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A B S T R A C T

The outbreak of coronavirus disease 2019 (COVID-19) starting last December in China placed emphasis on liver
involvement during infection. This review discusses the underlying mechanisms linking COVID-19 to liver
dysfunction, according to recent available information, while waiting further studies. The manifestations of liver
damage are usually mild (moderately elevated serum aspartate aminotransferase activities), and generally
asymptomatic. Few patients can still develop severe liver problems, and therapeutic options can be limited. Liver
dysfunction may affect about one-third of the patients, with prevalence greater in men than women, and in
elderly. Mechanisms of damage are complex and include direct cholangiocyte damage and other coexisting
conditions such as the use of antiviral drugs, systemic inflammatory response, respiratory distress syndrome-
induced hypoxia, sepsis, and multiple organ dysfunction. During new COVID-19 infections, liver injury may be
observed. If liver involvement appears during COVID-19 infection, however, attention is required. This is par-
ticularly true if patients are older or have a pre-existing history of liver diseases. During COVID-19 infection, the
onset of liver damage impairs the prognosis, and hospital stay is longer.

1. Introduction

A novel coronavirus was reported to World Health Organization on
Dec 30, 2019, as the cause of a cluster of pneumonia cases in China, city
of Wuhan, Hubei Province. The first name of 2019-nCoV(human) was
adopted on Jan 7, 2020, lately changed to severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). COVID-19 infection became an
outbreak throughout China on Feb 11, 2020 and subsequently was
identified as a global pandemic on March 11, 2020, spreading to more
than 120 countries, as a major threat to public health [1–3]. The
COVID-19 pandemic suddenly represented an enormous burden of care
[4], and raised issues related to medical ethics [5], since specific
therapies and/or vaccines are missing, to date. COVID-19 may manifest
in different ways. Many subjects may remain asymptomatic [6], but the
exact number is still unknown. Specific settings might facilitate the
spread of infection e.g., in skilled nursing facility where more than half
of residents with positive test results were asymptomatic at the time of
testing and most likely contributed to transmission [7,8]. The proposed
3-stage classification system of potential increasing severity for COVID-
19 infection encompasses stage I (early infection), stage II (pulmonary

phase), and stage III (hyperinflammation phase) [9]. Although the most
frequent and critical clinical presentation is secondary to the involve-
ment of the lung (fever, cough), the infection by SARS-CoV-2 virus may
lead to a systemic and multi-organ disease [10], also involving the
gastrointestinal tract (nausea/vomiting, or diarrhea) [11,12]. The liver
appears to be the second organ involved, after the lung [13–15].

The present paper explores the available evidences on liver in-
volvement in patients with COVID-19 infection, to provide a compre-
hensive understanding of the phenomenon, and to anticipate effective
follow-up.

2. Symptoms

During COVID-19 infection, patients can be asymptomatic or pre-
sent clinical symptoms ranging from fever, dry cough, headache to
dyspnea and fatigue, to acute respiratory distress syndrome (ARDS),
shock, and cardiac failure [9,16]. A nasopharyngeal swab is the col-
lection method used to obtain a specimen for testing. Because the
likelihood of the SARS-CoV-2 being present in the nasopharynx in-
creases over time, repeated testing is often used [17]. Multi-organ
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involvement secondary to COVID-19 infection occurs in a subgroup of
patients [10]. COVID-19 infection can be associated with myocardial
injury [18–20], heart failure [18], vascular inflammation, myocarditis,
cardiac arrhythmias [19], and hypoxic encephalopathy [21]. The pro-
gression and prognosis of COVID-19 infection is worse in the presence
of diabetes mellitus [22,23]. The case-fatality rate increases with age
(from 8% to 15% in the age range 70-79 years, and ≥80 years, re-
spectively) and with associated diseases, i.e., 11%. 7%, 6%, 6%, and 6%
in patients with cardiovascular disease, diabetes mellitus, chronic re-
spiratory disease, hypertension, and cancer, respectively [24].

During COVID-19 infection, gastrointestinal manifestations may
appear, as reported from China [11,12] and among U.S. patient popu-
lation [25]. The appearance of gastrointestinal symptoms could even
represent the chief complaints [10,26]. The overall prevalence of GI
symptoms was 18% (diarrhea 13%, nausea, vomiting 10%, and ab-
dominal pain 8%) in Hong Kong [27], and 11.4% in another study in
Zhejiang province [26]. Gastrointestinal involvement could be the
consequence of COVID-19- Angiotensin-Converting Enzyme 2 (ACE2)
receptors at the enterocyte level (i.e. glandular cells of gastric, duodenal
and distal enterocytes), resulting in malabsorption, unbalanced in-
testinal secretion and activated enteric nervous system, therefore
diarrhoea) [28,29]. In human small intestinal organoids, SARS-CoV-2
rapidly infects the enterocytes and strongly induces a generic viral re-
sponse program, pointing to a marked viral replication in the intestinal
epithelium [30] .

Notably, continuous viral RNA shedding occurs into feces up to 11
days negativity of respiratory samples [31]. It is difficult to establish if
the virus is viable using nucleic acid detection [31,32]. Further research
is required by using fresh stool samples at later time points in patients
with extended duration of faecal sample positivity to the possibility of
fecal-oral route transmission [31]. A study reported that the virus can
be detected but not cultivated from stool (despite high RNA con-
centration), consistent with the lack of transmission [33]. In a case-
control study from USA (enrolling 278 COVID-19 positive patients and
238 COVID-19 negative patients), the presence of gastrointestinal
symptoms was predictive of COVID-19 positivity, and symptoms were
associated with slower and less severe disease course [34].

3. General mechanisms of damage

Most important pathogenic mechanisms act at local and systemic
levels, and play a critical role in the evolution of the disease. Steps
include: (i) Inoculation and multiplication in the human body, when the
virus binds to ACE2 receptors [35–37] to enter the target cell [38].
Receptors are well expressed in epithelia of the lung, gastrointestinal
tract, and vascular endothelium, also in the liver [39]. This early period
of COVID-19 infection can evolve to the second stage of viral pneu-
monia.; (ii) Extra-pulmonary systemic hyperinflammation syndrome
occurs in the minority of infected patients, and is characterized by the
so-called “cytokine storm”. At this moment, several cytokine levels in-
crease, namely interleukin (IL)-2, IL-6, IL-7, IL-10, and tumor necrosis
factor (TNF)α. Additional inflammatory biomarkers include granulo-
cyte-colony stimulating factor, interferon (IFN)-γ inducible protein 10,
monocyte chemoattractant protein 1, macrophage inflammatory pro-
tein 1-α, lymphopenia (in CD4+ and CD8+ T cells), decreased IFNγ
expression in CD4+ T cells [40–42], and monocyte chemoattractant
protein-1 (MCP-1) [42]. Increased serum levels of D-dimer, troponin
and N-terminal pro B-type natriuretic peptide (NT-proBNP) can also
occur, together with altered coagulation function [43–45]. An extensive
meta-analysis included 21 studies describing 3,377 patients, and 33
laboratory parameters, with respect to severe and non-severe COVID-19
infection and (in another 3 studies totaling 393 patients) survivors and
non-survivors of the disease. Patients with severe and fatal disease had
significantly increased white blood cell count, and decreased lympho-
cyte and platelet counts compared to non-severe disease and survivors.
Biomarkers of inflammation, muscle and cardiac injury, as well as liver

and kidney function and coagulation measures also increased in pa-
tients with both severe and fatal COVID-19. Severe disease was char-
acterized by elevated levels of interleukins 6 (IL-6) and 10 (IL-10) and
serum ferritin [46].

4. Liver involvement

ACE2 receptors in the liver are expressed mainly in cholangiocytes
(60% of cells), minimally expressed in hepatocytes (3% of cells), and
absent in Kuppfer cells [36,39,47]. The presence of these receptors,
together with the local effects of systemic inflammation and possible
iatrogenic toxicity seem to be the main mechanisms involved in the
onset of liver damage in COVID-19 patients.

Involvement of the liver with elevated serum alanine amino-
transferase (AST), aspartate aminotransferase (ALT), and lactate dehy-
drogenase (LDH) activities has been firstly reported this year in 43% of
the 99 COVID-19 cases from Wuhan [48]. This aspect deserves further
attention.

Although the level of serum transaminases could be already ele-
vated before the onset of COVID-19, results from clinical reports and
autopsy studies [26,49,50] suggest that liver dysfunction can be an
expression of a worse disease evolution, and that an isolated elevation
of transaminases alone is likely to be the indirect expression of a sys-
temic inflammation.

Previous data from COVID-19 outbreak in China found that 2-11%
of patients had liver comorbidities, 14-53% of patients presented with
abnormal serum aminotransferases levels during the disease, and that
the rates of liver dysfunction were more present in subjects with the
most severe clinical presentation [26,49]. In another large series of 417
Chinese COVID-19 patients, abnormal liver tests (AST, ALT, total bi-
lirubin, GGT) were present in 76.3% of patients and 21.5% of subjects
showed liver injury during hospitalization, in particular during the first
two weeks after admittance. In addition, patients with abnormal liver
tests had higher risks of progressing to severe disease. One point was
therefore that clinicians should carefully monitor the detrimental ef-
fects on liver injury mainly related to certain medications during hos-
pital admission [51]. Acute liver injury had a prevalence of 15.4% in
187 patients with confirmed COVID-19 in Wuhan [52]. Whereas gas-
trointestinal symptoms may occur without clinically evident respiratory
involvement [53], abnormal liver function tests during COVID-19 have
not been linked with any specific symptoms.

4.1. Liver test abnormalities

Mild liver involvement occurs in more than one-third of infected
patients who can show elevated serum ALT or AST, elevated LDH,
creatinine kinase or myoglobin, abnormal prothrombin time and high
gamma-glutamyl transferase (GGT) during COVID-19 progression, as
observed at intensive care units (ICU) or normal care units (NCU)
during hospitalization [10,49,54–59].

A large retrospective, multicenter study in Chinese adults with
COVID-19 pneumonia described a dynamic pattern of liver injury in-
dicators, with a first elevation of AST, followed by ALT in severe pa-
tients, and mild fluctuations of total bilirubin levels irrespective of
disease severity. In this series of patients, AST levels were strongly as-
sociated with the mortality risk [60] .

Hyperbilirubinemia was observed in 11% to 18% of cases [48,49]. A
clear and severe cholestatic pattern is absent during COVID-19 infec-
tion. In a comprehensive review examining 14 eligible studies [61],
elevated AST and ALT activities were reported in Guangzhou Medical
University, China, in 6% to 22% and 21% to 28% of patients, respec-
tively. In studies from Wuhan, AST levels were increased in 24% to 37%
of patients, a proportion higher than in other Chinese regions (Zhe-
jiang), reporting a proportion of 16%. A gender difference might exist
in this respect [62], since the prevalence of AST increase is higher in
men than women, as documented by six case series (i.e., average 66%
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vs. 35%, respectively). Case reports and case series also suggest that the
probability of developing liver dysfunction increases with older age
[61]. Notably, the elevation of aminotransferases was mild, with no
report about intrahepatic cholestasis or liver failure. It is a possible that
abnormal liver function tests during COVID-19 infection are transient.
Abnormalities often coexist with increased enzyme activities from
muscle and heart. Changes may not affect liver-related morbidity and
mortality.

4.2. Mechanisms of liver damage directly or indirectly related to COVID-19
infection in the normal liver

The main target of COVID-19 is the lung via ACE2 receptors
[63,64]. However, SARS-CoV2 RNA has been detected in feces
[27,31,32], with a longer presence in faecal samples, as compared with
respiratory samples [31]. The presence of the virus in gut lumen could
lead to translocation into the liver via portal flow, with direct negative
effects on hepatic cells (unconfirmed hypothesis). The liver damage
occurring during COVID-19 infection is likely of multifactorial origin.

In particular, during COVID-19 progression, the liver could be in-
volved either as a direct target of the SARS-CoV-2 (e.g. hepatocyte
apoptosis [65] or caspase-dependent pathways [66]) and secondary to
the complex pathways of systemic alterations promoted by the viral
infection, mainly including inflammation and cytokine release (in-
cluding IL-1, IL-6, IL-10 [67]), immune response, altered coagulation,
hepatic ischemia and hypoxia, and sepsis-related abnormalities.

Additional elements possibly concurring to liver damage are drug-
related injury and the progression of underlying liver diseases.

It is still under debate if these alterations can really be an expression
of a clinically relevant liver injury requiring particular attention in the
management of the disease [13, 68]. In one study, patients developing
abnormal liver tests had higher risks of progressing to severe disease
[51], and the finding is associated with longer hospital stay [62]. In
addition, the more severe form of COVID-19 infection is a predisposing
condition to a more evident liver damage [10, 49, 69], and therefore
also patients admitted to ICU [59].

Table 1 depicts the most distinctive post-mortem histopathological
changes of the liver from patients with COVID-19. Remarkably, liver
failure and bile duct injuries were not reported in these studies.

Liver damage is more likely to occur in patients with more severe
disease [9], in whom concomitant alterations of liver function tests are
more likely [10, 42]. Aggravating factors include ischemic/hypoxic
liver injury [70], and immunologic, inflammatory and toxic mechan-
isms promoted by systemic sepsis [71]. Viral inclusions seem to be
absent in the liver [57], but this possibility deserves further investiga-
tions, because of potential viral RNA translocation from intestine
though portal blood.

Another possibility is the direct damage from COVID-19.
Cholangiocytes express ACE2 receptors (more that 20-fold than in he-
patocytes). Although cell damage can also occur at the level of bile
ducts [72, 73], specific abnormalities of bile duct chemistry [49], major
histological abnormalities [57], and liver failure [14] are rare. A major
involvement of cholangiocytes during COVID-19 would parallel in-
creased levels of serum alkaline phosphatase, but this is an uncommon
finding. Likely, COVID-19 promotes liver damage mainly through ACE2
receptors expressed in endothelial cells [39]. These cells actively par-
ticipate to liver ischemia-reperfusion damage and promote oxidant
stress via reactive oxygen species (ROS) and nitric oxide (NO) deriva-
tives [74].

COVID-19 infection can progress to the inflammatory cytokine
storm [75], which involve both the innate (Toll-like receptors, TLRs)
and the cellular adaptive immunity (killer T lymphocytes) [76, 77]. The
deleterious sequence, resembling pictures evolving during sepsis, in-
cludes COVID-19 infection, activation of intrahepatic CD4+ and CD8+
T-cells, Kupffer cells, activation of B cells and release of antiviral an-
tibodies [13, 78]. These pathways evolve towards apoptosis and ne-
crosis of infected cells with release of damage-associated molecular
patterns and inflammatory signals which can interact with TLRs [76,
77]. Further complications include bacterial infections, more pro-in-
flammatory signaling pathways, macrophage activation and more in-
flammatory responses. The involvement of the innate immune system,
becoming defective during COVID-19 infection, is further supported by
depressed platelet counts, activation of coagulative and fibrinolytic
pathways, increased neutrophil counts and neutrophil to lymphocyte
ratios, as well as hyperferritinemia [10]. Elderly patients go worse, in
this respect [79]. This sudden and immense immune hyperactivation
may result in multiple organ failure lungs but also to the liver, heart,
and kidneys [75]. Serum levels of the monocyte chemoattractant pro-
tein-1 (MCP-1), in particular, are increased in COVID-19 patients [42].
This chemokine has a critical role in the pathogenesis of liver disease
[80], and is able to exacerbate steatohepatitis [12].

A further mechanism of liver damage includes the pneumonia-as-
sociated hypoxic damage in the liver, as the consequence of respiratory
distress syndrome, hyperinflammatory response, and multiple organ
failure [61]. The prevalence of this condition should be lower than
above-mentioned conditions [13]. Hepatocyte cell death will result
from the ongoing status of hepatic ischemia and hypoxia-reperfusion
dysfunction, leading to hyperaccumulation of lipids, production of re-
active oxygen species and increased oxidant stress and further pro-in-
flammatory molecules [81]. In this context, mitochondrial damage may
also play a role [82, 83].

4.3. The impact of a pre-existing liver disease

In general, an underlying liver disease represents a potential risk
factor for COVID-19 evolution to severe infection [84]. Conditions
might include the ongoing liver damage due to chronic hepatitis B,
combined HBV/HCV hepatitis (with risk of enhanced replication of
hepatitis virus [85]), nonalcoholic fatty liver disease (NAFLD)(because
of associated comorbidities of diabetes and cardiovascular disorder, and
increased susceptibility to drugs) [86] liver cirrhosis [87], patients
undergone liver transplant and who are on immunosuppressants [71],
patients with hepatocellular carcinoma and immune-deficient status
[31]. Preventive measures are highly recommended in these patients
[88]. The aspect related to an underlying liver disease, represents a
major burden in China, where liver diseases, primarily viral hepatitis
(predominantly hepatitis B virus, HBV), NAFLD and alcoholic liver
disease affect approximately 300 million people [87]. Similar aspects,
e.g. liver disorder connected with underlying metabolic abnormalities,
are frequent in Western industrialized countries. In particular, the issue
of COVID-19 infection and underlying metabolic abnormalities should
also consider liver steatosis. NAFLD refers to the development of ab-
normal hepatic steatosis in the absence of other causes for secondary

Table 1
Major post-mortem histopathological changes of the liver from patients with
COVID-19

Reference Findings

Xu et al., 2020 [57] Microvescicular steatosis
Mild lobular and portal activity

Liu et al., 2020 [50] Hepatomegaly
Hepatocyte degeneration
Lobular focal necrosis
Neutrophil infiltration
Infiltration of lymphocytes and monocytes (portal area)
Congestion of hepatic sinuses with microthrombosis.

Tian et al., 2020 [126] Mild sinusoidal dilatation
Mild lobular lymphocytic infiltration
Patchy hepatic necrosis in the periportal and
centrilobular areas

Ji et al., 2020 [99] Microvesicular steatosis
Overactivation of T cells
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hepatic fat accumulation. NAFLD is the most common liver disorder in
Western industrialized countries, (prevalence ranging from 10 to 46%
in the United States [89-91]) and a median of 20% worldwide with a
documented rising trend with time [92]. This trend in North America
and Europe is the consequence of the rising prevalence of major risk
factors for NAFLD, including obesity, sedentary lifestyles, type 2 dia-
betes mellitus, dyslipidaemia, and metabolic syndrome [92-95]. How-
ever, lean non-alcoholic steatohepatitis (NASH) can develop as well
[94] and is frequent in Asia [96]. Overall, factors contributing to
NAFLD include the environment, the gut microbiome, disrupted gluco-
lipid metabolic pathways, metabolic inflammation primarily mediated
by innate immune signalling, comorbidities and genetic risk factors [97,
98].

In the study by Ji et al., 202 patients with COVID-19 infection and
NAFLD (assessed by steatosis index and/or abdominal ultra-
sonography), developed liver injury in 50% and 75% of cases on ad-
mission and during hospitalization, respectively [99]. NAFLD [86],
higher BMI [86], and age [79], as well as underlying liver disease [86]
were associated with COVID-19 progression. Thus, patients suffering
from NAFLD could be vulnerable to COVID-19 infection and viral-re-
lated complications. These patients might display an increased risk of
NAFLD progression to steatohepatitis in the long-term [100]. Notably,
ACE2 expression is significantly increased in liver injury in both hu-
mans and rat, likely in response to increasing hepatocellular hypoxia
[101].

Furthermore, as described above, a previous NAFLD could be ex-
acerbated by chemokines released during SARS-CoV-2 infection [12,
80].

In addition, the presence of NAFLD can put patients at increased risk
of a severe course of COVID-19, due to the frequent coexistence of
metabolic comorbidities such as diabetes, hypertension, and obesity
[86]. Non-cirrhotic patients with NAFLD/NASH can be considered as
cardio-metabolic subjects and, therefore, at very high risk of COVID-19
complications. From a pathogenic point of view, the presence of in-
flammatory pathways (in particular those involving cytokines) common
to NAFLD [102-104] and COVID-19 [40-42, 46] might increase the risk
of liver inflammation in subjects with NAFLD and further aggravate the
outcome if these patients are infected with the SARS-CoV-2. In a Chi-
nese retrospective study, the presence of NAFLD was linked with a high
risk of COVID-19 progression, and with longer viral shedding time, as
compared to patients without NAFLD [99].

According to the EASL-ESCMID position paper [86], based on the
experience on Chinese patients [49], chronic viral hepatitis would not
increase the risk of a severe course of COVID-19. However, in patients
with advanced liver disease and after liver transplantation there is in-
creased risk of infection and/or a severe course of COVID-19 [86, 105].

Patients with autoimmune hepatitis or on immunosuppressive
medications can be at increased risk for severe COVID-19 outcomes
[105, 106]. According to the recent AASLD guidelines, this group of
patients should be prioritized for testing until further will become
available. Furthermore, in COVID-19 patients with autoimmune hepa-
titis or previous liver transplantation, a more aggressive approach is
required, i.e., a suspect flare or acute cellular rejection should not be
based on liver biochemistry alone but should undergo liver biopsy
confirmation [105]. In addition, a flare of autoimmune liver disease due
to unnecessary drug reduction or withdrawal would lead to increased
doses of steroids. This possibility, in turn, will expose patients to in-
creased risks of SARS-CoV-2 infection [106]. The immunosuppressive
therapy in COVID-19 patients with liver disease should be minimized
but not stopped [105].

During COVID-19 pandemic and afterwards (“Phase 2”), measures
of social distancing aimed at the primary prevention of the infection,
see the key involvement of the national health system. Such measures
can influence the regular path of care of patients with chronic liver
diseases, particularly those with decompensated cirrhosis, hepatocel-
lular carcinoma and waiting for liver transplantation [105]. This

approach could lead to increased decompensation, morbidity, onset of
complications or transplant waiting list dropout. In this context, the
preventive care provided to these patients must be intensified and tools
imply, whenever possible, telehealth programs and reorganization of
care delivery [107].

4.4. The liver damage caused by agents used for treatment of the infection

During COVID19 infection, liver damage could originate following
the use of drugs, as suggested by the presence of microvescicular
steatosis, and liver inflammation [57]. Agents include potentially he-
patotoxic antiviral drugs employed off-label to treat the infection, as
well as the use of antibiotics (quinolones, macrolides) in preventing/
treating bacterial superinfections, antipyretics, or steroids [62, 108].

Liver toxicity might involve the drug-cytochrome P-450 interaction,
as reported for azithromycin [109, 110], lopinavir/ritonavir [62, 111],
hydroxy-chloquine [112, 113], and acetaminophen [114, 115].

A study was conducted from clinical records and laboratory results
from 417 laboratory-confirmed COVID-19 patients admitted to the
hospital in Shenzhen, China, treatment with lopinavir/ritonavir lead to
increased odds of liver injury [51]. This observation is in line with
results from a retrospective study in 148 patients in Shangai Hospital,
showing that abnormal liver function tests was more frequent among
those receiving lopinavir/ritonavir after hospital admission [62]. Re-
mdesivir, a nucleoside analog prodrug developed by Gilead Sciences
(USA), is effective against COVID-19 replication in vitro [116] and in
infected patients [117]. This drug produced similar effects on liver
enzymes [118]. Hydroxy Chloroquine sulphate is also effective in vitro
[116] and, in COVID-19 patients for short periods, appears to safe. Rare
case of fulminant hepatic failure have been described with Hydroxy
Chloroquine [119, 120]. Acute liver injury is also possible after azi-
thromycin treatment, with a clinically evident presentation following
about two weeks after drug cessation, and after an average duration of
treatment of 4 days [121]. Several patients with concomitant diseases
(i.e. diabetes type 1 or 2, or hypertensive), undergo antihypertensive
therapies with ACE inhibitors and angiotensin II type I receptor
blockers. In this context, a possibility is the onset of ACE2 over-
expression. Whether this condition will facilitate COVID-19 infection
and penetrance, deserves further attention [122, 123]. There is no
evidence, however, that ACE inhibitors will worsen the consequence of
infection [123]. Many patients with fever use antipyretic agents,
namely acetaminophen [124]. This drug might mediate, at least in part,
the liver damage [57].

Patients with underlying metabolic abnormalities and NAFLD might
be more exposed to drug-induced liver damage (DILI) [99, 108]. As
mentioned earlier, the cytokine MCP-1 is often increased in COVID-19
patients [42] and act as a further hit for steatohepatitis [125]. In ad-
dition, patients with NAFLD/nonalcoholic steatohepatitis (NASH)
COVID-19 infection, might be more susceptible to DILI, as well as to
therapy with steatogenic drugs (amiodarone, sodium valproate, ta-
moxifen and methotrexate), and/or ischemic damage to the liver [108].

According to the recent AASLD guidelines, regular monitoring of
liver function should be considered in all hospitalized COVID-19 pa-
tients, in particular in those treated with remdesevir or tocilizumab,
irrespective of baseline value of liver biochemistry [105].

Thus, mainly due to possible interplay between mechanisms of liver
damage promoted by SARS-CoV-2 infection and potential drug-induced
hepatic side-effects, liver function tests should be carefully monitored
independently from the presence of a pre-existing liver disease. This is
particularly true when using biological agents against targeting the
inflammatory/immunological responses.

5. Conclusion

Preliminary observations accumulated from China, following the
COVID-19 outbreak in Wuhan, show that liver involvement during
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COVID-19 infection may affect about one-third of the patients, with
prevalence greater in men than women, and in elderly. Although the
manifestations of liver damage are usually mild (elevated serum ami-
notransferases), mechanisms are complex, and include underlying liver
injury, direct cholangiopathy, use of antiviral drugs, hyperin-
flammatory status, and underlying hypoxia (Figure 1). Thus, the ap-
pearance of liver involvement during COVID-19 infection requires at-
tention. This is particularly true since typical patients are older, with a
pre-existing history of liver diseases, and essentially because the prog-
nosis of lung infection is worse, and hospital stay is longer. Further-
more, the impact of COVID-19 on subjects with pre-existing liver dis-
eases should be clarified. Position papers from scientific societies on the
management of such patients are appearing, in this respect [86].
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