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We provide a basic introduction to discrete-variable, rotor, and continuous-variable quantum
phase spaces, explaining how the latter two can be understood as limiting cases of the first. We
extend the limit-taking procedures used to travel between phase spaces to a general class of Hamil-
tonians (including many local stabilizer codes) and provide six examples: the Harper equation,
the Baxter parafermionic spin chain, the Rabi model, the Kitaev toric code, the Haah cubic code
(which we generalize to qudits), and the Kitaev honeycomb model. We obtain continuous-variable
generalizations of all models, some of which are novel. The Baxter model is mapped to a chain of
coupled oscillators and the Rabi model to the optomechanical radiation pressure Hamiltonian. The
procedures also yield rotor versions of all models, five of which are novel many-body extensions of
the almost Mathieu equation. The toric and cubic codes are mapped to lattice models of rotors,
with the toric code case related to U(1) lattice gauge theory.
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I. INTRODUCTION

Continuous-variable (cv) limits of discrete-variable (dv) systems, if done carefully, can yield new models which
are both interesting and helpful in illuminating low-energy properties of the original dv systems. A physical
example comes from spin-wave theory, where the Hamiltonian of interacting spins S is expanded in the limit of
small quantum fluctuations (S ≫ 1) using the Holstein-Primakoff mapping [1]. Another type of limit involves
thinking of each dv system not as a spin, but as a finite quantum system [2] of dimension N = 2S + 1 (in quantum
information, a quN it) whose conjugate variables, position and momentum, are bounded and discrete. This dv → cv
limit then involves making both variables continuous and unbounded. A less-used version makes one of the variables
continuous and periodic (i.e., an angle) and the other an integer, resulting in the phase space of a rotor (dv → rot;
see Table I for all three phase spaces). While these limits deal with the underlying phase space of a dv system, it
is not always clear when and how to apply them to specific dv Hamiltonians, particularly in composite scenarios
(e.g., the Jaynes Cummings model) consisting of both dv and cv components. We attempt to address these issues
by outlining general and straightforward limit-taking procedures and applying them to obtain known and new dv,
rot, and cv extensions of six well-known models from condensed-matter physics and quantum computation (see
Table II).

In Sec. II, we provide a basic introduction of the three aforementioned phase spaces (dv, rot, and cv) such
that the latter two can be thought of as limits of the former. In turn, dv phase space can be understood as
a discretization of cv phase space in terms of fixed position and momentum increments δx and δp (similar to
a computer approximating differential equations with difference equations). Section III outlines all limit-taking
procedures, with comments on when dv → cv can be a valid low-energy approximation of a dv Hamiltonian. We
warm up with a known and exactly-solvable example of all limit-taking procedures — the harmonic oscillator AKA
the Harper equation — in Sec. IV. In Sec. V, we study a many-body coupled-oscillator example — the Baxter ZN
parafermionic spin chain. In Sec. VI, we introduce the Rabi model, show that its N -state extension has a dihedral
symmetry, and provide its analogues in all three phase spaces. We continue with deriving the cv toric code model
from the dv one while introducing novel rotor toric code extensions in Sec. VII. In Sec. VIII, we develop dv,
rot, and cv extensions of the Haah cubic code. The Kitaev honeycomb model is generalized in Sec. IX. A final
discussion is given in Sec. X.
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2 II CLASSICAL AND QUANTUM PHASE SPACES
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Phase space (s,m) ∈ ZN × ZN (eiθ,N) ∈ T × Z (x, p) ∈ R ×R

Weyl relation e−i
2π
N
mmmei

2π
N
sssei

2π
N
mmme−i

2π
N
sss
= e−i

2π
N e−iNNNeiθθθeiNNNe−iθθθ = e−i e−ipppeixxxeipppe−ixxx = e−i~

CCR “ [sss,mmm] = i
N

2π
” “ [θθθ,NNN] = i ” [xxx,ppp] = i~

Fourier Discrete Fourier transform Fourier series Fourier transform

“Bases” G (sss) ∣s⟩ = G (s) ∣s⟩ K(θθθ)∣θ⟩ =K (θ) ∣θ⟩ xxx∣x⟩ = x∣x⟩
G (mmm) ∣m⟩ = G (m) ∣m⟩ NNN ∣N⟩ = N ∣N⟩ ppp∣p⟩ = p∣p⟩

Translations e−i
2π
N
Mmmm

∣s⟩ = ∣s +M⟩ e−iϑNNN ∣θ⟩ = ∣θ + ϑ⟩ e−iξppp∣x⟩ = ∣x + ξ⟩

ei
2π
N
Msss

∣m⟩ = ∣m +M⟩ eiMθθθ
∣N⟩ = ∣N +M⟩ eiξxxx∣p⟩ = ∣p + ξ⟩

Character ⟨s∣m⟩ = 1
√

N
ei

2π
N
sm

⟨θ∣N⟩ = 1
√

2π
eiθN ⟨x∣p⟩ = 1

√

2π
eixp

Relationship
between bases

∣m⟩ = 1
√

N
∑
s∈ZN

ei
2π
N
sm

∣s⟩ ∣N⟩ = 1
√

2π∫

π

−π
dθeiθN ∣θ⟩ ∣p⟩ = 1

√

2π∫

∞

−∞

dxeixp∣x⟩

∣s⟩ = 1
√

N
∑

m∈ZN
e−i

2π
N
sm

∣m⟩ ∣θ⟩ = 1
√

2π
∑
N∈Z

e−iθN ∣N⟩ ∣x⟩ = 1
√

2π∫

∞

−∞

dpe−ixp∣p⟩

Completeness ∑
s∈ZN

∣s⟩⟨s∣ = ∑
m∈ZN

∣m⟩⟨m∣ = 1 ∑
N∈Z

∣N⟩⟨N ∣ = ∫

π

−π

dθ

2π
∣θ⟩⟨θ∣ = 1 ∫

∞

−∞

dx∣x⟩⟨x∣ = ∫
∞

−∞

dp∣p⟩⟨p∣ = 1

Orthonormality ∑
s∈ZN

ei
2π
N
(m−m′)s

N
= δm,m′ ∫

π

−π

dθ

2π
ei
(N−N ′)θ

= δN,N ′ ∫

∞

−∞

dx

2π
ei
(p−p′)x

= δ (p − p′)

∑
m∈ZN

ei
2π
N
(s−s′)m

N
= δs,s′ ∑

N∈Z

ei(θ−θ
′
)N

2π
= δ (θ − θ′) ∫

∞

−∞

dp

2π
ei
(x−x′)p

= δ (x − x′)

Table I. Comparison and summary of relations between conjugate variables in dv-, rot-, and cv-type phase spaces. Most
physically relevant phase spaces consist of combinations of these three. An extension of the present analysis can be performed
for any (locally compact) Abelian group [3] and for (compact) non-Abelian groups [4] (if one is willing to allow commutators
to be non-trivial operators, thereby dropping the notion of a phase space). The (Abelian) groups involved here are ZN =

{− ⌊N /2⌋ ,⋯, ⌊(N − 1)/2⌋}, the circle group T = {eiθ ∣ θ ∈ [−π,π[}, the integers Z, and the reals R. The variables M ∈ Z,
ϑ ∈ [−π,π[, and ξ ∈ R. In order to respect the domains of their respective conjugate variables, the functionals G and K are
respectively N - and 2π-periodic in their arguments. The canonical commutation relations (CCR’s) in quotes are incorrect
due to not preserving domains, but nevertheless give the right physical intuition. The label “Bases” is in quotes because ∣θ⟩,
∣x⟩, and ∣p⟩ are not normalizable. See related tables in Refs. [3, 5].

II. CLASSICAL AND QUANTUM PHASE SPACES

A. Classical phase space

In classical physics, the phase space of a physical system with one degree of freedom is a two-dimensional manifold
spanned by two infinitesimal translation generators, Tdx and Tdp, acting on the conjugate variables position and
momentum, respectively. These translation operators commute,

TdxTdpT
−1
dx T

−1
dp = Id . (1)

Starting with the system located at an origin point, it is possible to reach a unique state in which the system is
located at a well-defined phase space point (x, p) using a sequence of elementary translations. The infinitesimal
circuit associated with the sequence of translations from Eq. (1) defines a surface element of phase space (see Fig.
1). Any observable over phase space f (x, p) evolves in time according to Hamilton’s equation, written here as

df = {H,f}dt , (2)
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x

p

dx
dp -dp

-dx

Figure 1. In phase space, four elementary translations along position and momentum define a closed circuit, here oriented
clockwise, and its corresponding enclosed area, represented here in grey. Quantum physics associates a phase factor to an
area in phase space, measured in units of Planck’s constant.

where the Poisson bracket of two functions A (x, p) and B (x, p) of phase space is given by the exterior product

{A,B} = ∂A
∂x

∂B

∂p
− ∂A
∂p

∂B

∂x
(3)

and H (x, p) is the Hamiltonian function characterizing the dynamics of system. Note that the Hamiltonian does
not set the nature of the degree of freedom itself, which is set by the topology of phase space. For instance, the
phase space of a 1-D massive particle evolving in an x2 potential (ideal harmonic oscillator) is a flat plane whereas
the phase space of a rigid pendulum or a rotor is an infinite cylinder. While various phase spaces are used in classical
mechanics (depending on constraints one puts on a particle’s motion), there are only a few canonical topologies in
quantum mechanics that meaningfully extend the classical notion of conjugate variables.

In order to be sufficiently general in our quantum mechanical treatment, instead of considering from the beginning
a continuous phase space with infinitesimal generators Tdx and Tdp, we are going to introduce finite translation
operators Tδx and Tδp and consider a topology of phase space where

(Tδx)N = (Tδp)N = Id , (4)

where N is a positive integer. Eventually, we will take the limits δx → 0 , δp → 0 and N →∞ in varying ways.
We thus consider that our 1-D degree of freedom, instead of evolving continuously, hops from site to site, the set
of sites forming a ring graph shown in Fig. 2(a). The position variable s denotes the site index and is thus an
integer modulo N , the total number of sites along the ring. If hopping between two sites takes the same universal
amount of time, phase space is fully discrete, and the momentum m also belongs to the set of integers modulo N .
Because of periodic boundary conditions for both position and momentum, as indicated by the set of black and
white arrows in Fig. 2(b), phase space has the topology of a torus.

B. Quantum phase space

In quantum physics, two conjugate translation generators do not commute, and one can categorize all possible
relations into three cases:

TδxTδpT
−1
δx T

−1
δp → Cδx,δp ∶= e−i

δxppp
~ ei

δpxxx
~ ei

δxppp
~ e−i

δpxxx
~ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

e−i
δxδp

~

operator not-commuting with translations
. (5)

The first case is obviously classical phase space. The second corresponds to a quantum phase space associated with
a pair of Abelian groups of conjugate translations, typical of oscillators and rotors. The third case corresponds to
spaces associated with non-Abelian groups, such as the SU(2) group associated with a spin S (we discuss later
how the S = 1/2 representation does produce the second case for particular δx, δp). In the following, we focus on
the second case, that of a circuit in phase space producing a phase factor proportional to the area enclosed by the
circuit, considering different limits for the step sizes δx and δp and the period N . While we adhere to the definition
of quantum phase space which corresponds only to the second case [3], we note that some of the properties we
mention can also be extended to the third case [4].

Let us explore in detail the second case. Using Eqs. (4-5) to simplify TNδxT
N
δpT

−N
δx T −Nδp , we can see that

(Cδx,δp)N = Id . (6)
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=

Figure 2. (a) The dv phase space can be thought of as consisting of a degree of freedom hopping from site to site. The
set of sites forms a ring. The position variable s is a site index and is thus an integer modulo N , the number of sites along
the ring. (b) If hopping between two sites takes the universal same amount of time, phase space is fully discrete, with
the momentum m belonging also to the set of integers modulo N . Both position and momentum have periodic boundary
conditions, as indicated by the set of black and white arrows, and thus phase space has the topology of a torus.

Since Cδx,δp commutes with every operator in the algebra associated with the translations, we can represent it as

Cδx,δp → e−i
2π
N . (7)

In our limit-taking procedures, the parameters δx, δp and N do not vary independently, and we impose

2π

N = δxδp
~

. (8)

In other words, Cδx,δp → e−i
δxδp

~ , which corresponds to an elementary circuit in phase space accumulating a phase
shift given by the encircled area divided by Planck’s constant, in similarity with Bohr’s old trajectory quantification
rule.

Representing finite translations by exponentiation of translation generators (which we denote in bold),

Tδx → e+i
δxppp
~ (9a)

Tδp → e−i
δpxxx
~ , (9b)

we can rewrite the Weyl relation as

ei
δpxxx
~ ei

δxppp
~ e−i

δpxxx
~ = ei δx~ (ppp−δp) = e−i

δxδp
~ ei

δxppp
~ . (10)

By naive expansion, we can recover the well-known result that the Weyl relation for the T ′s is equivalent to the
canonical commutation relation (CCR) for the corresponding generating operators

[xxx,ppp] = i~ . (11)

The generators xxx and ppp and the commutation relation above define the algebra h4 [6] (sometimes referred to as
the Heisenberg-Weyl algebra [7]), which has only infinite-dimensional representations. We will review how the
generators of motion for all common quantum-mechanical phase spaces, some of which are finite-dimensional,
nevertheless emulate h4 (see Table I, fourth row).

C. Toroidal doubly-discrete quantum phase space (dv)

In the algebra representing the translation operators, the relations (5) and (7) have important consequences. Let
us introduce the projectors Πs and Πm over respective regions of phase space s ⋅ δx and m ⋅ δp, where δx and δp are
some small intervals which can be thought of as discretizations of ordinary continuous phase space and

s,m ∈ {− ⌊N /2⌋ ,⋯, ⌊(N − 1)/2⌋} =∶ ZN . (12)

We later vary the intervals δx and δp in a way which converts the dv phase space (and its associated Hilbert space)
into the rot and cv phase spaces. We have made the ranges of s,m “two-sided”, i.e., defined them such that
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both their maximum and minimum values are functions of N , in order to properly perform said procedures. The
projectors (by definition, Πs = Π2

s and Πm = Π2
m) satisfy

TδxΠsT
−1
δx = Πs+1modN (13a)

TδpΠsT
−1
δp = Πs (13b)

TδpΠmT
−1
δp = Πm+1modN (13c)

TδxΠmT
−1
δx = Πm . (13d)

Quantum-mechanically, due to the non-commutation of conjugate translation operators, the product of projectors
on position and momentum ΠsΠm can no longer be a projector (as in the classical case). Thus, (ΠsΠm)2 ≠ ΠsΠm

since the projectors do not commute and it is not possible to identify a phase space point state with both definite
position s and momentum m. As a consequence of projections on m conflicting with projections on s, we have the
discrete Fourier relations

∣m⟩ = 1√
N
∑
s∈ZN

ei
2πsm
N ∣s⟩ and ∣s⟩ = 1√

N
∑

m∈ZN
e−i

2πms
N ∣m⟩ , (14)

where the position state vectors ∣s⟩ and momentum state vectors ∣m⟩ are defined as the eigenvectors of the projectors
with eigenvalues 0 and 1:

Πs ∣s′⟩ = δs′,s ∣s′⟩ and Πm ∣m′⟩ = δm′,m ∣m′⟩ . (15)

The projectors in the position basis and in the momentum basis both resolve the identity,

∑
s∈ZN

∣s⟩ ⟨s∣ = ∑
s∈ZN

Πs = 1 and ∑
m∈ZN

∣m⟩ ⟨m∣ = ∑
m∈ZN

Πm = 1 , (16)

and the overlap amplitude of the basis vectors is a constant,1

⟨s∣m⟩ = 1√
N
ei

2πsm
N implies ∣⟨s∣m⟩∣2 = 1

N . (17)

There are thus only N − 1 independent projectors whereas there are N 2 orthogonal observables (counting the
identity as the constant observable). Classically, there would be also N 2 orthogonal observables, but there would
be also as much as N 2−1 projectors. Thus, in quantum mechanics, the number of independent pure states is much
less than the number of properties that can be acquired from them!

Let us now introduce the conjugate variables that label states of fixed position and momentum,

sss = ∑
s∈ZN

s ∣s⟩ ⟨s∣ and mmm = ∑
m∈ZN

m ∣m⟩ ⟨m∣ , (18)

and quantify their conjugate nature. These operators label the columns and the rows of Fig. 2b, but again the non-
commutation of these operators prevents simultaneously assigning a fixed position and momentum to the points in
the corresponding classical space. The quantum or discrete Fourier transform operator going from the momentum
basis to the position basis is

FFF dv ∶= ∑
s∈ZN

∣s⟩ ⟨m = s∣ = 1√
N
∑
s∈ZN

∑
s′∈ZN

ei
2πss′

N ∣s⟩⟨s′∣ . (19)

The position and momentum operators are related by this transform via

FFF †
dvmmmFFF dv = sss and FFF †

dv sssFFF dv = −mmm. (20)

Performing the discrete Fourier transform twice yields the dv parity operator

FFF 2
dv = ∑

s∈ZN
∣−s⟩ ⟨s∣ . (21)

1 A pair of bases for which the norm of the overlap between their constituents is independent of the basis labels is called mutually
unbiased [8].
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This important operator takes sss,mmm to −sss,−mmm modulo N .
We can readily make contact with standard Fourier analysis by linking a quantum pure state ∣ψ⟩ to a function

of a discrete periodic variable ψm. Namely, writing ∣ψ⟩ using the position basis and looking at the overlap of ∣ψ⟩
with a momentum eigenstate ∣m⟩ produces the discrete Fourier series of ψm:

∣ψ⟩ = ∑
s∈ZN

ψs∣s⟩ ⇔ ψm ∶= ⟨m∣ψ⟩ = 1√
N
∑
s∈ZN

ψse
−i 2πsm

N . (22)

The same holds for the dual momentum basis.
In the position state vector basis, translations in position and in momentum are explicitly given by2

Tδx →XXX ∶= e−i 2πN mmm = ∑
s∈ZN

∣s + 1modN ⟩ ⟨s∣ (23a)

Tδp → ZZZ ∶= e+i 2πN sss = ∑
s∈ZN

e+i
2πs
N ∣s⟩ ⟨s∣ , (23b)

and such operators naturally perform displacements along the ring of sites in either position or momentum cross-
sections of phase space:3

XXX†sssXXX = (sss + 1)modN and ZZZ†mmmZZZ = (mmm + 1)modN . (24)

Strictly speaking, we cannot relate the Weyl relation

XXXZZZXXX†ZZZ† = e−i 2πN (25)

to a CCR since expanding XXX,ZZZ to first order will violate our imposed domains on sss,mmm [18]. In other words, sss,mmm
can only be inside functions that are periodic in N . However, we can depart from mathematical rigor and represent
the above Weyl relation as the CCR

“ [sss,mmm] = iN
2π

” , (26)

which is analogous to the continuous case (11). Moreover, if we express everything in terms of

xxxdv ∶= δxsss and pppdv ∶= δpmmm (27)

and use our imposed phase space area constraint (8), the translations can be expressed as XXX = e−i
δx
~ pppdv and

ZZZ = e+i δp~ xxxdv and Eq. (26) recovers the ordinary CCR “[xxxdv,pppdv] = i~” (11).
We briefly describe a Wigner function representation for dv for N being odd [2]. Recall that cv Wigner functions

can be expressed in terms of the trace of a density matrix with a certain displaced parity operator; we provide the
expression later in Eq. (40). In dv, an analogous expression is

Wdv (S,M) = 1

N
N−1

∑
s=0

⟨s∣ρDDDS,M
dv FFF 2

dvDDD
S,M†
dv ∣s⟩ = 1

N Tr{ρDDDS,M
dv FFF 2

dvDDD
S,M†
dv } , (28)

where S,M ∈ ZN , ρ is anN×N density matrix, FFF 2
dv (21) is the dv parity operator, andDDDS,M

dv ∶= e−iπSMN e+i
2πM
N

ssse−i
2πS
N
mmm

is the dv displacement operator. The Wigner function conveniently takes real values over phase space and thus
shares some of the properties of classical probability distributions, despite not always having positive values.

Properties of this dv fully discrete phase space for general N are summarized in the first column of Table I.
We have only introduced the bare-bones framework, and there are many more quantities that can be defined in
dv, including coherent states [19, 20], squeezed states [21], and quantum codes ([22]; [13], Sec. II). There are also
plenty of other ways to visualize states [23–30]. We refer the reader to Refs. [2, 31–33] for further introductory
reading.

2 These were introduced first by Sylvester in the 19th century [9] and applied to quantum mechanics by von Neumann [10], Weyl [11],
and Schwinger [12]. They have been called Schwinger bases, Weyl operators [3], Pauli operators [13], generalized spin [14] or Pauli
[15] matrices, and ’t Hooft generators or clock-and-shift matrices [16].

3 The set {ei
2πj
N e+i

2πk
N

ssse−i
2πl
N
mmm
}j,k,l∈ZN forms a group, called the Generalized Pauli Group [15], and an algebra, sometimes called

the non-commutative torus [17].



D Cylindrical singly-discrete quantum phase space (rot) 7

The N = 2 case — a spin one-half system

It is important to realize that the case N = 2 is that of the ubiquitous spin-1/2. In that case,

(Tδx)2 = 1 (29a)

(Tδp)2 = 1 (29b)

TδxTδpT
−1
δx T

−1
δp = TδxTδpTδxTδp = e−iπ1 = −1 . (29c)

Therefore, Tδx = σx and Tδp = σz. Since σx = ei
π
2 (σx−1) and same for σz, we have (modulo 2)

sss = (−1 0
0 0

) = σz − 1

2
and mmm = σx − 1

2
.

The Fourier transform corresponds to the well-known Hadamard transform and the parity operator (21) FFF 2
dv = 1

is trivial. We thus see that at the particular angle θ = π/2, the expression eiθσxeiθσze−iθσxe−iθσz does produce a
constant not equal to one — the second case in Eq. (5). This does not occur for any other values of θ. Recalling
that the generators {Sx, Sy, Sz} of the su(2) Lie algebra can be realized in a space of dimension 2S+1 given a spin S
[34], the S = 1/2 case at θ = π/2 is the only time that spin rotations {eiθSx , eiθSz} and dv translation operators {XXX,ZZZ}
coincide. Therefore, procedures involving representations of su(2) for S > 1/2, such as spin-coherent states [35], the
Holstein-Primakoff transformation, and its associated Lie-algebraic contraction (u (2) → h4; see, e.g., [6, 36, 37]),
are not directly connected to the phase space analysis discussed here for N > 2.

D. Cylindrical singly-discrete quantum phase space (rot)

We now take the limit N →∞, first considering the case where

δx = 2π

N → 0 and δp = C , (30)

invoking a universal constant C. Then we can introduce conjugate variables

θθθ ← 2π

N sss and NNN ←mmm. (31)

The operators θθθ and NNN take their eigenvalues in the set of angles (compact set of reals modulo 2π) and the set of
all integers, respectively:

θ ∈ [−π,π[ and N ∈ Z , (32)

hence the renaming of mmm into NNN .
In terms of wavefunctions, the limit as the number of points in the discretization N → ∞ is equivalent to the

standard limit in which the discrete Fourier series of a discrete periodic wavefunction ψm is transformed into the
ordinary Fourier series of a continuous periodic function (see [38], Sec. 3.4.5). In terms of the new conjugate
variables, Eq. (22) becomes

ψm = 1√
N
∑
s

ψse
−i 2πsm

N = 1√
2π
∑
θ

ψ(θ)e−iθN 2π

N
N→∞ÐÐÐ→ 1√

2π
∫

π

−π
ψ(θ)e−iθNdθ , (33)

where we have rescaled the coefficients as ψ(θ) ∶= ψm
√
N/2π. In the large N limit, this position-basis expansion

of ψ becomes an integral over the angle θ. In this infinite ladder or rot1 limit (sss,mmm → θθθ,NNN), the circle labeled
by eigenvalues of mmm is essentially “cut open” and turns into the unbounded integer-valued variable NNN , while at the
same time sss is absorbed into the dense and bounded variable θθθ conjugate to NNN . Of course, one could have instead
done sss,mmm →NNN,θθθ, which we call the the infinitely dense circle or rot2 limit. How the remaining properties of dv
transform in this limit are listed in Table I. The concepts discussed for dv in the text, such as coherent states [39]
and Wigner functions [40, 41], also naturally carry over to rot (see also, e.g., [42, 43]).

In the rot1 limit, dv position and momentum eigenstates (14) become

∣θ⟩ = 1√
2π
∑
N∈Z

e−iθN ∣N⟩ and ∣N⟩ = 1√
2π
∫

π

−π
dθ eiθN ∣θ⟩ , (34)
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respectively. Here, we encounter states which are normalizable only in the “Dirac” or “continuous” sense as well as
the technicality that the orthonormality relation has to be 2π-periodic:

⟨θ∣θ′⟩ = 1

2π
∑
N∈Z

e−i(θ
′
−θ)N = ∑

N∈Z
δ (θ′ − θ − 2πN) =∶ δ(2π) (θ′ − θ) . (35)

Above, we define the 2π-periodic δ-function in order to make sure that we can use any values of θ [44]. However, if
we restrict ourselves to using only θ ∈ [−π,π[, as in Table I, the δ(2π)-function reduces to the ordinary δ-function.
Since ∣θ⟩ are not normalizable, they technically do not belong to the function space L2(−π,π) associated with rot,
i.e., the space of functions f(θ) such that ∫ dθ∣f(θ)∣2 <∞ ([18], Sec. 6.6).

Another consequence of domains and similar to the dv case, the Weyl relation between translations in NNN and θθθ
does not imply a proper CCR (see Ref. [18], Sec. 12.2). Assuming that restrict ourselves to using only θ ∈ [−π,π[,
functions of θθθ must be 2π-periodic in order to preserve its domain. Therefore, θθθ and its powers cannot act on
states alone. If we ignore this fact and calculate the variances of states ∣n⟩ in θθθ and NNN , then we will see that the
former yields a finite number while the latter is zero. This violates Heisenberg’s uncertainty relation and thus the
conventional CCR (we list what the CCR would have been if we did not worry about domains in Table I).

Application for the rot phase space include i) the quantum rotor [44, 45], where N (θ) labels the angular
momentum (position) of the rotor, ii) the motion of an electronic excitation in the periodic potential of crystal,
where N is the site index, assuming the crystal to be infinite, which makes θ analogous to the pseudo momentum
in band-theory [46], or iii) the dynamics of a Josephson junction between two isolated islands, like in the Cooper
pair box [47, 48], where θ is the phase difference between the two superconductors on either side of the junction
and N the number of Cooper pairs having tunneled across the junction.

E. Flat-plane fully continuous quantum phase space (cv)

We again take the limit N →∞, but now consider the case where both

δx = δp =
√

2π

N (36)

approach zero. Thus, while the whole of phase space has a number of points growing as N 2, an area of order ~ will
harbor of order N points and can still be considered continuous. Note that we did not have to split 2π/N into two
identical factors; any splitting δx = (2π/N)1− ε2 and δp = (2π/N) ε2 for 0 < ε < 2 is sufficient [49, 50]. Keeping with an
even splitting, we introduce new conjugate variables

xxx←
√

2π

N sss and ppp←
√

2π

N mmm, (37)

which become ordinary position and momentum in the large N limit. We had already seen from Eq. (27) that this
type of redefinition recovers the original commutation relation [xxx,ppp] = i~ (11). In terms of wavefunctions, this is
equivalent to the standard limit in which the discrete Fourier series of a periodic wavefunction ψm is transformed
into the continuum Fourier series as the functions period N → ∞ (see [38], Sec. 3.4.5). In terms of the new
conjugate variables, Eq. (22) becomes

ψm = 1√
N
∑
s

ψse
−i 2πsm

N = 1√
2π
∑
p

ψ(p)e−ixpδp N→∞ÐÐÐ→ 1√
2π
∫

∞

−∞
ψ(p)e−ixpdp , (38)

where ψ(p) ∶= ψs. Since δp→ 0 for large N , the above sum over p (38) becomes an integral over R. This completes
the limit-taking procedure sss,mmm → xxx,ppp. The properties of this continuous flat phase space are summarized in the
last column of Table I. Just like FFF dv (19), we can write the Fourier transform FFF cv as a standalone operator:

FFF cv = ∫
∞

−∞
dx ∣x⟩ ⟨p = x∣ = 1√

2π
∫

∞

−∞
dx∫

∞

−∞
dx′eixx

′

∣x⟩⟨x′∣ . (39)

One can easily confirm that FFF 2
cv is the parity operator taking xxx,ppp → −xxx,−ppp. Note that eigenfunctions ∣x⟩, ∣p⟩ of

position and momentum are, like ∣θ⟩ (34), not normalizable and therefore not in the space of physical quantum
states L2(R) ([18], Sec. 6.6).
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dv rot cv

Sec. IV Harper equation [55, 56] Almost Mathieu equation [57] Harmonic oscillator
Sec. V Baxter ZN parafermionic spin chain [58] Rotor Baxter chain Coupled-oscillator chain
Sec. VI N -state Rabi model [59–61] Rotor-oscillator Rabi model Optomechanical Hamiltonian
Sec. VII Kitaev ZN toric code [62–64] Rotor toric code CV toric code [65]
Sec. VIII Haah ZN cubic code [66] Rotor Haah code CV honeycomb model
Sec. IX Kitaev honeycomb model [67–69] Rotor honeycomb model CV Haah code

Table II. The first column lists models to which we apply the limit-taking procedures of Sec. III, yielding the rotor (rot)
and continuous-variable (cv) models in the last two columns.

The cv Wigner function Wcv can then defined, analogous to Wdv (28), in terms of a cv displacement operator
DDDX,P

cv ∶= e−iXP e2iPxxxe−2iXppp and the parity operator FFF 2
cv. One can easily confirm that FFF 2

cv takes xxx,ppp → −xxx,−ppp.
Letting X,P ∈ R and following Appx. A.2.1 of Ref. [51] yields

Wcv (X,P ) = 2

π
∫

∞

−∞
dx⟨x∣ρDDDX,P

cv FFF 2
cvDDD

X,P †
cv ∣x⟩ = 2

π
Tr{ρDDDX,P

cv FFF 2
cvDDD

X,P †
cv } . (40)

Now that we have performed the dv → rot and dv → cv limit-taking procedures, all that is left to complete
the connections between them is the rot → cv limit. Recall that the rot variables are the angular θθθ and integer
NNN . To perform the limit, we introduce a length scale L which rescales the periodicity of θθθ and take this scale to
infinity. The new variables this time are

xxx← L
2π
θθθ and ppp← 2π

L N
NN . (41)

The first redefinition transforms the already continuous variable θθθ into an unbounded variable while the second
transforms the already unbounded variable NNN into a continuous one (since its intervals δp ∶= 2π

L
go to zero). In

terms of the new conjugate variables, the ∣θ⟩ component of ∣ψ⟩ expanded in the ∣N⟩ basis becomes

ψ(θ) ∶= ⟨θ∣ψ⟩ = 1√
2π
∑
N∈Z

ψNe
iθN = 1√

2π
∑
p

ψ(p)e−ixpδp L→∞ÐÐÐ→ 1√
2π
∫

∞

−∞
ψ(p)e−ixpdp , (42)

where we define the rescaled coefficients ψ(p) ∶= L

2π
ψN . This completes the last limit θθθ,NNN → xxx,ppp, which is based

on the well-known conversion of a Fourier series of a periodic function ψ(θ) into a Fourier transform by taking the
function’s periodicity L to infinity.

Since the periodicity of both position and momentum goes to infinity, these dv → cv and rot → cv limit-
taking procedures are well adapted to studies of harmonic and weakly anharmonic oscillators and to expansions of
periodic functions of operators. Letting xZPF and pZPF be standard deviations of the zero point fluctuations of
the oscillator, we can introduce the operators aaa and aaa† such that

xxx = xZPF (aaa +aaa†) , ppp = pZPF (aaa −aaa†) /i , and [aaa,aaa†] = 1 . (43)

Then, the number of action quanta in the system is the operator

nnn = aaa†aaa . (44)

In general, the Hamiltonian is not a simple function of nnn, but remains a balanced function of aaa and aaa†. Using this
notation, the Fourier transform and parity operator are simply

FFF cv = ei
π
2 aaa

†aaa and FFF 2
cv = (−1)aaa

†aaa
. (45)

Note that in contrast with the situation with the pair NNN and θθθ, there is no conjugate quantum operator for nnn
satisfying all of the properties in Table I (although there is an operator satisfying some of the properties [52]). This
is due to the fact that the polar representation of even a flat plane is singular when the radius is zero (equivalently,
the eigenvalues of nnn are bounded from below). This effect also obstructs us from creating an orthonormal basis of
phase states for quantum optical applications (see Ref. [53] or Ref. [54], Problem 8.4).



10 III CONTINUUM AND ROTOR LIMIT-TAKING PROCEDURES

III. CONTINUUM AND ROTOR LIMIT-TAKING PROCEDURES

The above formulations of rot and cv from dv are only done on the level of the Hilbert space. When it comes
to applying them to Hamiltonians, there are some additional subtleties which have to be dealt with. In an attempt
to resolve such subtleties, let us demonstrate our slightly generalized limit-taking procedures on a general dv-type
Hamiltonian. Since we saw that there are two ways to take the dv → rot limit in Sec. IID, the limits we consider
below are summarized in the following diagram:

rot1
↗ ↘

dv → cv
↘ ↗
rot2

. (46)

We start with a dv Hamiltonian that can be written as

Hdv = −
1

2
∑
k

fk (
2πM
N sss) gk (

2πL
N mmm) +H.c. , (47)

where 0 <M,L < N modulate the hopping length scales for the respective variables and fk, gk are analytic N -
periodic functions of sss,mmm (18). Simpler versions of the dv → cv limit, which are applicable for all but one of the
models we consider, can be performed with M = L = 1. However, these scales are necessary to be able to obtain
cv via rot, so we keep them for now.

Following Sec. II, we first write new conjugate variables in terms of sss,mmm,

(2πM
N sss,

2πL
N mmm)→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝

√
2π

N Lx
xx,

√
2π

N Lp
pp
⎞
⎠

dv → cv (48a)

(Mθθθ,
2πL
N NNN) dv → rot1 (48b)

(2πM
N NNN,Lθθθ) dv → rot2 (48c)

where we have setM = L for the first case because we do not need different length scales there. We then take the
N → ∞ limit and write new Hamiltonians Hcv,Hrot1,Hrot2 which serve as extensions of Hdv into cv and rot;
the remainders of the respective limit-taking procedures are discussed in the next two subsections.

Previous efforts have rigorously studied similar embeddings in the past, in particular Barker [70–73] and Digernes
et al. [74]. However, the former requires exact knowledge of the eigenstructure of both Hdv and Hcv/rot (see [72],
Prop. 3.7) and is thus rigorously applicable to only simple examples. The latter constrains the Hamiltonian to be
of a different form than Hdv. Here, we extend the procedure in the Supplement of Ref. [75] to any Hdv (in the
language of [70], by “dead reckoning”) with the goal of creating a meaningful extension of the dv system into cv and
rot. We apply these procedures to six models (see Table II), obtaining continuum and rotor generalizations that
in some cases have not been known before. We sometime keep track of the symmetries of the model to demonstrate
that our limits are symmetry-preserving.

A. Continuum limit dv → cv

For this case, we take N →∞ and expand around the center (0,0) of (sss,mmm)-phase space. We could in principle
expand around a generic point (s0,m0), but we can always redefine that to be the origin. This procedure can also
be generalized to K dv systems (sss,mmm)⊗K ; we stick to one for simplicity. First, let us take

L2

N → 2π . (49)

We perform this limit in order to remove any factors of 1/√N occurring in the expansion of some fk, gk later on,
noting that it is not necessary if such factors occur for all k. The case when this step is necessary is only for the
Rabi model in Sec. VI. We pick 2π in order to have the rot → cv limits conveniently produce the same result as
we are about to produce, but this is done for convention since a sequence of rational numbers can yield any real. As
a sanity check, we see that that L = O(

√
N ), i.e., the hopping between sites (determined by L) does not increase

faster than the total number of sites (proportional to N ).
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Recalling that we have redefined variables as in Eq. (48a), let us approximate fk(2πxxx) and gk(2πppp) with their
expansions around the zero eigenvalue of xxx,ppp, respectively. Such an expansion can be done in a similar way as
operator exponentiation, i.e., by working in a basis for which the two functions are diagonal and then expanding
each of their eigenvalues. Such an expansion will not hold for arbitrarily high eigenvalues of Hdv since they are
not always much less than one (e.g., near the maximal values of sss,mmm). This means that, as N → ∞, we have to
keep projecting ourselves to the intersection of the subspaces of small eigenvalues of xxx and ppp. Consequently, the
eigenstates of Hdv which remain in such a limit are only those which are centered around (x, p) = (0,0) and have
small variance in either variable. Expanding, we obtain (apart from a constant shift in energy)

Hdv ∼Hcv ∶= −∑
k

Akppp +Bkxxx + 1
2
Ckppp

2 + 1
2
Dkxxx

2 +Ekxxxppp +E⋆
kpppxxx , (50)

with the coefficients Ak,Bk,Ck,Dk,Ek obvious functions of fk, gk and their derivatives (evaluated at zero). Thus,
such a limit always yields a Hamiltonian consisting of linear and bilinear terms.

Let us discuss when the dv → cv limit corresponds to a physically meaningful low-energy expansion of Hdv.
A trivial sufficient condition is that the ground state subspace of Hdv is localized around (s,m) = (0,0). That
way, expansion around (s,m) = (0,0) encapsulates the ground state subspace and the low-energy excited states. If
fk(0)gk(0) is a global maximum for each k, then the minus sign in front of the sum (47) guarantees that the lowest-
energy states will be centered around (s,m) = (0,0). [If there is another maximum at say fk(N/2)gk(N/2) for all k,
then expansion will of course ignore the ground state centered at (N/2,N/2).] However, being centered at the origin
still does not guarantee that the ground-state subspace is localized to the same degree in s as it is inm. Examples of
systems whose ground states are centered but not equally localized around (0,0) are Hdv = − cos( 2π

N
sss)−cos⌊J⌋( 2π

N
mmm)

and Hdv = − cos( 2π
N
sss)−J cos( 2π

N
mmm) for J ≫ 1. In both cases, the second term gives a higher energy penalty for states

near the origin than the first term, so expanding only the second term is more appropriate. A similar example
of such an expansion (albeit of rot → cv type) is the expansion of the cosine term in the Josephson junction
Hamiltonian,

αNNN2 + β cosθθθ → αppp2 + βxxx2 (51)

(where α,β are real and NNN,θθθ are rot conjugate variables), to obtain the cv harmonic oscillator [47]. This limit is
only valid in the β ≫ α region of parameter space since only then the zero-point fluctuations in the phase are small
— the ground state and its lowest-energy excitations are well-supported by the subspace of eigenstates {∣θ⟩}θ≤θmax

of θθθ with θmax ≪ 1. We will not perform such limits here since they require certain terms to be more dominant
than others; we assume that the contribution of all terms is approximately equal.

B. Rotor limits dv → rot1,2

These limits are considerably simpler than the continuum limit in that they only involve the hopping length
scales L,M and there is no expansion. For dv → rot1 from Eq. (48b), we take L,N →∞ such that

L
N → Φ < 1 , (52)

where Φ is irrational. The irrationality of Φ breaks the periodicity of gk, yielding

Hdv ∼Hrot1 ∶= −
1

2
∑
k

fk (Mθθθ) gk (2πΦNNN) +H.c. . (53)

For the other limit dv → rot2 in Eq. (48c), we let M/N → Φ, yielding

Hdv ∼Hrot2 ∶= −
1

2
∑
k

fk (2πΦNNN) gk (Lθθθ) +H.c. . (54)

These two limits are different whenever fk ≠ gk for some k.
There should not be any issues of physical validity with this limit (other than the fact that the system dimension

is now infinite) since we are not expanding anything. Alternatively, we could expand gk for all k, leaving fk intact,
given the assumption that low-energy states are more localized in θθθ than in NNN (given L = 1). As mentioned in the
previous subsection, such a limit also yields interesting physics, but we do not delve too much on it here.

To complete the diagram (46), we can take the rot1 → cv limit by letting L → ∞ and expanding fk, gk.
Following Eq. (41), the new variables this time are xxx ← L

2π
θθθ and ppp ← 2π

L
NNN . In addition, we take Φ ∝ 1/L, where

the proportionality constant can be any real number. We pick Φ = 2π/L so that this expansion reproduces Hcv (50)
within second order in xxx,ppp. The rot2→ cv limit is performed the same manner, also yielding Hcv.
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Figure 3. Eigenvalues of N
2π

(Hsho
dv − 2) (56b) vs. N for L =M = 1. One can see that they approach true harmonic oscillator

eigenvalues of an integer plus a half (horizontal lines) as N →∞. This behavior persists for higher values of L.

IV. HARMONIC OSCILLATOR

Let us begin with the simple and known [55, 56, 75–77] example of dv and rot analogues of the harmonic
oscillator

Hsho
cv ∶= 1

2
(ppp2 +xxx2) . (55)

First, consider a dv-type harmonic oscillator

Hsho
dv ∶= −1

2
(ZZZM +H.c.) − 1

2
(XXXL +H.c.) (56a)

= − cos(2πM
N sss) − cos(2πL

N mmm) (56b)

= − ∑
s∈ZN

cos(2π
M
N s) ∣s⟩⟨s∣ − 1

2
∑
s∈ZN

(∣s +L⟩ ⟨s∣ + ∣s⟩⟨s +L∣) , (56c)

where we use XXX (23a) and ZZZ (23b) in the first line and the basis {∣s⟩}s∈ZN of eigenstates of sss (18) in the last. This
Hamiltonian corresponds to a quantum system on a ring with modulated periodic potential and an L-site hopping
term. We can certainly block diagonalize it into L blocks if N is a multiple of L, but we do not concern ourselves
with such special cases. This model is viewed as an analogue of the oscillator because one can recover Hsho

cv in the
dv → cv limit. We can already see the cv structure for M = 1 if we recall that ZZZ +ZZZ† is, up to a constant, the
discrete Laplacian [74]; it will become an ordinary Laplacian in the limit below.

Applying the general technique of Sec. IIIA — settingM = L, redefining the conjugate variables (48a), expanding
around (s,m) = (0,0) in the N →∞ limit, and taking L2/N → 2π — yields

Hsho
dv ∼

⎛
⎝
L
√

2π

N
⎞
⎠

2

⋅ 1

2
(ppp2 +xxx2) = (2π)2

Hsho
cv . (57)

To check this limit, we can plot the eigenvalues of N
2π

(Hsho
dv − 2) for a given L and with increasing N . As seen in

Fig. 3, the eigenvalues approach those of the continuum harmonic oscillator. In fact, this limit has been proven
to yield Hsho

cv exactly (see example C.4 in Ref. [72] and references therein), so we are certain that the dv → cv
limit is physically meaningful in this case. It should not be surprising since the ground state of Hsho

dv is localized
around (s,m) = (0,0) and expansion of both cosines adds the lowest possible energy penalty. Such a limit is also
generalizable toM ≠ L, allowing Hsho

cv to have a free frequency parameter.
Now let us take Hsho

dv to one of two rot-type harmonic oscillators. Following Sec. III B, redefine variables as in
Eq. (48b) and let L/N → Φ, yielding

Hsho
rot1 ∶= − cos(Mθθθ) − cos (2πΦNNN) (58a)

= −1

2
∑
N∈Z

(∣N +M⟩ ⟨N ∣ + ∣N⟩⟨N +M∣) − ∑
N∈Z

cos (2πΦN) ∣N⟩⟨N ∣ , (58b)
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where Φ < 1 is a positive irrational. In the context of the quantum Hall effect, Hsho
rot1 models an electron on a

2D lattice in the presence of a magnetic field and Φ is the magnetic flux per unit cell. In that context, Hsho
dv is

called Harper’s equation [78] and Hsho
rot1 the almost Mathieu operator. In particular, Hsho

rot1 with Φ = 1
2
(
√

5 − 1)
corresponds to the Fibonacci quasicrystal [79]. There is of course another way to obtain an rot-type Hamiltonian
from Hsho

dv by following Eq. (48c) and letting M/N → Φ, yielding the rot2 Hamiltonian

Hsho
rot2 ∶= − cos (2πΦNNN) − cos(Lθθθ) . (59a)

In this case, the two rot limits yield the same result.
Finishing off with the rot → cv limit, let Φ → 2π/L → 0 and expand both cosine terms in Hsho

rot1,H
sho
rot2. In the

aforementioned context of the quantum Hall effect, this limit is related to the quasiclassical limit of vanishing field
and recovers the famous Landau-level problem [78] — a simple harmonic oscillator,

Hsho
rot1 ∼

(ΦL)2

2
ppp2 + (2π)2

2
xxx2 = (2π)2

Hsho
cv . (60)

The result is thus the same as the direct dv → cv procedure from Eq. (57).

V. BAXTER ZN PARAFERMIONIC SPIN CHAIN

Using Eqs. (23a-23b) for the Weyl operators XXX and ZZZ, the Baxter ZN spin chain Hamiltonian [58, 80, 81] (in
Hermitian form) reads

Hbax
dv ∶= −Ω

2

K

∑
k=1

(ZZZMk +H.c.) − g
2

K−1

∑
k=1

(XXXLkXXX−L
k+1 +H.c.) (61a)

= −Ω
K

∑
k=1

cos(2πM
N sssk) − g

K−1

∑
k=1

cos(2πL
N [mmmk+1 −mmmk]) , (61b)

where the parameters Ω, g are of the same order of magnitude (so that we can expand both cosines). The N = 2 case
reduces to the original Ising model.4 For general N , each site k corresponds lives in its own dv phase space, and
the full model is therefore in dv⊗K . One can also add phases (e.g., ZZZk → ZZZke

iφ) [69], leading to more complicated
behavior (similar to the chiral version of the Rabi model in Sec. VI). This model is equivalent to a parafermion
chain via a nonlocal extension of the Jordan-Wigner transformation [85]. When written in terms of the conjugate
variables {sss,mmm}⊗K , the model’s (61b) invariance upon the collective translations mmmk → mmmk + 1 and reflections
mmmk → −mmmk (both for all k) are made bare. The operator for the former symmetry is simply ZZZ⊗K ; we will keep
track of this symmetry as the systems travels to the cv and rot phase spaces.

We now apply the limit-taking procedures from Sec. III to Hsho
dv , obtaining its rot and cv limits. If we take

Hsho
dv (56b) to be the canonical harmonic oscillator in dv phase space, then we can see that Hbax

dv (61b) is nothing
but a chain of coupled dv oscillators. It should thus not come as a surprise that the dv → cv limit, as we shall see,
produces a chain of cv oscillators. Up to a constant offset and a multiplicative factor of (2π)2, redefining variables
per Eq. (48a) and expanding the cosines around (s,m) = (0,0) yields

Hbax
cv ∶= Ω

2

K

∑
k=1

ppp2
k +

g

2

K−1

∑
k=1

(xxxk+1 −xxxk)2
. (62)

The aforementioned symmetries clearly survive: Hbax
cv is invariant under global reflection xxxk → −xxxk and any global

shifts xxxk → xxxk + ξ for all k and any real ξ. It will interesting to see whether the spectrum of this simple model
can be rigorously obtained in the large-N limit of the exact spectrum of the Baxter model, as was done for the
oscillator [72].

Let us now turn the dv phase spaces of Hbax
dv into infinite ladders (rot1), taking the sss,mmm→NNN,θθθ limit from Sec.

III B, yielding

Hbax
rot1 ∶= −Ω

K

∑
k=1

cos (2πΦNNNk) − g
K−1

∑
k=1

cos (L [θθθk+1 − θθθk]) . (63)

4 Another generalization of the Ising model — the quantum Potts (e.g., [69, 82, 83]) or quantum clock [84] model — is not amenable
to our limit-taking procedures because it contains a sum over all L,M and so restricts us from having L,M = O(

√

N ) for large N .
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Expanding the first cosine in a limit (Ω ≫ g) similar to that in eq. (51) immediately yields a Hamiltonian for an array
of coupled Josephson Junctions in the quantum regime — the quantum XY model (e.g., [86, 87]). Alternatively,
we can take the infinitely dense circle limit (rot2), in which sss,mmm→ θθθ,NNN :

Hbax
rot2 ∶= −Ω

K

∑
k=1

cos (Mθθθk) − g
K−1

∑
k=1

cos (2πΦ [NNNk+1 −NNNk]) . (64)

This corresponds to an infinite ladder of sites once more, but this time there is a hopping term and an interaction
that is diagonal in the NNN basis. Expanding the latter in a procedure similar to that in eq. (51) yields a Hubbard
model of sorts, with interactions of the form (NNNk+1−NNNk)2. In both rot versions, invariance under global reflection
and shifts of all θθθk (NNNk) in the case rot1 (rot2) is preserved.

Both the rot1 and rot2 cases can then be taken to the cv case by performing the procedures described in Sec.
IV for the simple harmonic oscillator. For Hbax

rot1, take Φ = 2π/L, L
2π
θθθ → xxx, 2π

L
NNN → ppp, and L →∞. For Hbax

rot2, take
Φ = 2π/M, M

2π
θθθ → ppp, 2π

M
NNN → xxx, andM →∞. Both cases reduce those Hamiltonians to Hbax

cv (62). These two limits
are the reason we introduced both length scalesM and L in Hbax

dv (61a); performing the dv → cv procedure alone
does not require them.

VI. N -STATE RABI MODEL

The original quantum Rabi model Hamiltonian [59, 60] consists of an interacting two-level system (i.e., a qubit)
and a harmonic oscillator and is arguably one of the simplest non-linear, non-trivial models. Letting σx, σz be the
Pauli matrices of the qubit and b/b† be the lowering/raising operators of the oscillator, the Rabi Hamiltonian is

1

~
Hrabi
N=2 ∶= ω (b†b + 1

2
) −Ωσz + g (b + b†)σx . (65)

The three real parameters are the positive oscillator frequency ω, the qubit Larmor frequency Ω, and the qubit-
oscillator coupling g. This model and its close relatives have been used in numerous contexts to simulate qubit-
oscillator systems, including:

1. A two-level atom coupled to a cavity electromagnetic field in quantum optics and superconducting circuits.
In this context, the model is a precursor to the Jaynes-Cummings model [88–90]: ignoring the term bσ− and
its conjugate (the rotating-wave approximation) yields that famous Hamiltonian.

2. A spinful electron coupled to a magnetic field; the related model is called the Landau level problem with
Dresselhaus or Rashba spin-orbit coupling [91–93].

3. Ultra-cold alkali atoms in a magnetic field and double-well potential [94].

4. An exciton interacting with lattice vibrations at two sites of a crystalline system, where the model is called
the single-mode spin boson or the two-site Holstein model [95, 96].

5. Strong magnetic coupling between an NV center and a nanomechanical oscillator in a longitudinal [97] or
transverse [98] field.

Unlike the Jaynes-Cummings model, this model has a Z2 symmetry. Namely, the Hamiltonian commutes with

VVV N=2 = (−1)b
†b
σz , (66)

which squares to identity and represents a joint parity of the qubit and the oscillator [recall that FFF 2
cv = (−1)b

†b

(45)]. The model is also real, so Hrabi
N=2 commutes with the complex conjugation operator K.

The N -state Rabi model [61] is an extension of the qubit (N = 2) Rabi model to qudits that naturally extends
the symmetry of the qubit case:

1

~
Hrabi

dv ∶= ω (b†b + 1

2
) − Ω

2
(ZZZM +H.c.) + g (bXXXL +H.c.) (67a)

= ω (b†b + 1

2
) −Ω cos(2πM

N sss) + g (be−i 2πLN mmm +H.c.) (67b)
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(Note how the N = 2 case reduces to the original Rabi model.) Originally, the N -state Rabi model included
more couplings using other powers of ZZZ, but we omit those for simplicity. The Z2 symmetry from the N = 2 case
generalizes to a ZN symmetry with generator

VVV = ei 2πN Lb†bZZZ = exp [i2πN
(Lb†b + sss)] . (68)

We further say here that the model actually has a dihedral symmetry. In addition to VVV , the Hamiltonian is invariant
under the operation sss→ −sss. This reflection around the mmm = 0 axis is represented by the antiunitary operator

UUU ∶= FFF 2
dvK , (69)

where K is complex conjugation and FFF 2
dv (21) is the dv parity operator taking sss,mmm → −sss,−mmm modulo N . The

full symmetry is then the dihedral group D2N = ZN ⋊ Z2, where the ZN piece is generated by VVV while the Z2

piece is generated by UUU . It is interesting to note that one can reduce the ZN ⋊ Z2 symmetry to ZN by giving the
cosine term a phase. In such a chiral version of the dv-type Rabi model [99], sss→ −sss will no longer be a symmetry.
Observing Eq. (67b), we can see that the qudit consists of a ring of N sites with energies −Ω cos (2πM

N
sss) and

that the hopping term be−i
2π
N
Lmmm takes the qudit state ∣s⟩ to the state ∣s + L⟩ while also absorbing a photon. The

conjugate term corresponds to emitting a photon and moving L sites in the other direction along the qudit ring.
Let us perform the dv → cv limit from Sec. III A, which yields a cv phase space for the degrees of freedom of

the N -state system. Just like in for previous two models, we redefine variables according to Eq. (48a) and expand
around the origin (s,m) = (0,0) of dv phase space. To our knowledge, the dv → cv limit is different from previous
limits of the Rabi model, e.g., the large spin limit [100–102]. Letting yyy ∶= 1

√
2
(b + b†) and qqq = −i 1

√
2
(b − b†) (with

[yyy,qqq] = i) be the original oscillator degrees of freedom (which remain unchanged), this yields

1

~
Hrabi

cv ∶= ω
2
(qqq2 + yyy2) + 2Ωπ2ppp2 +

√
2g (2πxxxqqq + yyy [1 − 2π2xxx2]) −Ω . (70)

Displacing that oscillator by −
√

2g
ω

[via the operator DDD, which takes yyy → yyy − g
ω

and same with qqq] gets rid of the
linear yyy term and yields

1

~
DDDHrabi

cv DDD† = ω
2
(qqq2 + yyy2) + 2π2 (Ωppp2 + 2g2

ω
xxx2) + 2

√
2gπxxx (qqq − πxxxyyy) − (Ω + 2g2

ω
) . (71)

We thus see how the Rabi model reduces to a coupled oscillator model in the dv → cv limit. We can see that what
is obtained is none other than the optomechanical Hamiltonian of a mechanical mode (which used to the N -state
system) interacting with a light mode via the xxx2b coupling. The σ+b coupling induced by light on a two-level atom
has become, in this limit, radiation pressure on an oscillator.

Performing the dv → rot1,2 limits from Sec. III B yields the respective coupled-rotor systems

1

~
Hrabi

rot1 ∶= ω (b†b + 1

2
) −Ω cos (2πΦNNN) + g (be−iLθθθ +H.c.) (72)

1

~
Hrabi

rot2 ∶= ω (b†b + 1

2
) −Ω cos (Mθθθ) + g (be−i2πΦNNN +H.c.) . (73)

The first model corresponds to an infinite ladder consisting of sites ∣N⟩ in a Ω-mediated quasiperiodic potential
and with the coupling term causing a particle on a site to move either to the left or right, depending on whether
the particle absorbs or emits a photon. The second model corresponds to an infinite ladder of sites with hopping
strength Ω, but this time each site ∣N⟩ is linearly coupled to an oscillator with strength g and quasiperiodic
phase 2πΦN . Naturally, the dihedral (D2N = ZN ⋊ Z2) symmetry of the dv-type Rabi model is extended to a
U(1)⋊Z2 = O(2) symmetry. The U(1) piece is generated by Lb†b+NNN for rot1 and by 2πΦb†b+θθθ for rot2. The
Z2 piece just corresponds to reflection: NNN → −NNN for rot1 and θθθ → −θθθ for rot2. Both Hrabi

rot1 and Hrabi
rot2 can then

be taken to Hrabi
cv (70) via the procedures described in Sec. III B.

VII. KITAEV TORIC CODE

The toric code [62] was proposed as a simple model for topological quantum computation. The degrees of freedom
are qubits typically living on vertices of a square lattice with periodic boundary conditions (i.e., a torus). The
Hamiltonian is written as a sum of products of four Weyl operators. We denote operators O acting nontrivially on
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a site “●” on a plaquette “�” or vertex/star “+” as, e.g., O • or O • , respectively. The ZN toric code Hamiltonian

[62–64] is then

Htor
dv ∶= −Jz

2
∑
�

(ZZZM
•
ZZZM

•
ZZZ−M

• ZZZ−M

•
+H.c.) − Jx

2
∑
+

(XXXL
•
XXXL• XXX

−L

•
XXX−L

•
+H.c.) (74a)

= −Jz∑
�

cos(2πM
N sss�) − Jx∑

+

cos(2πL
N mmm+) , (74b)

where Jx,z > 0 and 0 <M,L < N are the hopping length scales for the respective variables. The joint degrees of
freedom associated with going around a plaquette � counterclockwise and going out of a vertex +, respectively, are

sss� = sss
•
+ sss • − sss • − sss• and mmm+ =mmm • +mmm • −mmm• −mmm

•
. (75)

(Note how the N = 2 case reduces to the original toric code.) The minus signs in sss�,mmm+ give the model an
orientation [103] and make sure that all terms in Htor

dv commute with each other, meaning that Htor
dv is frustration-

free. In the language of ZN gauge theory [62], sss� is the magnetic field through � while mmm+ is the electric charge
at +.

FixingM = L = 1 for this paragraph, the ground state is one for which sss� =mmm+ = 0 (modulo N ) for all � and +,
respectively, and its lowest-energy excitations have sss� = ±1 or mmm+ = ±1 for one � or +. There exist four types of
string-like conserved quantities which determine the ground-state degeneracy,

ZZZ↔ = ⋯ZZZ• ZZZ • ⋯, ZZZ↕ = ⋯ZZZ •
ZZZ • ⋯, XXX↔ = ⋯XXX• XXX • ⋯, XXX↕ = ⋯XXX •

XXX • ⋯ , (76a)

where the product is over all sites along either one of the two noncontractible loops of the torus. These satisfy
XXX↔ZZZ↕XXX

−1
↔ZZZ

−1
↕

=XXX↕ZZZ↔XXX−1
↕
ZZZ−1
↔ = e−i 2πN , implying that there is an N 2-dimensional ground-state subspace that can

be characterized by eigenvalues of

sss↔ = ⋯+ sss• + sss • +⋯ mod N and sss↕ = ⋯+ sss
•
+ sss • +⋯ mod N . (77)

Once again, we have introduced the M,L degrees of freedom only to perform the dv → rot and rot → cv
limits; they are not required for the direct dv → cv limit. Assuming Jx ≈ Jz and performing the dv → cv limit
from Sec. III A yields, up to constant offsets and factors, the coupled-oscillator Hamiltonian

Htor
cv ∶= Jz

2
∑
�

ppp2
� + Jx

2
∑
+

xxx2
+ , (78)

where ppp� = ppp
•
+ ppp • − ppp • − ppp• and xxx+ = xxx • + xxx • − xxx• − xxx

•
. This is exactly the Hamiltonian whose ground

states are those of the CV surface code [65]. While this Hamiltonian was known before [104], the dv → cv limit-
taking procedure provides its direct derivation from the original toric code. This system has an infinite-dimensional
degeneracy [sss→ ppp in Eq. (77)] and is gapless.

While the direct dv → cv limit reproduces a known instance of the toric code, taking the rot detour introduces
two new generalizations. Performing the dv → rot1,2 limits from Sec. III B yields the respective coupled-rotor
systems

Htor
rot1 ∶= −Jz∑

�

cos (2πΦNNN�) − Jx∑
+

cos (Lθθθ+) (79)

Htor
rot2 ∶= −Jz∑

�

cos (Mθθθ�) − Jx∑
+

cos (2πΦNNN+) . (80)

The plaquette and vertex structure is of course preserved, but now the degree of freedom on each site is a rotor
(rot). The degrees of freedom of these models resemble those of compact U(1) lattice gauge theory (LGT): θθθ�
is the magnetic flux term Φ in the equation below Eq. (6.4.13) in Ref. [45] while NNN+ can be interpreted as the
electric charge at the center of the “+”. In fact, the relation between Htor

rot and U(1) LGT is the same as that
between Htor

dv and ZN LGT [62]: the Htor systems consist of the flux term from their corresponding LGT along
with a term which represents a local gauge transformation and whose value is constant within the ground-state
subspace. Given that U(1) gauge theory is always confined in two dimensions, it remains to be seen whether the
rotor models can admit novel deconfined phases.
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VIII. HAAH CUBIC CODE

The cubic code [66] is a three-dimensional generalization of the toric code and is an example of fracton topological
order [105]. It is defined on a cubic lattice, where each site contains two dv(N = 2) subsystems. We denote the
lattice cubes by and operators O acting nontrivially on the first (“●”) or second (“×”) subsystem on a given cube
as, e.g., O

•
or O

×
. The original Hamiltonian is

Hcub
N=2 ∶= −Jz∑A − Jx∑B , (81)

where JA,B > 0 and the sum is over all cubes in the lattice. The operators A ,B act nontrivially on 8 out of the
16 sites of the cube; we will not define them for conciseness and instead directly write the generalized dv(N ≥ 2)
version. Using the same tricks as for the toric code regarding defining an orientation and making sure all cubes
commute [103], one can come up with the model

Hcub
dv ∶= −Jz

2
∑(ZZZM

•

ZZZM
•
ZZZM•ZZZ

M

•
ZZZM

×
ZZZM

×
ZZZM× ZZZ

M

×
+H.c.) − Jx

2
∑(XXXL

•

XXXL
•
XXXL•XXX

L

•
XXX−L

×
XXX−L

×
XXX−L

× XXX−L

×
+H.c.)

= −Jz∑ cos(2πM
N [sss•

•
•• + sss

×
×× ×
]) − Jx∑ cos(2πL

N [mmm•
••
• −mmm

××
×
×
]) , (82)

where the first line is written in terms of Weyl operators (23a-23b) and the second in terms of their corresponding
conjugate variables sss,mmm (18). The composite variables are, e.g., sss•

•
•• = sss

•
+ sss• + sss • + sss • , with the remaining

three defined similarly. The relative minus in the Jx-term is so that Hcub
dv is frustration free. To verify this, one

needs make sure that a given cube commutes with all of the 26 neighboring cubes with which it shares faces, sides,
and corners. We further assume Jx ≈ Jz in order to further justify the dv → cv procedure. A simpler model can
be defined withM,L = 1, but we do not assume this in order to more conveniently take all of the desired limits.

Performing the dv → cv limit from Sec. III A yields, up to constant offsets and factors, the coupled-oscillator
Hamiltonian

Hcub
cv ∶= 1

2
∑(ppp•

•
•• + ppp

×
×× ×
)

2

+ 1

2
∑(xxx•

••
• −xxx

××
×
×
)

2

. (83)

Performing the dv → rot1,2 limits from Sec. III B yields the respective coupled-rotor systems

Hcub
rot1 ∶= −∑ cos(2πΦ [NNN•

•
•• +NNN

×
×× ×
]) −∑ cos(L [θθθ•

••
• − θθθ

××
×
×
]) (84)

Hcub
rot2 ∶= −∑ cos(M [θθθ•

•
•• + θθθ

×
×× ×
]) −∑ cos(2πΦ [NNN•

••
• −NNN

××
×
×
]) . (85)

Note that the Φ ≪ 1 version of this model, in which one of the cosines is expanded, was independently written
down and studied by Haah [106]. Since U(1) lattice gauge theory can be deconfined in three dimensions [45], it will
be interesting to examine whether these models can also admit interesting deconfined phases. All Hamiltonians
remain frustration-free as that algebraic structure is preserved in this limit. We have thus generalized the N = 2
cubic code to arbitrary N as well as to the rot and cv phase spaces. Moreover, this recipe can be applied to any
qudit stabilizer code.

IX. KITAEV HONEYCOMB MODEL

The Kitaev honeycomb model [67] is a two-dimensional exactly solvable model with an extensive number of
conserved quantities that, along with its relative the toric code (see Sec. VII), is a paradigmatic model lying at
the intersection of topological quantum phases of matter and quantum computation. It was originally defined on a
honeycomb lattice; we denote the lattice plaquettes by and operators O on a given site “●” on a plaquette as, e.g.,
O

•
or O • . The original model is defined on a set of dv(N = 2) sites, but has been extended to lattices consisting

of sites of the type dv for arbitrary N [68, 69] (see [107] for a different extension). We write such a model below
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in terms of Weyl operators (23a-23b), using the convention of Ref. [68] but adding the hopping length scalesM,L
in order to more conveniently take all of the limits we desire:

Hhon
dv = −1

2
∑(JxXXXL

•
XXXL• + JyYYYM,L

•
YYYM,L

• + JzZZZM• ZZZM• +H.c.) , (86)

where Jx,y,z > 0, YYY = ZZZ−1XXX−1, and YYYM,L = ZZZ−MXXX−L. In terms of the conjugate variables sss,mmm (18), we have

Hhon
dv = −Jx∑ cos(2πL

N [mmm
•

+mmm• ]) − Jz∑ cos(2πM
N [sss • + sss • ]) (87)

−Jy∑(exp [−i2πMN {sss• + sss • }] exp [i2πLN {mmm• +mmm • }] +H.c.) .

This model has a conserved quantity for each plaquette,

Wdv = YYY •
ZZZ• XXX • YYY • ZZZ •

XXX
•
= exp(−i2πMN [sss

•
− sss• + sss • − sss •

]) exp(i2πLN [mmm
•

−mmm • +mmm • −mmm
•
]) ,
(88)

where theM,L factors are necessary for Wdv to commute with the Jy-term. There are also conserved quantities
consisting of Weyl operators along any horizontal or 60-degree zig-zag of the lattice,

V↭dv = ⋯XXX−1
• XXX • XXX

−1
• ⋯ = exp(−2π

N [⋯mmm• −mmm • +mmm • ⋯]) (89a)

V ↭dv = ⋯ZZZ
•
ZZZ−1

• ZZZ • ⋯ = exp(2π

N [⋯sss
•

− sss• + sss • ⋯]) . (89b)

We have V↭dvV ↭dv = e−i 4πN V ↭dv V
↭
dv , implying a non-trivial ground-state degeneracy of the model on the torus [68].

Unlike the toric code, this model is not frustration-free and exhibits different phases for different values of the
parameters. We expand around the symmetric case Jx ≈ Jy ≈ Jz, for which the N = 2,M = L = 1 system is known
to be gapless [67].

Performing the dv → cv limit from Sec. IIIA yields the coupled-oscillator Hamiltonian

Hhon
cv ∶=∑Jx (xxx

•
+xxx• )

2

+ Jy (ppp• −xxx• + ppp • −xxx • )
2

+ Jz (ppp • + ppp • )
2

. (90)

All conserved quantities are preserved: for each plaquette,

Wcv = ppp•
−xxx

•
− ppp• +xxx • + ppp • −xxx • − ppp •

+xxx
•
, (91)

and the string operators are

V ↭cv = ⋯ppp
•

− ppp• + ppp • ⋯ and V↭dv = ⋯xxx• −xxx • +xxx • ⋯ . (92)

The string operators satisfy [V↭dv , V ↭dv ] = −2i, meaning that the ground-state degeneracy on a torus is infinite (since
there are no finite-dimensional irreducible representations of the Heisenberg-Weyl algebra).

Performing the dv → rot1 limit from Sec. III B yields the coupled-rotor system

Hrot1 = −Jx∑ cos(L [θθθ
•

+ θθθ• ]) − Jz∑ cos(2πΦ [NNN • +NNN • ]) (93)

−Jy
2
∑(exp [−i2πΦ{NNN • +NNN • }] exp [iL{θθθ• + θθθ • }] +H.c.) .

The conserved quantities turn into plaquette operators

Wrot1 = exp(−i2πΦ [NNN
•

−NNN • +NNN • −NNN •
]) exp(iL [θθθ

•
− θθθ • + θθθ • − θθθ

•
]) (94)

and string operator generators

V ↭rot1 = ⋯NNN •
−NNN • +NNN • ⋯ and V↭rot1 = ⋯θθθ• − θθθ • + θθθ • ⋯ . (95)

The limit dv → rot2 is equivalent to this limit upon Jx ↔ Jz and a reflection.
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X. SUMMARY AND OUTLOOK

The first part of this work provides an introduction to three types of phase spaces whose conjugate variables can
be related via a Fourier-type transformation. The first type (dv) involves two discrete finite conjugate variables
{sss,mmm}, the second type (rot) involves an integer-valued variable and its conjugate angle {NNN,θθθ}, and the last
type (cv) is ordinary phase space of two continuous conjugate variables {xxx,ppp}. The second part of this work is
concerned with converting Hamiltonians living in one phase space into those in the others (dv → cv, dv → rot,
and rot→ cv). These limit-taking procedures correspond directly to the limits connecting functions of a discrete
periodic variable (dv) to those of a continuous periodic variable (rot) or those of an unbounded variable (cv) (Secs.
3.4.2 and 3.4.5 of Ref. [38], respectively). We outlined slightly generalized versions of these well-known procedures
and applied them to the dv degrees of freedom in six models: the Harper equation, the Baxter parafermionic
spin chain, the Rabi model, the toric code, the Haah cubic code, and the Kitaev honeycomb model. Interestingly,
these straightforward limit-taking procedures resulted in rotor and continuum limits for all six models, making
contact with the quantum Hall effect, optomechanics, and lattice gauge theory. We hope these new models will be
studied further and that these techniques will be useful in generating interesting new rotor and continuum limits.
In particular, it would be interesting to rigorously determine whether spectra of the dv models converge to their
cv limits (as opposed to the cv limit being merely a low-energy expansion). This has so far only been done for
the oscillator, but the solvability of most of the systems considered [58, 62, 66, 67, 108] makes this direction quite
promising.

We conclude with an outlook regarding experimental realizations. For the Rabi model, implementation of the
N ≫ 1 circular structure is admittedly tricky, as one has to engineer equal transition amplitudes for all sites and
also ensure that photons are either absorbed or emitted, depending on the direction of the hopping. However, it
is not improbable that one can find a proper multi-level artificial atom based on superconducting circuits whose
transition rules satisfy the N = 3 or even N = 4 Rabi models. The optimal candidate for realizing high N cases
however is optical lattices [109] or trapped ions [110–112], where ring-shaped potentials can already be engineered.
Similar experimental platforms have been proposed to simulate ZN lattice gauge theories [113]. For the many-body
coupled rotor models, one could consider engineering interactions between orbital angular momentum degrees of
freedom of photonic modes (e.g., [114, 115]).
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