal period mi is estimated and

the algorithm is re-run to select an appropriate seasonal model order. In both cases, the selected model

is used to produce forecasts. We distinguish between these two model search strategies (involving either

non-seasonal or seasonal models), using auto.ARIMA and auto.ARIMAπ notations respectively.

8.4.2. sARIMA and cARIMA

Both sARIMA [38] and cARIMA [39] use a specialized spatial-aware version of auto.ARIMA. In sARIMA, the

best model for geosensor ki is selected according to a spatial-aware AICc, which is computed as the average of

22



the AICc values of geosensors located within a circle of a given radius. This allows us to account for spatial

correlation without replacing real data with aggregated ones. Similarly, cARIMA uses a spatio-temporal

clustering pattern P(C) computed for the geosensor data D(K,Y, T ). It performs the model selection using

a cluster-wise AICc value, which is computed as the average over the AICc values of geosensors grouped in

cluster C(k). Once the model order is globally determined for the cluster C(k), the model coefficients are

locally determined for each time series ỹ(ki, t), where ki ∈ C(k).
Let N (i) denote a circular neighborhood of fixed radius r of geosensor ki. Then, the spatial-aware AICc,

valid for the sARIMA algorithm, can be expressed as:

AICc⋆(i) =
AICc(i) +

∑
kj∈N (i), j 6=i w(i, j)AICc(j)

1 +
∑

kj∈N (i), j 6=i w(i, j)
, (27)

where w(i, j) is the Gaussian kernel computed with the bandwidth equal to radius r of the circular neigh-

borhood and the argument equal to the squared Euclidean distance d2ij between geosensors ki and kj :

w(i, j) =




exp

{
1

2r2Sdiss(ki, kj)
2
}

if Sdiss(ki, kj) ≤ r

0 otherwise

. (28)

The model order is determined globally within neighborhood N (i), and then a local model with the

same optimal number of parameters is fitted to the corresponding ỹ(i, t). It is possible after simple algebraic

manipulations to express Formula 27 as:

AICc⋆(i) =
AIC(i) +

∑
kj∈N (i), j 6=i w(i, j)AIC(j)

1 +
∑

kj∈N (i), j 6=i w(i, j)
+

2(pN (i) + qN (i) + uN (i) + 1)(pN (i) + qN (i) + uN (i) + 2)

T − pN (i) − qN (i) − uN (i) − 2

= Average AIC inside N (i) + common global extra-penalty imposed inside N (i). (29)

In a similar way, cARIMA determines the optimal model order cluster-wise, on the basis of the average

AICc per cluster [39], which is constant inside the cluster C(i) ∈ P(C), to which geosensor ki belongs:

AICc⋆⋆(i) =
1

|C(i)|
∑

kj∈C(i)

AIC(j) +
2(pC(i) + qC(i) + uC(i) + 1)(pC(i) + qC(i) + uC(i) + 2)

T − pC(i) − qC(i) − uC(i) − 2
. (30)

8.4.3. Local set-up of the smoothing parameter α

We adapt the local estimation method, recently presented in [52], in order to determine local values α(t).

These values are then considered in the recursive computation of a smoothed version of the temporal dis-

similarity Tdiss(ki, kj). In particular, let W(t) = {W(t, ki, kj)} be the |K|× |K| local t-stamped dissimilarity

matrix, with W(t, ki, kj) = [ỹ(ki, t)− ỹ(kj , t)]
2
. By considering the theory presented in [52], W(t) can be

dealt with as an example of a non-stationary random process indexed by discrete time steps t, for which we

assume that the following linear decomposition, W(t) = Φ(t) + N(t), holds for t = 0, 1, 2, . . . , T .

In this decomposition, Φ(t) is an unknown deterministic matrix (namely true dissimilarity matrix) of

unobserved states. This matrix changes over time to reflect long-term drifts in the differences, while N(t)

is a zero mean noise matrix. A better noise-free estimate of the true dissimilarity matrix can be obtained
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using the smoothed proximity matrix defined by Φ̂(t) = α(t)Φ̂(t − 1) + (1 − α(t))W(t), for t = 1, 2, . . . T

with Φ̂(0) = W(0)
def
= W (1), α(t) corresponding to the smoothing factor that controls the rate at which

past dissimilarities are forgotten. Therefore, for all pairs ki, kj , Φ̂(T, ki, kj) can be considered as a noise-

free version of the temporal dissimilarity Tdiss(ki, kj)
def
= Tdiss(ki, kj , T ) that we defined in Formulae 4–6.

As reported in [52], for fixed t, we can determine α(t) by minimizing the squared Frobenius norm of the

difference L(α(t)) = ‖Φ̂(t)− Φ(t)‖2F . This corresponds to computing α(t) as follows (see details in [52]):

α(t) =

|K|∑

i=1

|K|∑

j=1

Var(N(t, ki, kj))

|K|∑

i=1

|K|∑

j=1

[
(Φ̂(t− 1, ki, kj)− Φ(t, ki, kj))

2 + Var(N(t, ki, kj))
]
. (31)

Procedurally, we apply the setting described in [52] to compute Formula 31. We replace Φ(t, ki, kj) with

the spatial sample mean of W(t) and Var(N(t, ki, kj)) with the spatial sample variance of W(t), for fixed t.

8.5. Results and Discussion

In this section, we illustrate the results of the empirical evaluation performed with the data sets described

in Section 8.1. We have compared the algorithms previously described, namely cVAR, auto.ARIMA, sARIMA

and cARIMA, using a code entirely written in R (version 3.3 as of 2016–05–03).2

We start this study by analyzing the computation time spent by cVAR performing the clustering phase

and completing the synthesis of the cluster-based spatio-temporal variables. These computation times are

collected in the following three cases: α = 0.5, α globally estimated (α = est.) and α locally estimated

(α = local). The results, reported in Table 2, are organized as follows:

1. Time1 ≡ CPU time spent (in seconds) computing the spatio-temporal dissimilarity matrix and com-

plete clustering;

2. Time2 ≡ CPU time spent (in seconds) synthesizing the cluster-based spatio-temporal variables;

3. Time3 ≡ CPU time spent (in seconds) performing the Singular Value Decomposition (SVD) and

determining the principal component scores of the spatio-temporal variables.

In correspondence with the time complexity analysis reported in Section 7, the results reported in Table

2 show that the majority of the computation time is spent determining the spatio-temporal dissimilarity

matrix D, estimatng the number of groups gest and determining the clusters of geosensors. The number of

clusters has been estimated by maximizing the average Silhouette index, with g ranging between gmin = 2

and gmax = 20.3 In this evaluation, the order of the computation times is, affected by the programming

environment used. In particular, the performances are influenced by the dynamism of the language R and

2R is a functional high-level programming language for statistical computing and graphics. This language is widely used

among statisticians and data miners for developing statistical software and data analysis [41].
3For dataset MESA gmax = 19. This threshold is decided by considering that MESA includes |K| = 20 geosensors.
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Data title Phenomenon |K| Time1 Time2 Time3 Time1 Time2 Time3 Time⋆1 Time2 Time3

α = 0.5 α = est. α = local

TCEQ Wind Speed 26 1.23 0.33 0.03 1.41 0.21 0.02 0.02 0.19 0.03

Air Temperature 26 1.16 0.35 0.02 1.58 0.18 0.02 0.02 0.18 0.02

Ozone Concentration 26 1.29 0.33 0.02 1.68 0.21 0.02 0.01 0.19 0.02

MESA NOx Concentration 20 0.71 0.15 0.02 0.87 0.15 0.01 0.02 0.17 0.02

NREL Wind Speed 1326 2830.34 50.05 0.62 3346.66 48.33 0.61 38.68 50.52 0.58

SAC Air Temperature 900 1298.63 19.99 0.40 1538.15 20.34 0.40 10.81 19.18 0.40

NREL/NSRDB Global Solar Radiation 1071 1796.13 16.91 0.40 1947.90 16.93 0.46 25.51 13.95 0.39

Direct Solar Radiation 1071 1788.12 17.19 0.42 1894.03 16.83 0.44 26.45 13.38 0.45

Diffuse Solar Radiation 1071 1784.35 16.83 0.47 1888.24 17.40 0.44 27.40 16.99 0.39

NCDC Air Temperature 72 8.12 0.14 0.03 9.37 0.12 0.03 0.04 0.16 0.03

Precipation 72 8.45 0.12 0.03 9.35 0.11 0.03 0.05 0.58 0.04

Solar Energy 72 8.53 0.12 0.03 9.43 0.15 0.03 0.05 0.20 0.03

Table 2: Time1 ≡ CPU time (in seconds) spent computing the spatio-temporal dissimilarity matrix and complete clustering;

Time2 ≡ CPU time (in seconds) spent synthesizing the cluster-based spatio-temporal variables (see Section 5); Time3 ≡ CPU

time (in seconds) spent performing the Singular Value Decomposition (SVD) and determining the principal component scores

of the spatio-temporal variables. The results describe the performances with α = 0.5, α globally estimated (α = est.) and α

locally estimated (α = local), respectively. We observe that: Time⋆1 measures the CPU time (in seconds) spent performing the

clustering phase only. The local set-up of the smoothing parameter α has been performed using a code written in Java. Hence,

the time spent computing the noise-free temporal dissimilarity is not directly comparable.

the mechanism of lazy evaluation of the functions [50]. On the other hand, the computation time of the

SVD can be considered almost irrelevant in this analysis. In fact, in this case R only acts as a wrapper

that manages the results obtained using low-level LAPACK libraries written in Fortran. In any case, these

considerations may become less relevant when accounting for the fact that the computation described in

Table 2 is done only once and for all geosensors in the network.

We proceed in this study by analyzing the forecasting errors achieved for the testing sets. These results

are shown in Table 3. In accordance with the setting introduced in Section 8.4, we distinguish all the

model search strategies that we have discussed so far, according to whether the search space does not

contain (resp.: contains) periodic components. For example, cVAR and cVARπ denote, respectively, a search

strategy based on a model not including (resp.: including) seasonal dummy variables. In any case, periodic

components are dealt with properly according to the model involved (for example, cARIMAπ runs over the

space of seasonal ARIMA models). If the periodic components are included in the model, their periodicity is

estimated a-priori by resorting to the procedure adopted in auto.ARIMAπ. Except for auto.ARIMA, the results

reported in this study are all achieved with the periodic components included in the model search. This

decision is motivated by the observation that the models computed by cVARπ, sARIMAπ and cARIMAπ have

systematically yielded more accurate forecasts than the models computed without the periodic components.

Therefore, for simplicity, we have avoided reporting the results performed by cVAR, sARIMA and cARIMA.

In accordance with the introduced notation, let θ be a generic parameter that conditions the order of
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Average RMSE

Data title Phenomenon auto.ARIMA auto.ARIMAπ sARIMAπ cARIMAπ cARIMAπ cARIMAπ cVARπ cVARπ cVARπ

α = 0.05 α = est. α = local α = 0.05 α = est. α = local

TCEQ Wind Speed 0.32 0.31 0.34 0.36 0.36 0.36 0.32 0.32 0.32

Air Temperature 0.48 0.41 0.40 0.36 0.36 0.36 0.22 0.22 0.21

Ozone Concentration 0.69 0.58 0.58 0.65 0.64 0.65 0.53 0.54 0.54

MESA NOx Concentration 0.21 0.18 0.18 0.20 0.21 0.21 0.27 0.27 0.27

NREL Wind Speed 0.39 0.39 0.41 0.41 0.40 0.41 0.44 0.43 0.42

SAC Air Temperature 0.20 0.21 0.16 0.20 0.20 0.20 0.15 0.15 0.15

NREL/NSRDB Global Solar Radiation 0.34 0.26 0.35 0.42 0.35 0.62 0.17 0.17 0.17

Direct Solar Radiation 0.51 0.45 0.52 0.55 0.58 0.55 0.45 0.45 0.45

Diffuse Solar Radiation 0.47 0.43 0.48 0.45 0.47 0.46 0.30 0.30 0.30

NCDC Air Temperature 0.19 0.24 0.19 0.16 0.21 0.28 0.12 0.12 0.12

Precipation 0.26 0.26 0.27 0.26 0.26 0.26 0.28 0.29 0.27

Solar Energy 0.19 0.22 0.16 0.15 0.23 0.19 0.37 0.14 0.13

Overall Mean 0.35 0.33 0.34 0.35 0.36 0.38 0.30 0.28 0.28

Overall Median 0.33 0.29 0.34 0.36 0.36 0.36 0.29 0.28 0.27

Table 3: Twelve data sets collected via six geosensor networks (see details in Section 8.1). Average RMSE ≡ Forecasting root

mean-square errors averaged per geosensor. The lowest errors are in bold.

the considered model. Then, θmax denotes the maximum achievable order, so that the model search phase

explores candidate models having order θ ranging between 1 and θmax. For example, pmax may denote the

maximum order of the auto-regressive part of an ARIMA model, as well as the maximum order of a VAR

model. In the experimental setting considered in this study, the following assignments have been used:4

• auto.ARIMA: pmax = 5, qmax = 5, dmax = 2;

• auto.ARIMAπ: pmax = 5, qmax = 5, dmax = 2, Pmax = 2, Qmax = 2;

• sARIMAπ: pmax = 5, qmax = 5, dmax = 2, Pmax = 2, Qmax = 2. The radius of the Gaussian

kernel (28) is the maximum Euclidean distance between each pair of nearest geosensors, that is,

r = max
i∈K

min
j∈K−{i}

Sdiss(ki, kj);

• cARIMAπ: pmax = 5, qmax = 5, dmax = 2, Pmax = 2, Qmax = 2;

• cVARπ : pmax = 5 (periodic components are introduced via centered dummy variables).

We can observe that cVARπ yields the lowest overall mean RMSEs (overall mean = 0.28 for α = est.,

overall mean = 0.28 for α = local; see Table 3 and the comparison of box plot distributions in Figure

5). We have also investigated the effectiveness of our idea of learning the forecasting model after retaining

the principal components that explain only 95% of the constructed cluster-coupled spatio-temporal time

series. In all considered data sets, the forecasting accuracy achieved by the model with de-noised inputs

4Parameter assignments are consistent with the default set-ups used in R to determine both ARIMA and VAR models.
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Figure 5: Box plot distributions of the average forecasting accuracies of the algorithms compared in this study. The line that

divides the box into two parts indicates the 2nd quartile (overall median RMSE). The overall mean RMSEs are shown in Table

3

(s′ < s) is higher than the accuracy achieved by the ‘full’ model (s′ = s = 6, no de-noising threshold).

In particular, the greatest accuracy gain is achieved on data set NREL/Wind Speed, where the following

forecasting accuracies have been produced without de-noising the principal components (i.e. with s′ = s = 6

in Formula 21): RMSE = 0.58 with α = 0.5; RMSE = 0.46 with α = est.; RMSE = 0.43 with α = local.

The statistical significance of the results shown in Table 3 is assessed by using a suitable statistical

method, in order to test the differences between more than two related samples. We use the Quade non-

parametric test, that is an extension of the Wilcoxon signed-ranks test, in order to overcome the limitations

of traditional repeated-measure parametric analysis of variance (ANOVA; [9]). Although the Quade test is

less well-known than the more traditional Friedman test, it has more assumptions than the latter, so it is

also more powerful [34]. The null hypothesis H0 is that the compared algorithms have identical forecasting

errors. The hypothesis Ha is that at least one algorithm is different from at least one other algorithm. In

this study, the null hypothesis is rejected with p < 0.01 (test statistic: Q = 4.3187, with 8 and 88 degrees of

freedom).

Since the null hypothesis is rejected, we proceed with post-hoc tests for the pairwise comparisons of the

forecasting errors [11]. A post-hoc test following a significant Quade test is described in the literature [36].

The results are shown in Table 4, in which p-values are adjusted with the Benjamini-Hockberg procedure,

to control the Type I family-wise error rate for all the [ℓ(ℓ − 1)]/2 hypothesis (with ℓ = 9) at level 0.05 [6].

The reported p-values show that cVARπ, with either globally or locally estimated α, is significantly more

accurate than all the other algorithms. Similarly, cVARπ with α = 0.5 is significantly more accurate than

other algorithms, except for auto.ARIMAπ and cARIMAπ. However, the latter result can be caused by the
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auto.ARIMA auto.ARIMAπ sARIMAπ cARIMAπ cARIMAπ cARIMAπ cVARπ cVARπ

(α = 0.5) (α = est.) (α = local) (α = 0.5) (α = est.)

auto.ARIMAπ 0.34

sARIMAπ 0.64 0.64

cARIMAπ(α = 0.5) 0.55 0.73 0.85

cARIMAπ(α = est.) 0.73 0.19 0.42 0.33

cARIMAπ(α = local) 0.64 0.13 0.33 0.26 0.85

cVARπ(α = 0.5) 0.01 0.14 0.04 0.06 <0.01 <0.01

cVARπ(α = est.) <0.01 0.02 <0.01 0.01 <0.01 <0.01 0.48

cVARπ(α = local) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.27 0.72

Table 4: The lower triangle of the matrix that contains the p-values of the pairwise comparisons of average forecasting accuracies

of the nine algorithms compared in this paper. The reported p-values are adjusted with the Benjamini-Hockberg procedure, in

order to control the Type I family-wise error rate (at level 0.05).

weak performance achieved with the dataset NCDC-Solar Energy. We will provide a detailed discussion of the

results achieved with this dataset in the following. Finally, this statistical analysis shows that auto.ARIMA,

auto.ARIMAπ, sARIMAπ and cARIMAπ, whatever α is estimated, can be considered substantially equivalent.

As shown by the empirical results, the performance of cVAR degenerates if the phenomenon analyzed

has an erratic time course, that is reminiscent of the dynamic behavior of a random walk (see, for example,

the trend of wind speed measurements, plotted in Figure 4 for a subset of geosensors). In this case, the

univariate algorithms generally achieve the highest performances, because they can account for the non-

stationarity of the phenomenon (see the discussion in Section 6.1). Conversely, the proposed multivariate

algorithm achieves the highest performances when the analyzed phenomenon is characterized by a number

of patterns, which can be different to fit non-stationary data, but are globally stable over time. An example

is the temporal pattern exhibited by the temperature measurements plotted in Figure 4 for a subset of

geosensors. In fact, we can note that this field exhibits a set of non-stationary waveforms with variable

amplitude. However, the spatio-temporal dissimilarity computed between these series is able to capture a

global pattern, due to the mechanism implied in the calculation of Tdiss(ki, kj) (see Formulae 4-6). In this

case, the clustering algorithm is able to partition geosensors according to their overall pattern, in such a

way that the intra-cluster data variability is significantly lower than the global variability.

In particular, when the clustering goal is achieved, the cluster-based variables are informative of the

real autocorrelation property of the geosensor data. In contrast, when data exhibit an erratic behavior,

the temporal part of the dissimilarity computation does not provide any substantial contribution to the

measure of the spatio-temporal dissimilarity (see Formula 1). Thus, the discovered clusters can be a spurious

aggregation of close geosensors, which are inappropriate representatives of the autocorrelation property. In

this case, it is possible that the cluster-based variables, which are injected into the VAR model (see Formula

17) over-fit data rather than improve the accuracy of the forecasting model.

Further considerations concern parameter α. In fact, in the majority of data sets, the forecasting accuracy
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Data title Phenomenon |K| gest Sil gest Sil gest Sil Rand RandA Rand RandA Rand RandA

α = 0.5 α = est. α = local 0.5–est. 0.5–local est.–local

TCEQ Wind Speed 26 4 0.52 4 0.51 4 0.72 1.00 1.00 1.00 1.00 1.00 1.00

Air Temperature 26 4 0.56 4 0.58 4 0.77 1.00 1.00 0.94 0.87 0.94 0.87

Ozone Concentration 26 4 0.48 6 0.52 4 0.69 0.84 0.64 0.95 0.89 0.85 0.59

MESA NOx Concentration 20 4 0.38 5 0.34 5 0.53 0.95 1.00 0.95 1.00 1.00 1.00

NREL Wind Speed 1326 4 0.37 4 0.37 3 0.54 0.94 0.84 0.74 0.84 0.75 0.40

SAC Air Temperature 900 2 0.50 2 0.50 2 0.69 0.94 0.89 0.94 0.87 0.99 0.98

NREL/NSRDB Global Solar Radiation 1071 3 0.40 3 0.40 3 0.58 0.99 0.97 1.00 0.99 0.98 0.96

Direct Solar Radiation 1071 3 0.39 3 0.37 3 0.57 0.93 0.84 1.00 1.00 0.93 0.84

Diffuse Solar Radiation 1071 3 0.40 3 0.39 3 0.58 0.95 0.90 1.00 1.00 0.96 0.90

NCDC Air Temperature 72 6 0.42 2 0.39 2 0.57 0.63 0.27 0.61 0.22 0.82 0.64

Precipation 72 2 0.36 2 0.34 12 0.53 0.97 0.94 0.57 0.57 0.57 0.57

Solar Energy 72 2 0.39 3 0.38 20 0.56 0.85 0.95 0.54 0.62 0.65 0.65

Table 5: Twelve data sets collected via six geosensor networks (see details in Section 8.1). Legend: |K| ≡ Number of geosensors;

gest ≡ Estimated number of clusters; Sil ≡ Average Silhouette width of the discovered cluster pattern (Formula 10); Rand:

Rand index to compare the two different clustering outcomes (α = 0.5 vs. α = est., α = 0.5 vs. α = local, α = est. vs.

α = local). The index gives a value between 0 and 1, where 1 means that the two clustering outcomes match identically [19];

RandA: Adjusted Rand index, taking into account that random chance will cause some objects to occupy the same clusters.

Figure 6: Clustering pattern discovered by cVARπ, dataset NREL, field ‘Wind Speed’. (Left) α = 0.5. (Right) α is empirically

estimated according to the procedure described in Section 4.2. The Rand indices and Adjusted Rand indices of the three

clustering outcomes are respectively: (0.94, 0.84) for α = 0.5 vs. α = est.; (0.74, 0.84) for α = 0.5 vs. α = local; (0.75, 0.40) for

α = est. vs. α = local (see also Table 5).

is not greatly conditioned by the way α is determined. When we compare the results of clustering achieved

by changing the way α is determined, we can observe that, if the processed data sets (e.g. NREL for which

|K| = 1326) originate from networks with a high number of stations, densely distributed in the sensed area,

the majority of differences in the cluster configurations are along the boundaries of the partitions obtained.

An example of this phenomenon is shown in Figure 6, that plots clusters discovered from data set NREL

with α = 0.5, α = est. and α = local, respectively. Using both Rand Index and Adjusted Rand Index, we

observe a moderate to high degree of similarity between the three clustering outcomes (see Table 5), except

for NCDC-Air Temperature data set. In any case, the forecasting accuracy (measured in terms of average
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RMSE, Table 3) does not change greatly, despite these differences observed in the cluster boundaries. The

selection of α is critical only for data set NCDC-Solar Energy (average RMSE = 0.37 for α = 0.5, average

RMSE = 0.14 for α = est., average RMSE = 0.13 for α = local, see Table 3 again). However, this data set

originates from a network characterized by a relatively low number of stations (|K| = 72).

This phenomenon can be explained by analyzing the curve of the average Silhouette index constructed

during the clustering phase, by varying the candidate number of cluster g between gmin = 2 and gmax = 20,

in order to output gest (Figure 7). In particular, we observe that the average Silhouette index curve,

constructed with α = 0.5, achieves two close local peaks (local maximum points) in correspondence with

g = 2 and g = 6. The final choice gest = 2 is a numerical decision (as, in this point, the curve achieves

the global maximum). However, the clustering pattern discovered with α = 0.5 (two clusters, Figure 7)

has a lower capability of constructing cluster-based variables that model the autocorrelation information

appropriately, compared to the clustering pattern discovered with either locally estimated (three clusters,

Figure 7) or globally estimated α (twenty clusters, with a competing local minimum at g = 7, Figure 7). In

these cases, a valid solution may be to decide the value of α on the basis of the accuracy of the forecasts

yielded on a validation set. In other words, after having discretized α in a suitable way in the range of ]0, 1[,

we will choose that value which will obtain the lowest average RMSE in the validation set. This strategy can

be easily applied in datasets, like NCDC, which are generated by a small network. In fact, in these cases,

the entire procedure for determining the final clustering pattern is not particularly demanding in terms of

CPU time - see the value of Time1 in Table2.

We complete this study, by comparing the computation times of the forecasting phase of the compared

algorithms. Table 6 collects the following measure:

• Time4 ≡ CPU time spent (in seconds) determining the model order, estimating the final model and

computing the optimal linear forecasts.

The amountTime4 coincides with the total time of the calculation performed by auto.ARIMA, auto.ARIMAπ

and sARIMAπ. In contrast, the total time of the calculation performed by cARIMAπ is Time1+Time4, while

the total time of the calculation performed by cVARπ is Time1 + Time2 + Time3 + Time4.

The results show that sARIMAπ is particularly inefficient. Its final complexity depends on the number

of geosensors in the network, as well as on the average number of geosensors that fall into every circular

neighborhood. In the presence of spatially dense networks, such as NREL, the size of every neighborhood can

be particularly large. In contrast, the computational complexity of auto.ARIMA and auto.ARIMAπ depends

largely on the time spent in the search for the optimal model. Although this search has been simplified, due

to a suitable step-wise procedure for traversing the model space [22], it still must explore a two-dimensional

space by taking into account the order of both the auto-regressive and the moving average part. In the

case of cARIMAπ, this bottleneck is less relevant, as the search procedure is repeated for a limited number

of times, that is, for each cluster of the geosensor partition induced by P(C). Similar considerations can be

formulated for cVARπ. In this case, the complexity of the forecasting phase is further simplified by the fact
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Figure 7: Average Silhouette index curve and clustering pattern discovered by cVARπ, NREL dataset, ‘Solar Energy’ phe-

nomenon. (Left) α = 0.5. (Middle) globally estimated α, see Section 4.2. (Right) locally estimated α, see Section 8.4.3

Time4

Data title Phenomenon auto.ARIMA auto.ARIMAπ sARIMAπ cARIMAπ cARIMAπ cARIMAπ cVARπ cVARπ cVARπ

α = 0.05 α = est. α = local α = 0.05 α = est. α = local

TCEQ Wind Speed 10.82 40.95 70.12 11.46 10.15 10.13 1.45 1.45 1.92

Air Temperature 16.11 75.90 25.52 4.00 3.83 4.24 1.75 1.47 1.46

Ozone Concentration 10.87 90.91 42.64 4.42 10.23 4.21 1.57 1.42 2.30

MESA NOx Concentration 11.55 126.72 56.47 8.46 6.86 7.09 1.06 1.56 0.94

NREL Wind Speed 280.40 718.30 7049.24 108.72 153.29 207.94 47.90 47.96 55.70

SAC Air Temperature 288.70 528.25 322.17 42.05 38.48 38.30 28.57 28.09 29.15

NREL/NSRDB Global Solar Radiation 296.28 610.59 380.75 179.93 169.66 283.62 47.71 50.88 50.16

Direct Solar Radiation 221.44 447.69 241.17 91.86 99.45 88.06 69.01 83.57 54.73

Diffuse Solar Radiation 244.02 370.44 282.74 145.88 103.36 110.86 36.31 35.57 36.58

NCDC Air Temperature 24.36 39.72 687.53 26.20 244.81 31.12 1.92 2.88 1.90

Precipation 8.99 13.93 219.14 25.04 23.37 13.21 2.02 2.18 2.15

Solar Energy 20.95 38.77 1195.31 211.69 64.81 48.54 2.10 2.16 2.00

Table 6: Twelve data sets collected via six geosensor networks (see details in Section 8.1). Legend: Time4 ≡ CPU time (in

seconds) spent determining the model order, estimating the final model and computing the optimal linear forecasts.

that the search space is performed per cluster and is one-dimensional (as it concerns only the auto-regressive

part). This peculiarity makes cVARπ more efficient than its competitors. In fact, in some cases, the quantity
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Time4 is two orders of magnitude lower for cVARπ than for its competitors.

9. Conclusion and future work

This paper describes a new algorithm, called cVAR, that combines multiple time series analysis and

cluster analysis, in order to enhance the accuracy of forecasts. New variables are computed through spatio-

temporal clusters and principal component analysis, in order to summarize the dynamic structure of spatial

correlation over time. In this way, the knowledge of a time series measured by a specific geosensor is enriched

with the spatial-aware time series calculated for new cluster-based variables. A stationary VAR model is used,

in order to analyze the dynamic structure of this system of variables and apply this as a forecasting model

of geosensor data. The empirical evaluation investigates the viability of the proposed algorithm in different

real-world forecasting applications. We compared cVAR to the baseline univariate algorithm auto.ARIMA,

which neglects spatial structure of data, as well as spatial-aware competitors sARIMA and cARIMA. The

results show that cVAR yields, under well-defined conditions, more accurate forecasts than the univariate

competitors. The proposed algorithm has clear advantages (in terms of predictive accuracy) when it is

applied to geo-physical phenomena which exhibit patterns that are stable in time, possibly non-stationary,

but characterized by a common evolution, once the geosensors used for sensing the data have been properly

partitioned into clusters. In this case, the defined cluster-based spatio-temporal variables are effectively

informative of the autocorrelation property across every given cluster of the determined partition. The

intra-cluster variability is reduced by comparing it to the total, while the accuracy of the forecasts benefits

from accounting for autocorrelation in the modeling phase. This behavior was observed for several cyclical

natural phenomena described (in particular, temperature and solar radiation).

These considerations cannot be applied to phenomena (such as wind speed) which have a non-stationary

form, due to their unpredictable random behavior. Globally, they behave as a multivariate random walk.

In this case, it is very difficult to remove the non-stationarity in a suitable manner, while clusters may be

spurious aggregations of geosensors (without any link to a global pattern in the clustering). Under these

conditions, it may happen that the accuracy of the presented forecasting algorithm does not outperform

that of standard univariate algorithms, which incorporate geosensor-wise mechanisms to remove the non-

stationarity of sensed data. VECM models are linear parametric models that can be used to deal with

non-stationary data in multivariate models. However, in our opinion, as discussed in Section 6.1, they are

not particularly suitable for automatic forecasting of the majority of geophysical variables sensed through

geosensor networks. An alternative is to relax the restrictions imposed by the parametric models, focusing

attention on algorithms based on intrinsically non-parametric models. Following this premise, we plan to

extend our analysis by considering non-parametric alternatives to stationary cVAR models, which go beyond

the limitations suffered by such models, without losing the interpretability of the results. One promising

alternative is Multivariate Singular Spectrum Analysis (MSSA, [17]), which is a non-parametric time series

decomposition technique in a small set of easily interpretable components. The only restriction is that
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MSSA can be applied in forecasting time series that, at least approximately, satisfy a certain recurrent

linear formula. Apart from this, one of its advantages is that it can be used without making any assumption

such as the stationarity and Gaussianity of the data (which are the pillars of inference in VAR models [28]).

As mentioned in Section 4.4, a further difficulty arises from the fact that a bias in determining the right

number of clusters can occur if internal measures of clustering quality are used. As we are dealing with time

series forecasting, a natural external criterion would consist in choosing the number of clusters to minimize

the 1-step forecast error on the training set. This approach is likely to have a negative impact on the global

computational complexity, although we intend to investigate it in future work because of its potentially

positive impact on forecasting quality.

Another interesting research task will consist in quantifying the impact of using the same weight between

spatial distance (Sdiss) and temporal dissimilarity (Tdiss) in defining diss in Formula 1. Also in this case, the

relative weight of these two control factors can be adjusted so as to minimize the global forecasting error.
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