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INFINITELY MANY SOLUTIONS
FOR SOME NONLINEAR SUPERCRITICAL PROBLEMS

WITH BREAK OF SYMMETRY
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Abstract. In this paper, we prove the existence of infinitely many weak bounded solutions
of the nonlinear elliptic problem

{
−div(a(x, u,∇u)) +At(x, u,∇u) = g(x, u) + h(x) in Ω,
u = 0 on ∂Ω,

where Ω ⊂ RN is an open bounded domain, N ≥ 3, and A(x, t, ξ), g(x, t), h(x) are given
functions, with At = ∂A

∂t
, a = ∇ξA, such that A(x, ·, ·) is even and g(x, ·) is odd. To this aim,

we use variational arguments and the Rabinowitz’s perturbation method which is adapted to
our setting and exploits a weak version of the Cerami–Palais–Smale condition. Furthermore,
if A(x, t, ξ) grows fast enough with respect to t, then the nonlinear term related to g(x, t)
may have also a supercritical growth.
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–Rabinowitz condition, break of symmetry, perturbation method, supercritical growth.

Mathematics Subject Classification: 35J20, 35J62, 35J66, 58E05.

1. INTRODUCTION

During the past years there has been a considerable amount of research in obtaining
multiple critical points of functionals such as

J (u) =
∫

Ω

A(x, u,∇u)dx−
∫

Ω

F (x, u)dx, u ∈ D,

where D is a subset of a suitable Sobolev space, A : Ω×R×RN → R and F : Ω×R→ R
are given functions with Ω ⊂ RN open bounded domain, N ≥ 3.
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A family of model problems is given by

A(x, t, ξ) =
N∑

i,j=1
ai,j(x, t)ξiξj

with (ai,j(x, t))i,j elliptic matrix. In particular, if ai,j(x, t) = 1
2δ
j
i Ā(x, t) for a given

function Ā : Ω× R→ R, then it is A(x, t, ξ) = 1
2 Ā(x, t)|ξ|2.

In the simplest case A(x, t, ξ) = 1
2 |ξ|2, functional J , defined on D = H1

0 (Ω), is the
standard action functional associated to the classical semilinear elliptic problem

{
−∆u = f(x, u) in Ω,
u = 0 on ∂Ω,

with f(x, t) = ∂F
∂t (x, t). If F (x, t) has a subcritical growth with respect to t and verifies

other suitable assumptions, existence and multiplicity of critical points of the C1

functional J have been widely studied by many authors in the last sixty years (see
[23,25] and references therein).

On the other hand, when A(x, t, ξ) = 1
2 Ā(x, t)|ξ|2, with Ā(x, t) smooth, bounded,

far away from zero but Āt(x, t) 6≡ 0, even if F (x, t) ≡ 0, the corresponding functional

J̄0(u) = 1
2

∫

Ω

Ā(x, u)|∇u|2dx

is defined in H1
0 (Ω) but is Gâteaux differentiable only along directions which are in

H1
0 (Ω) ∩ L∞(Ω).
In the beginning, such a problem has been overcome by introducing suitable

definitions of critical point and related existence results have been stated (see, e.g.,
[2, 3, 17,21]). More recently, it has been proved that suitable assumptions assure that
functional J is C1 in the Banach space X = H1

0 (Ω)∩L∞(Ω) equipped with the norm
‖ · ‖X given by the sum of the classical norms ‖ · ‖H on H1

0 (Ω) and | · |∞ in L∞(Ω)
(see [7] if A(x, t, ξ) = 1

2 Ā(x, t)|ξ|2 and [8] in the general case). Furthermore, its critical
points in X are weak bounded solutions of the quasilinear elliptic problem{

−div(a(x, u,∇u)) +At(x, u,∇u) = f(x, u) in Ω,
u = 0 on ∂Ω,

with
At(x, t, ξ) = ∂A

∂t (x, t, ξ), a(x, t, ξ) = ( ∂A∂ξ1
(x, t, ξ), . . . , ∂A∂ξN (x, t, ξ)). (1.1)

In order to study the set of critical points of a C1 functional J on a Banach space
(Y, ‖ · ‖Y ), but avoiding global compactness assumptions, Palais and Smale introduced
the following condition (see [20]).
Definition 1.1. A functional J satisfies the Palais–Smale condition at level β (β ∈ R),
briefly (PS)β condition, if any (PS)β-sequence, i.e., any sequence (un)n ⊂ Y such
that

lim
n→+∞

J(un) = β and lim
n→+∞

‖dJ(un)‖Y ′ = 0,

converges in Y , up to subsequences.
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We note that if J satisfies (PS)β condition, the set of the critical points of J at
level β is compact.

Later on, in [18] Cerami weakened such a definition by allowing a sequence to go
to infinity but only if the gradient of the functional goes to zero “not too slowly”.

Definition 1.2. A functional J satisfies the Cerami’s variant of Palais–Smale condition
at level β (β ∈ R), briefly (CPS)β condition, if any (CPS)β-sequence, i.e., any sequence
(un)n ⊂ Y such that

lim
n→+∞

J(un) = β and lim
n→+∞

‖dJ(un)‖Y ′(1 + ‖un‖Y ) = 0,

converges in Y , up to subsequences.

Unfortunately, our functional J in X may have unbounded Palais–Smale sequences
(see [11, Example 4.3]). Anyway, since X is equipped with two different norms, namely
‖ · ‖X and ‖ · ‖H , according to the ideas already developed in previous papers (see, e.g.,
[7, 9, 11]) a weaker version of (CPS) condition can be introduced when the Banach
space Y is equipped with a second norm ‖ · ‖∗ such that (Y, ‖ · ‖Y ) is continuously
imbedded in (Y, ‖ · ‖∗).
Definition 1.3. A functional J satisfies a weak version of the Cerami’s variant of
Palais–Smale condition at level β (β ∈ R), briefly (wCPS)β condition, if for every
(CPS)β-sequence (un)n a point u ∈ Y exists such that

(i) lim
n→∞

‖un − u‖∗ = 0 (up to subsequences),
(ii) J(u) = β, dJ(u) = 0.

If J satisfies the (wCPS)β condition at each level β ∈ I, I real interval, we say that
J satisfies the (wCPS) condition in I.

We note that if β ∈ R is such that (wCPS)β condition holds, then β is a critical
level if a (CPS)β-sequence exists, furthermore the set of the critical points of J at
level β is compact but with respect to the weaker norm ‖ · ‖∗.

Moreover, (wCPS)β condition is enough for proving a Deformation Lemma (see
[9, Lemma 2.3]) and extending some critical point theorems (see [15]), but, contrary to
the classical (CPS) condition, it it is not sufficient for finding multiple critical points
if they occur at the same critical level. We remark that such a problem is avoided by
replacing (CPS)β-sequences with (PS)β-sequences in Definition 1.3 and then a more
general Deformation Lemma can be stated (see [11, Proposition 2.4]).

If F (x, t) grows as |t|q with 2 < q < 2∗ and satisfies the Ambrosetti–Rabinowitz
condition, then it is possible to find at least one critical point, or infinitely many ones
if J is even, by applying a suitable version of the Mountain Pass Theorem, or its
symmetric variant (see [7, 8] and, for the abstract setting, [9]). Such results still hold
if F (x, t) has a suitable supercritical growth but function A(x, t, ξ) satisfies “good”
growth assumptions (see [15] and, for a different type of supercritical problems, see,
e.g., [1]).

Furthermore, the existence of multiple critical points has been stated in [10, 11, 14]
for different sets of hypotheses on F (x, t).
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We note that all the previous results still hold if A(x, t, ξ) increases as |ξ|p for
any p > 1.

More recently, infinitely many critical points have been found in break of symmetry
if A(x, t, ξ) = 1

2 Ā(x, t)|ξ|2 and F (x, t) = G(x, t) + h(x)t, with Ā(x, ·) and G(x, ·) even
(see [16]).

In order to give an idea of the difficulties which arise dealing with functional J
in X, in this paper we extend the result in [16] to a more general term A(x, t, ξ) which
increases as |ξ|2.

More precisely, we look for weak bounded solutions of the nonlinear elliptic problem
{
−div(a(x, u,∇u)) +At(x, u,∇u) = g(x, u) + h(x) in Ω,
u = 0 on ∂Ω,

(1.2)

where Ω ⊂ RN is an open bounded domain, N ≥ 3, and A : Ω × R × RN → R,
g : Ω× R→ R, h : Ω→ R are given functions, with A(x, ·, ·) even and g(x, ·) odd.

Hence, as already remarked, under suitable assumptions for A(x, t, ξ), g(x, t)
and h(x), we study the existence of infinitely many critical points of the C1 functional

J (u) =
∫

Ω

A(x, u,∇u)dx−
∫

Ω

G(x, u)dx−
∫

Ω

hudx, u ∈ X, (1.3)

with G(x, t) =
∫ t

0 g(x, s)ds.
If h(x) ≡ 0, functional J in (1.3) reduces to the even map

J0(u) =
∫

Ω

A(x, u,∇u)dx−
∫

Ω

G(x, u)dx, u ∈ X. (1.4)

If h(x) 6≡ 0 the symmetry is broken. Anyway, some perturbation methods,
introduced in the classical case A(x, t, ξ) ≡ 1

2 |ξ|2, allow one to prove the existence of
infinitely many critical points also for a not–even functional (see [4, 5, 22,24]). Here,
we prove a multiplicity result for our functional J by adapting to our setting the
Rabinowitz’s perturbation method in [22].

As our main theorem needs a list of hypotheses, we will give its complete statement
in Section 2 (see Theorem 2.6). Anyway, we point out that, as in [15,16], if function
A(x, t, ξ) satisfies “good” growth assumptions then the nonlinear term G(x, t) can
have also a supercritical growth. Moreover, in the particular case G(x, t) = 1

q |t|q,
the interval of variability for q is larger than the one found by Tanaka in [26] (see
Remark 2.9).

This paper is organized as follows. In Section 2, we introduce the hypotheses for
A(x, t, ξ), G(x, t) and h(x), we give the variational formulation of our problem and
state our main result. Then, in Section 3 we introduce the perturbation method
and in Section 4 we prove that J satisfies a weak version of the Cerami–Palais–Smale
condition. Finally, in Section 5, we give the proof of our main theorem.
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2. VARIATIONAL SETTING AND THE MAIN RESULT

From now on, let A : Ω × R × RN → R and g : Ω × R → R be such that, using
the notations in (1.1), the following conditions hold:

(H0) A(x, t, ξ) is a C1 Carathéodory function, i.e.,
A(·, t, ξ) : x ∈ Ω 7→ A(x, t, ξ) ∈ R is measurable for all (t, ξ) ∈ R× RN ,
A(x, ·, ·) : (t, ξ) ∈ R× RN 7→ A(x, t, ξ) ∈ R is C1 for a.e. x ∈ Ω;

(H1) some positive continuous functions Φi, φi : R→ R, i ∈ {1, 2}, exist such that

|At(x, t, ξ)| ≤ Φ1(t) + φ1(t)|ξ|2 a.e. in Ω, for all (t, ξ) ∈ R× RN ,
|a(x, t, ξ)| ≤ Φ2(t) + φ2(t)|ξ| a.e. in Ω, for all (t, ξ) ∈ R× RN ;

(G0) g ∈ C(Ω× R,R);
(G1) a1, a2 > 0 and q ≥ 1 exist such that

|g(x, t)| ≤ a1 + a2|t|q−1 a.e. in Ω, for all t ∈ R.

Remark 2.1. From (G1) it follows that a′1, a′2 > 0 exist such that

|G(x, t)| ≤ a′1 + a′2|t|q a.e in Ω, for all t ∈ R. (2.1)

We note that, unlike assumption (G1) in [8], no upper bound on q is actually required.

In order to investigate the existence of weak solutions of the nonlinear problem
(1.2), we consider the Banach space (X, ‖ · ‖X) defined as

X := H1
0 (Ω) ∩ L∞(Ω), ‖u‖X = ‖u‖H + |u|∞

(here and in the following, | · | will denote the standard norm on any Euclidean space
as the dimension of the considered vector is clear and no ambiguity arises).

Moreover, from the Sobolev Imbedding Theorem, for any r ∈ [1, 2∗[, 2∗ = 2N
N−2 as

N ≥ 3, a constant σr > 0 exists, such that

|u|r ≤ σr‖u‖H for all u ∈ H1
0 (Ω) (2.2)

and the imbedding H1
0 (Ω) ↪→↪→ Lr(Ω) is compact, where (Lr(Ω), | · |r) is the standard

Lebesgue space.
From definition, X ↪→ H1

0 (Ω) and X ↪→ L∞(Ω) with continuous imbeddings, and
thus X ↪→ Lr(Ω) for any r ≥ 1, too.

If the perturbation term h : Ω→ R is such that the associated operator

L : u ∈ X 7→
∫

Ω

h(x)u(x)dx ∈ R

belongs to X ′, then (H0) and (G0) allow us to consider the functional J : X → R
defined as in (1.3) and the following regularity result holds.
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Proposition 2.2. Let us assume that L ∈ X ′, the functions A(x, t, ξ) and g(x, t)
satisfy conditions (H0)–(H1), (G0)–(G1) and two positive continuous functions Φ0,
φ0 : R→ R exist such that

|A(x, t, ξ)| ≤ Φ0(t) + φ0(t)|ξ|2 a.e. in Ω, for all (t, ξ) ∈ R× RN . (2.3)
If (un)n ⊂ X, u ∈ X are such that

‖un − u‖H → 0, un → u a.e. in Ω if n→ +∞
and M > 0 exists so that |un|∞ ≤M for all n ∈ N,

then
J (un)→ J (u) and ‖dJ (un)− dJ (u)‖X′ → 0 if n→ +∞,

with
〈dJ (v), w〉 =

∫

Ω

(a(x, v,∇v) · ∇w +At(x, v,∇v)w)dx

−
∫

Ω

g(x, v)wdx−
∫

Ω

hwdx for any v, w ∈ X.
(2.4)

Hence, J is a C1 functional on X.
Proof. The proof follows by combining the arguments in [15, Proposition 3.2] with
those ones in [16, Proposition 3.3].

In order to prove more properties of functional J in (1.3), we require that some
constants αi > 0, i ∈ {1, 2, 3}, ηj > 0, j ∈ {1, 2}, and s ≥ 0, µ > 2, R0 ≥ 1, exist such
that the following hypotheses are satisfied:
(H2) A(x, t, ξ) ≤ η1a(x, t, ξ) · ξ a.e. in Ω if |(t, ξ)| ≥ R0;
(H3) |A(x, t, ξ)| ≤ η2 a.e. in Ω if |(t, ξ)| ≤ R0;
(H4) a(x, t, ξ) · ξ ≥ α1(1 + |t|2s)|ξ|2 a.e. in Ω, for all (t, ξ) ∈ R× RN ;
(H5) a(x, t, ξ) · ξ +At(x, t, ξ)t ≥ α2a(x, t, ξ) · ξ a.e. in Ω if |(t, ξ)| ≥ R0;
(H6) µA(x, t, ξ)−a(x, t, ξ) · ξ−At(x, t, ξ)t ≥ α3a(x, t, ξ) · ξ a.e. in Ω if |(t, ξ)| ≥ R0;
(H7) for all ξ, ξ∗ ∈ RN , ξ 6= ξ∗, it is

[a(x, t, ξ)− a(x, t, ξ∗)] · [ξ − ξ∗] > 0 a.e. in Ω, for all t ∈ R;
(G2) g(x, t) satisfies the Ambrosetti–Rabinowitz condition, i.e.

0 < µG(x, t) ≤ g(x, t)t for all x ∈ Ω if |t| ≥ R0.
Remark 2.3. If (H1)–(H6) hold, we deduce that in (H5) we can take α2 ≤ 1 and
suitable constants η3, η4 > 0 exist such that for a.e. x ∈ Ω, all (t, ξ) ∈ R × RN the
following estimates are satisfied:

A(x, t, ξ) ≥ α1
α2 + α3

µ
(1 + |t|2s) |ξ|2 − η3, (2.5)

|A(x, t, ξ)| ≤ η1 (Φ2(t) + φ2(t)) |ξ|2 + η1Φ2(t) + η2, (2.6)

a(x, t, ξ) · ξ ≤ η4µ

α2 + α3
|t|µ−

1+α3
η1 |ξ|2 if |t| ≥ 1 and |ξ| ≥ R0 (2.7)

(for more details, see Remarks 3.3, 3.4 and 3.5 in [15]).



Infinitely many solutions for some nonlinear supercritical problems. . . 181

Thus, from (2.6) the growth condition (2.3) holds and Proposition 2.2 applies.
At last, we note that (H4) and (2.7) imply that

0 ≤ 2s ≤ µ− 1 + α3
η1

(2.8)

and, in particular,
µ >

α3
η1
. (2.9)

From µ > 2 and (2.8) it follows that max{2, 2s} < µ. Actually, a stronger inequality
on µ can be deduced from a careful estimate of A(x, t, ξ).
Remark 2.4. If (H1)–(H6) hold, some constants α∗1, α∗2 > 0 exist such that

|A(x, t, ξ)| ≤ α∗1(1 + |t|µ−
α3
η1 ) + α∗2(1 + |t|µ−

α3
η1
−2)|ξ|2 (2.10)

for a.e. x ∈ Ω, all (t, ξ) ∈ R× RN (for more details, see [8, Lemma 6.5]).
Therefore, from (2.5) and (2.10) it results

2(s+ 1) ≤ µ− α3
η1
.

Then, since we can always choose η1 in (H2) large enough, it follows that

0 ≤ 2(s+ 1) < µ. (2.11)

Remark 2.5. Assumptions (G0) – (G2) and direct computations imply that some
strictly positive constants a3, a4 and a5 exist such that

1
µ

(g(x, t)t+ a3) ≥ G(x, t) + a4 ≥ a5 |t|µ for all (x, t) ∈ Ω× R. (2.12)

Hence, in our setting of assumptions on A(x, t, ξ) and g(x, t), estimates (2.1), (2.11)
and (2.12) imply that

2(s+ 1) < µ ≤ q. (2.13)
Now, we are able to state our main result.

Theorem 2.6. Assume that A(x, t, ξ), g(x, t) and h(x) satisfy conditions (H0)–(H7),
(G0)–(G2) and
(H8) A(x,−t,−ξ) = A(x, t, ξ) for a.e. x ∈ Ω, for all (t, ξ) ∈ R× RN ;
(G3) g(x,−t) = −g(x, t) for all (x, t) ∈ Ω× R;
(h0) h ∈ Lν(Ω) ∩ Lµ′(Ω) with ν > N

2 and µ′ = µ
µ−1 .

If
q < 2∗(s+ 1) and µ

µ− 1 <
2q

N(q − 2− 2s) , (2.14)

with s as in (H4), q as in (G1) and µ as in (G2) and (H6), then functional J has
infinitely many critical points (un)n in X such that J (un) ↗ +∞; hence, problem
(1.2) has infinitely many weak (bounded) solutions.
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Remark 2.7. We note that h ∈ Lµ′(Ω) implies L ∈ X ′ and, from X ↪→ Lµ(Ω) and
Hölder inequality, we obtain the estimate

∣∣∣∣∣∣

∫

Ω

hu dx

∣∣∣∣∣∣
≤ |h|µ′ |u|µ for all u ∈ X. (2.15)

On the other hand, we need h ∈ Lν(Ω) only for proving the boundedness of the weak
limit of the (CPS)–sequences in H1

0 (Ω) (see the proof of Proposition 4.5). Anyway,
if N ≥ 4 it results Lν(Ω) ∩ Lµ′(Ω) = Lν(Ω) as µ > 2 implies µ′ < N

2 .

Remark 2.8. For the classical problem (1.2) with A(x, t, ξ) ≡ 1
2 |ξ|2, it is s = 0, hence

Theorem 2.6 reduces to the well known result stated in [26] (see also [12, 13] where
a similar result is stated for a problem with non–homogeneous boundary conditions).

Furthermore, in the quasilinear model case A(x, t, ξ) = 1
2 Ā(x, t)|ξ|2, conditions

(H2) and (H7) are trivially verified and Theorem 2.6 reduces to [16, Theorem 3.4].

Remark 2.9. In the particular case g(x, t) = |t|q−2t we have µ = q, then estimate
(2.11) and condition (2.14) imply

2(s+ 1) < q <
2(N − 1)
N − 2 + 2Ns

N − 2 .

We recall that, if A(x, t, ξ) ≡ 1
2 |ξ|2, in [26] Tanaka proves the existence of infinitely

many solutions if

2 < q <
2(N − 1)
N − 2 . (2.16)

Therefore, if s > 0 the length of the allowed range of q, equal to 2
N−2 + 4s

N−2 , is larger
than 2

N−2 which comes from (2.16).

3. A PERTURBATION METHOD

From now on, assume that (H1)–(H6), (G0)–(G2) and (h0) hold. Thus, from Proposi-
tion 2.2 and Remarks 2.3 and 2.7, J in (1.3) is a C1 functional on X.

By J0 we denote the functional J corresponding to h ≡ 0 defined as in (1.4).
We note that, if (H8) and (G3) hold, then J0 is the even symmetrization of J , as

1
2 (J (u) + J (−u)) = J0(u) for all u ∈ X.

We know that, under the additional assumptions (H7)–(H8) and (G3), the existence
of infinitely many critical points for J0 in X has been proved in [15]. Here, we prove
a multiplicity result for the complete functional J in spite of the loss of symmetry.
To this aim, we use a suitable version of the Rabinowitz’s perturbation method
in [22] (see also [16, Section 4]) which requires the following technical lemmas.
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Lemma 3.1. For all u ∈ X it results
(
µ− α3

η1

)
J (u)− 〈dJ (u), u〉 ≥ α3

µη1

∫

Ω

(g(x, u)u+ a3)dx

−
(
µ− α3

η1
− 1
)∫

Ω

hudx− a6,

with η1 as in (H2), µ and α3 as in (H6), a3 as in (2.12) and a6 > 0 a suitable constant.

Proof. Taking u ∈ X, from (1.3), (2.4) and direct computations we have that
(
µ− α3

η1

)
J (u)− 〈dJ (u), u〉

=
∫

Ω

(µA(x, u,∇u)− a(x, u,∇u) · ∇u−At(x, u,∇u)u)dx

− α3
η1

∫

Ω

A(x, u,∇u)dx−
(
µ− α3

η1

)∫

Ω

(G(x, u) + a4)dx

+ a4

(
µ− α3

η1

)
|Ω|+

∫

Ω

(g(x, u)u+ a3)dx− a3|Ω| −
(
µ− α3

η1
− 1
)∫

Ω

hudx.

Then, setting
ΩuR0 = {x ∈ Ω : |(u(x),∇u(x))| ≥ R0},

from (H1), (H6), (2.6), (2.9) and (2.12) a constant a6 > 0 exists such that
(
µ− α3

η1

)
J (u)− 〈dJ (u), u〉 ≥ α3

∫

Ωu
R0

a(x, u,∇u) · ∇udx

− α3
η1

∫

Ωu
R0

A(x, u,∇u)dx+ α3
η1µ

∫

Ω

(g(x, u) + a3)dx

−
(
µ− α3

η1
− 1
)∫

Ω

hudx− a6;

hence, the thesis follows from (H2).

Lemma 3.2. A constant α∗ = α∗(|h|µ′) > 0 exists, such that

u ∈ X, |〈dJ (u), u〉| ≤ 1 =⇒ 1
µ

∫

Ω

(g(x, u)u+ a3)dx ≤ α∗
(
J 2(u) + 1

) 1
2 ,

with µ as in (H6) and a3 as in (2.12).
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Proof. From Lemma 3.1, (2.9) and (2.15) it follows that
(
µ− α3

η1

)
J (u)− 〈dJ (u), u〉 ≥ α3

η1µ

∫

Ω

(g(x, u)u+ a3)dx

−
(
µ− α3

η1
+ 1
)
|h|µ′ |u|µ − a6

(3.1)

(as useful in the following, we make the constant µ− α3
η1
− 1 grow to µ− α3

η1
+ 1).

Now, from one hand, (3.1), Young inequality with ε = α3
2η1

a5, and (2.12) imply
the existence of a suitable constant b0 = b0(α3, η1, µ, a5) > 0 such that for all u ∈ X
we have

α3
η1µ

∫

Ω

(g(x, u)u+ a3)dx−
(
µ− α3

η1
+ 1
)
|h|µ′ |u|µ − a6

≥ α3
η1µ

∫

Ω

(g(x, u)u+ a3)dx− α3
2η1

a5|u|µµ

− b0
(
µ− α3

η1
+ 1
)µ′
|h|µ

′

µ′ − a6

≥ α3
2η1µ

∫

Ω

(g(x, u)u+ a3)dx− a7,

(3.2)

with a7 = b0

(
µ− α3

η1
+ 1
)µ′
|h|µ

′

µ′ + a6.
On the other hand, taking u ∈ X such that |〈dJ (u), u〉| ≤ 1, we have

(
µ− α3

η1

)
J (u)− 〈dJ (u), u〉 ≤

(
µ− α3

η1

)
J (u) + 1. (3.3)

Whence, (3.1)–(3.3) imply
(
µ− α3

η1

)
J (u) + 1 ≥ α3

2η1µ

∫

Ω

(g(x, u)u+ a3)dx− a7

and the conclusion follows with α∗ = 2
√

2 η1
α3

max{µ− α3
η1
, 1 + a7}.

Now, modifying functional J , we introduce the new map

J1(u) =
∫

Ω

A(x, u,∇u)dx−
∫

Ω

G(x, u)dx− ψ(u)
∫

Ω

hu dx, u ∈ X, (3.4)

where

ψ(u) = χ


 1
F(u)

∫

Ω

(G(x, u) + a4)dx


 , F(u) = 2α∗

(
J 2(u) + 1

) 1
2 , (3.5)
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with α∗ as in Lemma 3.2, and χ ∈ C∞(R, [0, 1]) is a decreasing cut–function such that

χ(t) =
{

1 if t ≤ 1,
0 if t ≥ 2

(3.6)

and −2 < χ′(t) < 0 for all t ∈ ]1, 2[.
Clearly, it is

J1(u) = J (u)− (ψ(u)− 1)
∫

Ω

hu dx, u ∈ X,

where we have
0 ≤ ψ(u) ≤ 1 for all u ∈ X. (3.7)

Also if the symmetric conditions (H8) and (G3) hold, functional J1 is not even.
Anyway, we can control its loss of symmetry.

Lemma 3.3. Under the further hypotheses (H8) and (G3), a constant
k0 = k0(|h|µ′) > 0 exists, such that

|J1(u)− J1(−u)| ≤ k0

(
|J1(u)| 1

µ + 1
)

for all u ∈ X.

Proof. For the proof, see [16, Lemma 4.4].

From Proposition 2.2, direct computations imply that J1 is a C1 functional on X
and for all u ∈ X we have

〈dJ1(u), u〉 =(1 + T1(u))〈dJ (u), u〉 − (T2(u)− T1(u))
∫

Ω

g(x, u)u dx

− (ψ(u)− 1)
∫

Ω

hu dx,

with

T1(u) = χ′


 1
F(u)

∫

Ω

(G(x, u) + a4)dx


 (2α∗)2J (u)

F3(u)

∫

Ω

(G(x, u) + a4)dx
∫

Ω

hu dx,

T2(u) = T1(u) + χ′


 1
F(u)

∫

Ω

(G(x, u) + a4)dx


 1
F(u)

∫

Ω

hu dx.

Lemma 3.4. Functional J1 verifies the following conditions:

(i) two strictly positive constants M0 = M0(|h|µ′) and a0 = a0(|h|µ′) exist, such that
for all M ≥M0 we have

u ∈ suppψ, J1(u) ≥M =⇒ J (u) ≥ a0M ;
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(ii) for any ε > 0 a constant Mε > 0 exists, such that

u ∈ X, J1(u) ≥Mε =⇒ |T1(u)| ≤ ε, |T2(u)| ≤ ε;

(iii) a constant M1 > 0 exists such that u ∈ X,

J1(u) ≥M1, |〈dJ1(u), u〉| ≤ 1
2 =⇒ J1(u) = J (u), dJ1(u) = dJ (u).

Proof. For the proof, see Lemmas 4.3, 4.5 and 4.7 in [16].

Remark 3.5. Any critical point of J is also a critical point of J1 with the same
critical level. In fact, if u is critical point of J in X, from (2.12), Lemma 3.2 and (3.5)
it follows that ∫

Ω

(G(x, u) + a4)dx ≤ 1
2F(u);

hence, definition (3.6) implies that ψ(u) = 1, ψ′(u) = 0, and then

J1(u) = J (u), dJ1(u) = 0.

On the other hand, (iii) of Lemma 3.4 states that also the vice versa is true but only
for large enough critical levels.

4. THE WEAK CERAMI–PALAIS–SMALE CONDITION

The aim of this section is proving that our perturbed functional J1 satisfies (wCPS)β
condition (see Definition 1.3) but if β is large enough.

From now on, let N = {1, 2, . . . } and we denote by |C| the usual Lebesgue measure
of a measurable set C in RN .

Firstly, we recall the following result.

Proposition 4.1. If q < 2∗(s+ 1), then functional J0 satisfies the (wCPS) condition
in R.

Proof. For the proof, see [15, Proposition 3.10].

Our next step is proving that also J satisfies (wCPS) condition in R for any
q < 2∗(s + 1) even if we have h 6≡ 0. To this aim, we need the following variants of
imbedding theorems.

Lemma 4.2. Fix s ≥ 0 and let (un)n ⊂ X be a sequence such that


∫

Ω

(1 + |un|2s) |∇un|2dx



n

is bounded. (4.1)
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Then, u ∈ H1
0 (Ω) exists such that |u|su ∈ H1

0 (Ω), too, and, up to subsequences,
if n→ +∞ we have

un ⇀ u weakly in H1
0 (Ω), (4.2)

|un|sun ⇀ |u|su weakly in H1
0 (Ω), (4.3)

un → u a.e. in Ω, (4.4)
un → u strongly in Lr(Ω) for each r ∈ [1, 2∗(s+ 1)[. (4.5)

Proof. For the proof, see [15, Lemma 3.8].

Lemma 4.3. If q < 2∗(s+ 1), then a constant cs > 0 exists such that

|u|µ ≤ cs



∫

Ω

(1 + |u|2s) |∇u|2dx




1
2(s+1)

for all u ∈ X.

Proof. Taking u ∈ X, we note that

|∇(|u|su)|2 = (s+ 1)2 |u|2s |∇u|2 a.e. in Ω. (4.6)

On the other hand, setting qs = q
s+1 , condition q < 2∗(s + 1) implies qs < 2∗, then

from (2.2) and (4.6) we have that

|u|q = ||u|su|
1
s+1
qs ≤ (σqs |∇(|u|su)|2)

1
s+1

≤ σ
1
s+1
qs (s+ 1) 1

s+1



∫

Ω

(1 + |u|2s) |∇u|2dx




1
2(s+1)

.

Hence, the thesis follows from (2.13).

Moreover, in order to prove the boundedness of the weak limit of a (CPS)-sequence,
we need also the following particular version of [19, Theorem II.5.1].
Theorem 4.4. Taking v ∈ H1

0 (Ω), assume that L0 > 0 and k0 ∈ N exist such that
for all k̃ ≥ k0 it is

∫

Ω+
k̃

|∇v|2dx ≤ L0



∫

Ω+
k̃

(v − k̃)ldx




2
l

+ L0

m∑

i=1
k̃li |Ω+

k̃
|1− 2

N +εi ,

with Ω+
k̃

= {x ∈ Ω : v(x) > k̃}, where l, m, li, εi are positive constants such that

1 ≤ l < 2∗, εi > 0, 2 ≤ li < εi2∗ + 2.

Then ess sup
Ω

v is bounded from above by a positive constant which depends only on N ,

|Ω|, L0, k0, l, m, εi, li, |u|2∗ .
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Proposition 4.5. If q < 2∗(s+ 1) then functional J satisfies the (wCPS) condition
in R.

Proof. Let β ∈ R be fixed and consider a (CPS)β-sequence (un)n ⊂ X, i.e.,

J (un)→ β and ‖dJ (un)‖X′(1 + ‖un‖X)→ 0. (4.7)

For simplicity, here and in the following we will use the notation (εn)n for any
infinitesimal sequence depending only on (un)n.

From (H1), (H6), (2.6), (G0), (G2), (2.15), direct computations, (H4) and
Lemma 4.3, we have that some constants a8, a9 > 0 exist such that

µβ + εn = µJ (un)− 〈dJ (un), un〉

≥ α3

∫

Ω

a(x, un,∇un) · ∇undx− a8 − (µ− 1)|h|µ′ |un|µ

≥ α1α3

∫

Ω

(1 + |un|2s) |∇un|2dx− a8 − a9



∫

Ω

(1 + |un|2s) |∇un|2dx




1
2(s+1)

which implies (4.1). Then, from Lemma 4.2 it follows that u ∈ H1
0 (Ω) exists such that

|u|su ∈ H1
0 (Ω), too, and, up to subsequences, (4.2)–(4.5) hold.

Now, we want to prove that u is essentially bounded from above. Arguing by
contradiction, let us assume that

ess sup
Ω

u = +∞; (4.8)

thus, taking any k ∈ N, k > R0 (R0 ≥ 1 as in the hypotheses), we have that

|Ω+
k | > 0 with Ω+

k = {x ∈ Ω : u(x) > k}. (4.9)

Taking any k̃ > 0, we define the new function R+
k̃

: t ∈ R→ R+
k̃
t ∈ R as

R+
k̃
t =

{
0 if t ≤ k̃,
t− k̃ if t > k̃.

Then, if k̃ = ks+1, from (4.3) it follows that

R+
ks+1(|un|sun) ⇀ R+

ks+1(|u|su) weakly in H1
0 (Ω);

thus, the sequentially weakly lower semicontinuity of ‖ · ‖H implies
∫

Ω+
k

|∇(us+1)|2dx ≤ lim inf
n→+∞

∫

Ω+
n,k

|∇(us+1
n )|2dx (4.10)

with Ω+
n,k = {x ∈ Ω : un(x) > k}, as |t|st > ks+1 if and only if t > k.
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On the other hand, from ‖R+
k un‖X ≤ ‖un‖X , (4.7) and (4.9) it follows that nk ∈ N

exists so that
〈dJ (un), R+

k un〉 < |Ω+
k | for all n ≥ nk. (4.11)

Then, from (H5) (with α2 ≤ 1), (H4), (4.6) and direct computations we have that

〈dJ (un), R+
k un〉 ≥ α2

∫

Ω+
n,k

a(x, un,∇un) · ∇undx−
∫

Ω

g(x, un)R+
k undx

−
∫

Ω

hR+
k undx

≥ α1α2
(s+ 1)2

∫

Ω+
n,k

|∇(us+1
n )|2dx−

∫

Ω

g(x, un)R+
k undx−

∫

Ω

hR+
k undx.

Thus, from (4.11), it follows that

∫

Ω+
n,k

|∇(us+1
n )|2dx ≤ (s+ 1)2

α1α2


|Ω+

k |+
∫

Ω

g(x, un)R+
k undx+

∫

Ω

hR+
k undx


 ,

where, since q < 2∗(s+ 1), from (G1) and (4.5) it results
∫

Ω

g(x, un)R+
k undx →

∫

Ω

g(x, u)R+
k u dx,

∫

Ω

hR+
k undx →

∫

Ω

hR+
k u dx.

Hence, passing to the limit, (4.10) implies

∫

Ω+
k

|∇(us+1)|2dx ≤ (s+ 1)2

α1α2


|Ω+

k |+
∫

Ω

g(x, u)R+
k u dx+

∫

Ω

hR+
k u dx


 .

Now, as h ∈ Lν(Ω) with ν > N
2 , by reasoning as in the last part of Step 2 in the proof

of [16, Proposition 4.11], we are able to apply Theorem 4.4, then ess sup
Ω

u < +∞ in

contradiction with (4.8).
Similar arguments prove also that u is essentially bounded from below; hence,

u ∈ L∞(Ω).
Taking k ≥ max{|u|∞, R0} + 1 (R0 ≥ 1 as in the set of hypotheses) and the

truncation function Tk : R→ R defined as

Tkt =
{
t if |t| ≤ k,
k t
|t| if |t| > k,

thanks to the linearity of the term v 7→
∫

Ω hvdx we can reason as in Steps 3 and 4
of the proof of [7, Proposition 3.4] and can prove that (Tkun)n is a Palais–Smale
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sequence at level β, i.e. J (Tkun)→ β and ‖dJ (Tkun)‖X′ → 0, and ‖Tkun−u‖H → 0.
Hence, also ‖un − u‖H → 0 and, since |Tkun|∞ ≤ k for all n ∈ N, by applying
Proposition 2.2 we have J (u) = β and dJ (u) = 0.

Proposition 4.6. Let q < 2∗(s+ 1). Then, taking M1 > 0 as in (iii) of Lemma 3.4,
the functional J1 satisfies the (wCPS)β condition for any β > M1.
Proof. Let β > M1 and (un)n be a (CPS)β-sequence of J1 in X. Then, for n large
enough it is

J1(un) ≥M1 and |〈dJ1(un), un〉| ≤ ‖dJ1(un)‖X′(‖un‖X + 1) ≤ 1
2 ;

hence, from (iii) of Lemma 3.4 we obtain

J1(un) = J (un), dJ1(un) = dJ (un),

which implies that (un)n is a (CPS)β-sequence of J in X, too. Thus, from Proposi-
tion 4.5 it follows that u ∈ X exists such that ‖un − u‖H → 0 (up to subsequences)
and u is a critical point of J at level β. Then, u is a critical point of J1 at level β,
too (see Remark 3.5).

5. PROOF OF THE MAIN THEOREM

Throughout this section, assume that A(x, t, ξ), g(x, t), h(x) satisfy all the hypotheses
of Theorem 2.6.

In order to introduce a suitable decomposition of X, let (λj)j be the sequence of the
eigenvalues of −∆ in H1

0 (Ω) and for each j ∈ N let ϕj ∈ H1
0 (Ω) be the eigenfunction

corresponding to λj .
We recall that 0 < λ1 < λ2 ≤ λ3 ≤ . . . , with λj ↗ +∞ as j → +∞, and (ϕj)j

is an orthonormal basis of H1
0 (Ω) such that for each j ∈ N it is ϕj ∈ L∞(Ω); hence,

ϕj ∈ X (see [6, Section 9.8]). Then, for any k ∈ N, it is

H1
0 (Ω) = Vk ⊕ Zk,

where
Vk = span{ϕ1, . . . , ϕk} and Zk is its orthogonal complement.

Thus, setting ZXk = Zk ∩ L∞(Ω), we have

X = Vk + ZXk and Vk ∩ ZXk = {0};

whence,
codimZXk = dimVk = k. (5.1)

Proposition 5.1. If V is a finite dimensional subspace of X, then

sup
u∈SH

R
∩V
J1(u) → −∞ if R→ +∞,

with SHR = {u ∈ X : ‖u‖H = R}.
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Proof. Since in a finite dimensional space all the norms are equivalent, the proof
follows from definition (3.4) and the estimates (2.10), (2.12), (2.15), (3.7).

From (5.1) and Proposition 5.1 a strictly increasing sequence of positive numbers
(Rk)k exists, Rk ↗ +∞, such that for any k ∈ N we have that

J1(u) < 0 for all u ∈ Vk with ‖u‖H ≥ Rk.

Now, we can introduce the following notations:

Γk = {γ ∈ C(Vk, X) : γ is odd, γ(u) = u if ‖u‖H ≥ Rk},
ΓHk = {γ ∈ C(Vk, H1

0 (Ω)) : γ is odd, γ(u) = u if ‖u‖H ≥ Rk},
Λk = {γ ∈ C(V +

k+1, X) : γ|Vk ∈ Γk and γ(u) = u if ‖u‖H ≥ Rk+1},

with
V +
k+1 = {v + tϕk+1 ∈ X : v ∈ Vk, t ≥ 0},

and
bk = inf

γ∈Γk
sup
u∈Vk

J1(γ(u)), b+k = inf
γ∈Λk

sup
u∈V +

k+1

J1(γ(u)).

The following existence result can be proved.

Proposition 5.2. Assume q < 2∗(s+ 1) and let k ∈ N be such that

b+k > bk ≥M1, (5.2)

with M1 > 0 as in (iii) of Lemma 3.4. Taking 0 < δ < b+k − bk, define

βk(δ) = inf
γ∈Λk(δ)

sup
u∈V +

k+1

J1(γ(u)),

where
Λk(δ) = {γ ∈ Λk : J1(γ(u)) ≤ bk + δ if u ∈ Vk}.

Then, βk(δ) is a critical level of J in X with βk(δ) ≥ b+k .
Proof. The proof follows from Proposition 4.6 by reasoning as in [16, Proposition 5.4].

Now, we need an estimate from below for the sequence (bk)k.

Proposition 5.3. If q < 2∗(s+ 1), then a constant C1 > 0 exists such that

bk ≥ C1 k
2q

N(q−2−2s) for k large enough.

Proof. Firstly, we note that from (2.1), (2.5), (2.15), (3.4), (3.7) and direct computa-
tions, some constants a10, a11, a12 > 0 exist, such that

J1(u) ≥ a10 I(u)− a11 for all u ∈ X, (5.3)
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where I : X → R is the C1 functional defined as

I(u) = 1
2

∫

Ω

(1 + |u|2s)|∇u|2dx− a12

∫

Ω

|u|qdx.

Now, taking k ∈ N, reasoning as in the proof of [16, Proposition 5.6], for any γ0 ∈ Γk
we can define the continuous map γ̃0 : Vk → X,

γ̃0(u) =





|γ0(u)|s γ0(u) if ‖u‖H ≤ Rk − δ0,
|γ0(u)| sδ0

(Rk−‖u‖H) γ0(u) if Rk − δ0 < ‖u‖H < Rk,
u if ‖u‖H ≥ Rk,

for a suitable δ0 ∈ ]0, Rk[, such that γ̃0 ∈ Γk ⊂ ΓHk and

sup
u∈Vk

I(γ0(u)) ≥ 1
(s+ 1)2 sup

u∈Vk
K∗(γ̃0(u)) ≥ 1

(s+ 1)2 inf
γ∈ΓH

k

sup
u∈Vk

K∗(γ(u)),

with
K∗(v) = 1

2

∫

Ω

|∇v|2dx− a12(s+ 1)2
∫

Ω

|v| qs+1 dx.

Then, the thesis follows from [26, Section 2] and (5.3).

Proof of Theorem 2.6. Since b+k ≥ bk for any k ∈ N and bk → +∞ from
Proposition 5.3, the thesis follows from Proposition 5.2 once we prove that (5.2)
holds for infinitely many k.

Arguing by contradiction, assume that k1 ∈ N exists such that b+k = bk for any
k ≥ k1. From Lemma 3.3 and reasoning as in the proof of [23, Proposition 10.46],
a constant C2 = C2(k1) > 0 exists such that

bk ≤ C2 k
µ
µ−1 for any k large enough,

which yields a contradiction from assumption (2.14) and Proposition 5.3.
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