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The Calcium-Sensing Receptor (CaSR), a G-protein-coupled

receptor mainly known for its role in the homeostatic regulation

of Ca2+ levels in the extracellular fluid, is also expressed in a

multiplicity of tissues where it regulates a variety of

physiological and pathological processes.

The main features of CaSR are its capacity to activate multiple

downstream signaling pathways and its ability to itself be

activated by a variety of ligands.

Recent data have demonstrated that these features are actually

connected by the concept of biased signaling.

The recent availability of crystal structures of CaSR

extracellular domain, and the functional characterization of

clinically relevant mutations, have catalyzed a great step

forward in the field of CaSR signaling.

In the past two years, CaSR signaling characteristics have been

shown to be even more complicated than expected:

heterodimerization, phosphate-sensing, and compartment

bias are only a fraction of the exciting developments.

This review will focus on some of these topics, and on the

debated case of CaSR signaling in cardiomyocytes.
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Introduction
One of the most versatile messengers is certainly calcium,

but how can a single messenger modulate so many

different aspects of cell physiology and pathology simul-

taneously, thus influencing life and death mechanisms in

human cells at the same time? How can calcium dynamics

act to trigger fast events such as muscle contraction and

exocytosis, and also long-term tasks, such as gene expres-

sion? How can calcium convey contrary physiological

messages, such as apoptosis and proliferation? We now

know that it depends not only on the cell-specific toolkit

of calcium-sensing and handling proteins they each con-

tain, but also on the kinetics and localization of intracel-

lular calcium events within those cells – down to the (sub)

microscopic level [1].

Intracellular calcium microdomains are among the most

prominent aspects of this story [2,3]. Thanks to the

coordinated action of calcium channels, transporters,

pumps, cytosolic and intraluminal calcium-binding pro-

teins, and whole organelles (ER, Golgi apparatus, endo-

cytotic and exocytotic vesicles, lysosomes), these high-

calcium subdomains are dynamically created within the

cell, and induce spatially and temporally defined activa-

tion of protein signaling cascades [4].

While this part of calcium story happens on the inside of

eukaryotic cells, calcium ions also play a fundamental role

from the outside. Extracellular free calcium concentration

is strictly maintained in the range of 1.1–1.3 mM by the

coordinated action of hormonal signaling, parathyroid

glands, kidneys, bones and intestines [5]. Despite this

global homeostasis, Ca2+ levels can substantially fluctuate

within the small intercalatory diffusion spaces of a tissue

— in the so called extracellular microdomains, that mirror

the intracellular ones [6–8]. Here Ca2+ changes its iden-

tity from second to first messenger: Ca2+ can in fact

directly activate a number of plasma membrane proteins,

generically named extracellular calcium sensors [9].

Physiological role of CaSR signaling
The existence of a sensor able to monitor extracellular

Ca2+ in the parathyroid gland was hypothesized in

1966 [10,11] and finally confirmed in 1993, when Brown

and colleagues cloned an ‘extracellular Calcium-sensing

receptor’ (CaSR), from bovine parathyroid gland [12].

Since then it has become clear that the main physiological

role of CaSR is to sense serum Ca2+ levels in parathyroid
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glands and, when it increases above 1.4 mM, to inhibit

PTH secretion and increase urinary Ca2+ excretion to

maintain bodily homeostasis. Reduced PTH levels

induce a reduction in both kidney Ca2+ reabsorption

and Ca2+ release from bone. The CaSR also controls

calcitonin secretion from thyroidal C-cells [5], while

decreasing intestine Ca2+ reabsorption via 1,25-dihydrox-

yvitamin D. Combined, these effectors act to reduce

serum Ca2+ back to physiological levels. Conversely,

when serum Ca2+ levels fall, the resulting decreased

CaSR activity permits increased PTH synthesis and

secretion and the restoration of normal Ca2+ levels

through the corresponding effects on the kidneys, bone

and intestine [13].

Mutations of the CaSR gene, located on chromosome

3q21.1, are responsible for inherited disorders [14].

Familial hypocalciuric hypercalcemia (FHH) and neona-

tal severe hyperparathyroidism (NSHPT) are caused by

loss-of-function mutations, while autosomally dominant

hypocalcemia (ADH) and Bartter Syndrome type V are

produced by gain-of-function mutations of the CaSR.

Variant forms of FHH and ADH caused by germline

mutations of genes encoding for CaSR-interacting pro-

teins involved in transducing its downstream signaling

(Ga11; FHH2 and ADH2) and trafficking (AP2s; FHH3)

have also been recently characterized [15,16].

Besides its role in the above-mentioned calcitropic tissues

directly involved in the control of systemic Ca2+ homeosta-

sis, the CaSR has been found in an astonishing number of

‘non calcitropic’ tissues — such as pancreas, brain, stomach,

liver and heart, just to name a few. In each of these, CaSR

has been found to be involved in a variety of physiological

and pathological processes — ranging from secretion to

regulationofgene expression,proliferation, differentiation,

migration, adhesion, apoptosis and cancer [17].

Molecular features of CaSR
The primary structure of the CaSR, which belongs to the

class C (or 3) of the GPCR superfamily, consists of a large

N-terminal extracellular domain (ECD) characterized by

a bilobed, nutrient-binding Venus Flytrap (VFT), a nine

cysteine-rich domain (CRD), a seven-transmembrane

domain (TMD), and a carboxyterminal intracellular

domain (ICD) [18��,19��].

Functional receptors localize at the plasma membrane

mostly as disulphide homodimers, although heterodimers

with other class C receptors have been described (mGluR

[20] or GABAB [21,22]). A very interesting pathological

implication of CaSR heterodimerization has recently

been revealed [22]. In particular, CaSR and GABA B

heterocomplexes have been proven to be responsible for

PTH hypersecretion in hyperparathyroidism. In their

elegant work, the authors demonstrate that hyperplastic

parathyroid glands of patients with primary and secondary
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hyperparathyroidism are endowed with an autocrine cycle

in which locally synthesized GABA B binds to CaSR and

GABA B heterodimers. This binding blocks the function

of CaSR homodimers, and thus induces tonic, detrimental

PTH secretion [22].

A milestone in the field of CaSR research was reached by

the attainment of the high-resolution crystal structure of

the ECD. This result has led to fundamental insights on

the mechanism of CaSR activation of the human homo-

dimers [18��,19��].

In 2016 J Yang et al. reported the first crystal structure of

the human ECD bound with Mg2+, clarifying the mech-

anism for cooperative activation of CaSR by Ca2+ and

Mg2+ ions. Importantly, they first described an additional,

orthosteric, binding site for a tryptophan derivative that is

so crucial in the stabilization and the activation of the

dimer that this aminoacid has been suggested to act as a

co-agonist at the CaSR [18��].

Interestingly, in a paper of the same year, Geng et al.
[19��] found three anion binding sites which were sug-

gested to stabilize the open-inactive state. PO4
3- and SO4

2-

were indicated as the most probable physiological ligands.

The physiological significance of such sites has been

recently revealed by Ward and collaborators [23��]. Spe-

cifically, one of these anion binding sites seems to have a

fundamental role in parathyroid, where CaSR might work

also as a ‘phosphate sensor’. The results reported in this

interesting study offer an explanation to the PO4
3- and

concentration-dependent increase in PTH secretion

which has been observed since 1996 [24] — PO4
3- acts

at the CaSR as a non-competitive agonist. Importantly,

this mechanism would also explain how pathophysiologi-

cal levels of PO4
3-, such as those found in chronic kidney

disease (CKD), can overstimulate PTH secretion and

induce secondary hyperparathyroidism.

CaSR promiscuity: orthosteric agonists and
allosteric modulators
One of the first signatures of CaSR, as also demonstrated

by the above-cited binding sites for tryptophan and

anions, is its’ promiscuity, that is, ability to bind a large

number of different ligands.

While the Ca2+ ion certainly represents the main agonist,

which binds to the CaSR with a high positive coopera-

tivity [25], a number of orthosteric agonists (or type I

calcimimetics) that can activate the receptor in the

absence of other ligands, have been identified. Among

these are inorganic di-valent and tri-valent cations, such

as Mg2+ Sr2+, Ba2+, Gd3+ and Al3+ [5,26]; organic polyca-

tions, such as polyamines (spermine and spermidine) [27];

some aminoglycoside antibiotics (neomycin [28] and
www.sciencedirect.com
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gentamycin [29]); basic polypeptides, polylysine, polyar-

ginine [30] and amyloid b-peptides [31].

Allosteric modulators are ligands which bind to differ-

ent sites from those of the orthosteric agonists and

modify the receptor conformation, in turn increasing

(type II calcimimetics, also defined as positive allosteric

modulators:PAMs) or decreasing (calcilytics, also

defined as Negative Allosteric Modulators: NAMs)

the affinity and/or the signaling capacity of the orthos-

teric agonist [16].

Natural calcimimetics are L-amino acids, especially aro-

matics [32], some of which have been shown to act as

CaSR co-agonists [18��] and glutathione analogs [33].

Low extracellular pH [34] and high ionic strength [35]

function as physiological calcilytics.

A number of molecules with calcimimetic or calcilytic

properties have been synthesized [36]. Among the calci-

mimetics, there are phenylalkylamine derivatives NPS R-

568, NPS R-467 and Cinacalcet [37], which is presently

used in patients with end-stage renal disease. The more

recent AC-265347, with a benzothiazole structure [38],

seems to act more precisely on PTH and calcitonin

release in rats [39,38] via biased allosteric modulation

of the CaSR activity [40].

A recent study from Leach and collaborators has clarified

the function and binding of four NAMs which may

explain their different abilities to inhibit CaSR signaling

[41].

Relevant news come from the calcilytics: tested in clinical

trials for treating osteoporosis [42], they failed to stimu-

late new bone formation. Nonetheless, it has been sug-

gested that they might provide an ideal therapy for ADH1

and 2, certain form of hypoparathyroidism, and pulmo-

nary disorders [43]. For a comprehensive review of calci-

lytics, see Ref. [16].

Also relevant is the capacity of CaSR modulators to act as

pharmaco-chaperones, that is to permeate cell mem-

branes and reach a misfolded protein at its intracellular

location, stabilize it, and rescue the receptor to the cell

membrane surface [44,45].

Both NPS-R-568 [44,46,47] and cinacalcet, [40,48�] have

been shown to effectively rescue signaling of loss-of-

function mutant CaSR proteins. Interestingly, the calci-

lytic NPS-2143, was able to positively modulate CaSR

trafficking to the cell membrane, while negatively modu-

lating CaSR signaling [48�,49].

Remarkably the pharmaco-chaperone action of both NPS

R-568 [50] and NPS-2143 [46,50] appears to be mutant-

specific, and able to mediate signaling bias (see below).
www.sciencedirect.com 
CaSR pleiotropicity: the many signaling
pathways activated by CaSR
Besides its promiscuity, CaSR is also known for its

pleiotropicity, that is, its ability to activate a wide array

of intracellular signaling mechanisms [51] (Figure 1).

As predicted by older studies, and according to the recent

structural work [18��,19��], the signal transduction cas-

cade is initiated when, after Ca2+ (or other agonist)

binding, each monomer undergoes a rotation - bringing

the two lobes of the VFT and the CRD in closer proxim-

ity [19��]. The consequent conformational change of the

TMD, in turn, determines the interaction with G-pro-

teins, thus initiating signal transduction.

The CaSR is known to activate all the four heterotrimeric

G proteins: Gq/11, Gi/o, G12/13 and Gs.

The most frequent signaling cascades described for CaSR

are certainly those which lead to IP3 accumulation and

Ca2+ elevation, cAMP inhibition and ERK1/2 phosphor-

ylation which are among the most widely used functional

readouts of CaSR activation.

Gq/11 activation induces Ca2+ mobilization from the intra-

cellular stores via phospholipase C (PLC)/inositol-1,4,5-

trisphosphate (InsP3), and concomitant activation of dif-

ferent isoforms of protein kinase C (PKC) and ERK1/2

[51].

The Gi/o pathway by which cAMP levels are reduced [52–

54] has also been involved in ERK1/2 phosphorylation/

activation via beta gamma-mediated Ras and MAPK

activation [55] or G protein-independent b-arrestin
recruitment [56�].

The involvement of Gq11 versus Gai/o [57,58] and the

specific identity of downstream proteins involved in

CaSR-mediated inhibitory control of PTH secretion from

the parathyroids have been hotly debated [59].

While this review was being written, a paper from Ono-

piuk et al. has shed some light on this matter. This study

indeed indicates the TRPC1 channel as a fundamental

player in this pathway [60��]. It is worth noting that store-

operated calcium entry is not involved in such a mecha-

nism, thus excluding both STIM1 and Orai. In particular,

the authors show that mice lacking the TRPC1 show a

phenotype mimicking human FHH. Next, by straight-

forward in vitro and ex vivo approaches, they show that

upon CaSR activation with high [Ca2+]o, the Ga11 subunit

physically interacts and stabilizes TRPC1, causing a fast

Ca2+ entry which, in turn, suppresses PTH secretion.

A number of CaSR-dependent G12/13-mediated signaling

pathways have also been described [51] and are involved

in the appearance of CaSR-mediated intracellular Ca2+
Current Opinion in Physiology 2020, 17:243–254
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Figure 1

Current Opinion in Physiology 

Simplified view of the intracellular signaling pathways activated by CaSR.

Schematic of plasma membrane dimers, agonists/modulators and intracellular signaling/trafficking of CaSR. The two examples of CaSR dimers

(homodimeric and heterodimeric) are not exhaustive; also the vicinity to a particular intracellular signaling pathway is not meant to imply that the

dimers or ligands depicted are linked preferentially to the closest signaling pathway.

Abbreviations: AA, arachidonic acid; AC,adenylate cyclase; Akt, protein kinase B; ATP, adenosine triphosphate; CaM, calmodulin; CaMK, Ca2

+/calmodulin-dependent protein kinase; cAMP, cyclic AMP; DAG, diacylglycerol; eNOS, endothelial nitric oxide synthase; ER, endoplasmic

reticulum; ERK1/2, extracellullar-signal regulated kinase; Gas, Gai, Gaq, Ga12/13, a subunits of the s-, i-, q-, and 12/13-type heterotrimeric G-

proteins, respectively; iNOS, inducible nitric oxide synthase; IP3, inositol-1,4,5-trisphosphate; JNK, Jun amino-terminal kinase; MAPK, mitogen-

activated protein kinase; MEK, MAPK kinase; NO, nitric oxide; p38, p38 mitogen-activated protein kinase; PA, phosphatidic acid; PHP,

pharmacoperones; PI3K, phosphatidylinositol 3-kinase; PI4K, phosphatidylinositol 4-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC,

protein kinase C; PLA2, phospholipase A2; PLC, phospholipase C; PLD, phospholipase D; RhoA, Ras homolog gene family, member A; SOC,

store-operated Ca2+ channel.
oscillations (G12/13 /Rho/filamin pathway) [61] or sus-

tained Ca2+signals (G12/phosphatase PP2A-dependent

dephosphorylation of CaSR) [62].

CaSR-induced increase of cAMP levels via Gs has been

identified in human breast cancer [63] and pituitary cells

[64] while a CaSR-dependent modulation of cAMP levels

independently fromGsorGiproteins seemstobe present in

a number of tissues via signaling crosstalk mechanisms [9].
Current Opinion in Physiology 2020, 17:243–254 
A physiologically relevant nitric oxide (NO) modulation

by the CaSR has been described in the vasculature [65–

69]. A schematic view of CaSR-mediated intracellular

pathways is illustrated in Figure 1.

Structure-function relationship: new details
on biased signaling at the CaSR
Another striking and quite logical characteristic of CaSR,

given its promiscuity and pleiotropicity, is its capability to
www.sciencedirect.com
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give rise to so-called ligand-directed signaling, or ‘biased

agonism’. As for other GPCRs, CaSR ligands are able to

stabilize different conformational states of the receptor,

which preferentially direct its signaling towards a specific

intracellular pathway [70].

Recently, Bräuner-Osborne’s group [56�] straightfor-

wardly demonstrated, in HEK-293-CaSR cells, that high

extracellular Ca2+ was biased toward cAMP inhibition and

IP3 accumulation, while spermine showed a significant

bias toward ERK1/2 phosphorylation. Fundamental

insights within this field come from the study of biased

signaling in pathological states, such as germline CaSR

mutations. One of the first such examples was found in

the effect of an autoantibody characteristic of an acquired

hypocalciuric hypocalcemia case, which increased the

effects of external Ca2+ on Gq signaling while reduced

the activation of the Gi-induced signaling pathway [71].

Subsequently, it was demonstrated that some naturally

occurring CaSR mutations have altered signaling bias

[72,73]. By using a rigorous pharmacological approach

Leach et al. demonstrated that germline mutations can

alter both the expression and the preference of the CaSR

for downstream signaling modes. By using Ca2+ mobili-

zation and ERK1/2 phosphorylation as functional read-

outs, it was found that FHH1-causing mutations can

determine a switch from a preferential coupling to cal-

cium signaling — characteristic of WT CaSR — to a

signaling mode in which calcium signaling and MAPK

pathways are equally activated or a preferential MAPK

signaling is used. Also ADH-1-associated CaSR mutation

can alter signaling bias toward a stronger Ca2+ response

[72]. Interestingly, it has been shown that also allosteric

modulators exhibit stimulus bias, inducing greater activa-

tion of intracellular Ca2+ mobilization relative to ERK1/2

phosphorylation, and a higher affinity of the modulators

for the state of CaSR-mediating plasma membrane ruf-

fling [74�].

A further step forward in the understanding of the mech-

anisms underlying signaling was undertaken in the past

few years by the group of Thakker [75��]. Defined

residues have been recognized as critical for CaSR acti-

vation and biased signaling. With the aid of multiple

functional assays directed to Gq/11 Gi/o and G-protein-

independent b-arrestin activation homology modeling

and site directed mutagenesis, Gorvin et al. identified

the structural motif responsible for biased signaling of an

ADH1-causing mutation. The authors clearly showed

that the disruption of a salt-bridge between the trans-

membrane domain 3 and the extracellular loop 2 of the

CaSR induces the CaSR to adopt a conformational state

that facilitates the binding of b-arrestin, thus causing a

signaling bias toward a b-arrestin-mediated MAPK cas-

cade activation [75��]. In addition, a number of mutations

have been mapped and revealed to cluster in specific sites
www.sciencedirect.com 
relevant for structural integrity. CaSR dimerization and

ligand binding, and the corresponding alteration in sig-

naling bias, have been evidenced [15].

By analyzing more than 300 FHH and ADH mutations,

Gorvin and colleagues [76��] identified five ‘disease

switch’ residues, to be added to the previously reported

four [18��,77], which are the location of both FHH1 and

ADH1 associated mutations. The functional studies in

HEK-293 cells showed that these disease-switch residue

mutations commonly exhibit signaling bias toward either

Ca2+ or MAPK pathway activation. Structural analysis

next demonstrated that these residues are located at sites

that appear relevant for the transition of the CaSR from

the inactive to the active conformation, such as the

extracellular dimer interface and transmembrane domain.

Trafficking/signaling modes of the CaSR
Dimers of glycosylated CaSR proteins are formed intra-

cellularly [78] and stabilized by ligand binding at the cell

surface [79]. The net level of dimers expression at the

plasma membrane is relevant to both physiology and

pathology, since it influences the strength of signaling

[80�] and depends on the dynamic equilibrium between

maturation, trafficking from the ER membrane to the

Golgi and thence to the plasma membrane, internaliza-

tion, recycling and degradation [81]. It is worth noting

that allosteric modulators can modulate CaSR trafficking

to the cell membrane, acting as pharmaco-chaperones

[48�].

A peculiar mode of signaling of the CaSR is the so called

Agonist-Driven Insertional Signaling (ADIS) [82��],
which seeks to explain two peculiar features of the CaSR:

a minimal functional desensitization and a significant pool

of CaSR proteins in intracellular membrane compart-

ments. ADIS regulates the level of CaSR expression at

the plasma membrane on the basis of the dynamic equi-

librium between the rate of trafficking from a large pool

located at the Golgi vesicles and the process of clathrin-

mediated endocytosis and retrograde trafficking of cell-

surface CaSR receptors.

A number of CaSR-interacting proteins have been shown

to play a fundamental role in the complex scenario of

CaSR trafficking [83]. A significant part is played by the

sigma subunit of the chlatrin-binding protein AP2

(AP2s), involved in internalization of clathrin-coated

vesicles containing the CaSR that fuse with endosomes.

Mutations of AP2s have in fact been linked to a novel

form of FHH, named FHH3 [84]. The study of germline

mutations of AP2s has added a new level of complexity to

the multifaceted signaling capacity of the CaSR: like

other GPCRs [85] CaSR has also been shown to produce

sustained signals after internalization of ligand–receptor

complexes in endosomes.
Current Opinion in Physiology 2020, 17:243–254
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In fact, a recent work by Gorvin et al. [86��] has elegantly

demonstrated that AP2s mutations increasing plasma

membrane expression level of CaSR, while reducing its

signaling — cause the disruption of a previously unrec-

ognized endosomal signaling mode. The impaired inter-

nalization of CaSR by chlatrin-mediated endocytosis of

the analyzed germline mutation produces a

‘compartmental biased’ signaling, comprising a sustained

Gq mediated signal most probably located at the endo-

somes [86��]. It thus appears that the CaSR has yet

another way of signaling: besides the (ADIS-regulated

and biased) ‘fast’ plasma membrane signaling CaSR pos-

sesses a ‘sustained’ Gq-specific endosomal pathway.

The CaSR in cardiomyocyte physiology and
pathology: bad guy or good guy?
While the role of CaSR in diseases related to systemic

calcium homeostasis has been widely investigated, CaSR

role in non-calcitropic tissues has been and remains a

matter of debate. In fact, the role of CaSR seems to

oscillate between the ‘good’ and the ‘bad’ in, for example,

the cancer field. On the one hand, it is widely accepted

that an aberrant expression or function of CaSR contrib-

utes to the pathogenesis of cancer in various tissues (e.g.

pancreatic, prostate, breast, colorectal, ovarian, gastric,

skin, parathyroid, brain), where mutations of the receptor

are implicated in neoplastic progression [87,88]. On the

other hand, depending on the cellular context and type of

cancer, CaSR expression is increased or decreased - thus

turning the CaSR from putative oncogene to potential

tumor suppressor [88].

One of the most intricate and challenging pictures

emerges from the cardiovascular field.

In particular, the role of CaSR in cardiomyocytes is far

from being widely accepted. Assessing the function of

CaSR in cardiomyocytes is particularly intriguing because

these cells undergo through functionally essential intra-

cellular Ca2+ oscillations, which might be easily modu-

lated by the action of a ‘complex’ GPCR receptor such as

the CaSR. Also, the fast intracellular Ca2+ oscillations can

be mirrored by extracellular Ca2+ changes [89–91], which

may directly activate and/or modulate CaSR signaling

capacity.

A role for CaSR in the heart was suggested since 2003,

when Wu and collaborators found CaSR transcript and

protein both in atria and ventricles of adult rats [92]. In

that work the authors suggested, for the first time, a

prominent activation of the PLC/InsP3 signaling pathway

upon CaSR stimulation with high extracellular Ca2+,

spermine and Gd3+. Calcium dynamics, and changes of

Inositol Phosphate levels (IPs) were used as readout of

CaSR activation. Next, Tfelt-Hansen et al. [93] clearly

demonstrated that the calcimimetic AMG 073 was able to

cause both IPs accumulation and ERK1/2 activation in
Current Opinion in Physiology 2020, 17:243–254 
neonatal rat ventricular myocytes (NRVMs). The speci-

ficity of the response was straightforwardly demonstrated

by the significant inhibition of Ca2+-induced IPs accu-

mulation after expression of the dominant-negative CaSR

R185Q.

A detrimental role of CaSR activation in the heart was

described already in 2003 by Wang and colleagues [92].

Specifically, a pro-apoptotic action of Gd3+, used as single

CaSR agonist, was claimed in NRVMs. A few years later it

was suggested that this action was mediated by the

mitogen-activated protein kinases (MAPK) and caspase

9 [94]. In subsequent studies it was suggested that Gd3+

was able to increase CaSR, TRPC6 [95] and TRPC3

expression levels [96].

The involvement of CaSR in the effects of known car-

diotoxic substances has been also investigated.

Ciclosporin A (CsA) was described to induce cell apopto-

sis and to increase CaSR expression both in NRVMs [97],

Wistar rats [98] and H9c2 cardiomyoblasts [99]. Gd3+ was

found to exacerbate CsA-induced effects, while NPS2390

appeared somehow protective. A similar mechanism,

albeit with some differences in the intracellular cascades

activated, was described for lipopolysaccharide (LPS)-

induced apoptosis [100].

The pro-apoptotic action of increased CaSR expression

levels and signaling pathways have been also analyzed in

the context of ischemia/reperfusion (I/R) or hypoxia/

reoxygenation protocols, both in vivo and in vitro. CaSR

pro-apoptotic effect was studied in NRVMs [101–104],

adult rat cardiomyocytes [105], and adult rat hearts [102]

subjected to ischemia/reperfusion.

In summary, the pro-apoptotic effect of CaSR activation,

often exacerbated by increased CaSR expression due to I/

R, has been attributed to the activation of the Ca2+

signaling pathways with subsequent effects on the Bcl-

2, Fas/FasL death receptor pathway [101], cytochrome C/

caspase 3 axis [105], Bac/Bax mitochondrial translocation

[103], ER stress [102], and PKC delta activation [106].

Along a similar trajectory are the results on the anti-

apoptotic effect of hepatocyte growth factor (HGF) in

NRVMs subjected to simulated I/R: here a downregula-

tion of CaSR expression and signaling was observed [107].

Taken together, these results suggest that I/R increases

CaSR expression, thus inducing a CaSR-mediated Ca2+

overload — which exacerbates the effects of the pro-

apoptotic machinery.

In line with the above results, there are reports which

identify CaSR as one of the GPCRs inhibited by protec-

tive post-conditioning mechanisms, that is, by PKCe-
www.sciencedirect.com
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mediated negative feedback [108,109] or downregulation

of CaSR expression levels [110].

Contrary to the studies described above, a cardioprotective

role was proposed by Sun and Murphy [111] in ischemic

pre-conditioning (IPC). In fact, these authors reported that

the calcilitic NPS 2143 was able to attenuate cardioprotec-

tion of IPC, and proposed that changes in pH and ionic

strength at the caveolae may activate the CaSR, which

would thus mediate IPC. A protective role for CaSR was

also suggested by Bai and colleagues [112]. On the basis the

of observed reduction in CaSR expression in diabetic rat

hearts, it was suggested that the subsequent impaired Ca2+

signaling could contribute to the progress of diabetic car-

diomyopathy in adult rat cardiac cells.

Both the primary observation and its interpretation of

data were to the contrary in the work by Qi and colleagues

[113]. CaSR expression was found to be augmented in

diabetic rat hearts and, similarly to observations in I/R

work above it was hypothesized that CaSR signaling

could contribute to apoptosis via Ca2+ overload, reduction

of the Bcl2/Bax ratio, and modulation of the MAP kinase

cascade. The apparent contrast with the results by Bai

et al. was explained by invoking a difference in the

experimental setups - representative of type 2 diabetes

in the first work [112] and type 1 diabetes in the latter

[113].

CaSR role in cardiac hypertrophy is similarly still

controversial.

In 2006, a protective role for CaSR against cardiac hyper-

trophy was hypothesized in NRVMs, where CaSR

induced decrease in DNA synthesis [93]. In conflict with

this idea, an increased expression of CaSR, coupled to

worsening effects of Gd3+ on hypertrophic markers, was

later demonstrated in NRVMs subjected to in vitro hyper-

trophy [114]. The activation of the Ca2+ —sensitive

Calcineurin/NFAT pathway [115] was indicated as one

of the molecular determinants [116]. The role of the

CaSR in cardiac hypertrophy and heart failure was further

investigated in vivo in isoproterenol-treated Wistar rats

and mice subjected to thoracic aorta constriction (TAC)

[117]. CaSR expression was found to be significantly

increased in isoproterenol-treated rats, Calindol was

found to induce a significant increase of cardiac hypertro-

phy, while the calcyilitic Calhex 231 was shown to sig-

nificantly reduce the cross-sectional diameter of hyper-

trophic cardiomyocytes [117]. ER stress, Ca2+ overload of

mitochondria, and subsequent initiation of apoptosis were

suggested to cause cardiac hypertrophy and failure. More

recently, Calhex 231 was proposed to ameliorate isopro-

terenol-induced cardiac hypertrophy both in vivo and in
vitro [118], via inhibition of autophagy and the CaMK-

AMPK-mTOR signaling pathway. A role for the CaSR in

promoting cardiac fibrosis has also been suggested [119].
www.sciencedirect.com 
The CaSR in cardiac physiology: the
importance of experimental models and
multiple approaches
In contrast to the abundance of papers on the role of the

CaSR in heart pathophysiology, only a few reports have

been produced on its role in heart normophysiology.

First, a multifaceted study was performed by Schrecken-

berg et al. on adult male rats [120]. The effects of acute

CaSR stimulation or inhibition and downregulation by

siRNA were assessed on the contractile response of

ventricular cardiomyocytes, Ca2+ dynamics, and cardiac

performance [120]. In this study the authors provided the

first evidence that CaSR action is relevant for basal cell

shortening of ventricular cardiomyocytes, and demon-

strated that activation of the CaSR augments cell short-

ening and relaxation rate — most probably via the Gq/

PLC/IP3 pathway.

One year later, Liu et al. [121] suggested that CaSR could

be involved into the stabilization of the resting membrane

potential of guinea pig cardiomyocytes.

CaSR activation by NPSR568 was found to activate both

the PLC and phosphatidylinositol-4 kinase (PI4) path-

ways. The prevailing effect of PI4 Kinase was a significant

increase in currents through Kir channels due to PIP2

elevation at the plasma membrane. In the same year, in a

paper by Riccardi’s group [122], it was suggested that

CaSR deletion from heart could directly affects chrono-

tropy via decreased pacemaker activity.

These results draw an intricate picture in which, while it

is clear that the CaSR play a significant role in the heart,

the mechanism and timing remain open questions, lack-

ing significant and important detail.

One of the main reasons for apparent inconsistency of

some results certainly relates to the heterogeneity of the

experimental models used (neonatal versus adult ventric-

ular myocytes, whole heart, mice, versus rats versus

guinea pig). It is clear that adult models possess different

characteristic from the neonatal, although each of the

models can contribute to the understanding of the physio-

pathological role of the CaSR if the right questions are

asked and the results are discussed in the correct context.

Also, given the promiscuity and the pleiotropicity of the

CaSR, and its biased and compartmentalized signaling, it

is not surprising to find contradictory results —especially

in older reports, where single and poorly specific CaSR

agonists and single functional readouts were available to

researchers.

A very interesting and well-designed study has recently

addressed this problem by using two CaSR agonists and

novel functional readouts for Gi and Gq activation in adult

rat atrial myocytes [123]. In particular, the authors took
Current Opinion in Physiology 2020, 17:243–254
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advantage of the known dependence of G-protein-acti-

vated K+ channels (GIRK) by the bg subunits of Gi and

PIP2 levels to quantify, by whole cell patch clamping, a

putative biased signaling at the CaSR, activated by high

[Ca2+]o and spermine. The authors used FRET-based

biosensors transfected into CaSR-expressing HEK293

cells in the presence or absence of the other molecular

players involved in the process (CaSR, GIRK channels

subunits), and compared the results obtained in the two

experimental models. Interestingly, while CaSR did show

biased signaling in HEK293-CaSR cells, this signaling

mode was absent in atrial myocytes — where only the Gq

pathway was activated by high [Ca2+]o, with subsequent

inhibition of pre-activated GIRK current via PIP2 deple-

tion and PKC activation. Notably, Gi activation of GIRK

channels was not detectable, and modulation of GIRK

channel activity by spermine was found to be negligible

— and thus physiologically irrelevant. The results were

interpreted in the light of a possible contribution of CaSR

to atrial fibrillation [123].

Conclusions and future perspective
On the basis of the data available on CaSR structure, and

the novel insights on ligand bias and compartment bias, it

is predictable that an in-depth investigation on germline

CaSR mutations will reveal more details on the intricate

signaling mode of the CaSR. The accurate pharmacologi-

cal assessment of the effects exerted by diverse CaSR

agonists and modulators on different signaling pathways

in in vitro models of germline mutations, together with

homology modeling and mutagenesis studies, will cer-

tainly uncover new molecular players. The ultimate

delineation of the entire CaSR structure in the active

and inactive conformation will certainly be of paramount

importance to resolving remaining conflicts in the field.

In parallel, it would be highly advisable to proceed with

studies on physiologically relevant experimental models.

[Ca2+]i oscillations, cAMP changes, and MAP kinases

activation are indeed not separated pathways. On the

contrary, they can impinge one on the other, changing

the kinetics of second messenger’s dynamics, thus deter-

mining the identity of the final molecular target of the

extracellular signal. The exploitation of the extraordinary

vast pool of fluorescent biosensors [124], in parallel to

classical electrophysiological technique in physiologically

relevant models, would help us to understand what does

happen in real cells, in real time. If the single-cell and

organ-derived approaches remain the elective technique

to explore fine details of CaSR signaling, as far as the

pharmacological branch is concerned, the use of easily

accessed and-manipulated cardiac cells (such as the

NRVMs or iPSC) in high-throughput screenings for mul-

tiple readouts is highly advisable.

The therapeutic implication of such studies is enormous:

knowing the details of CaSR structure and function
Current Opinion in Physiology 2020, 17:243–254 
relationship, as well as the mechanisms of CaSR activa-

tion and biased signaling, we can improve the design of

targeted drugs able to activate the desired signaling

pathway in a targeted manner, while avoiding effects

on the many other tissues in which CaSR exert a func-

tional role.
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positive and negative allosteric modulators of the CaSR exhibit biased
signaling.

75.
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Gorvin CM, Babinsky VN, Malinauskas T, Nissen PH, Schou AJ,
Hanyaloglu AC, Siebold C, Jones EY, Hannan FM, Thakker RV: A
calcium-sensing receptor mutation causing hypocalcemia
disrupts a transmembrane salt bridge to activate beta-
arrestin-biased signaling. Sci Signal 2018, 11.

The authors show that the disruption of a salt-bridge between two
residues at the CaSR induces a conformational change that eases the
binding of b-arrestin. Thus, they uncover mechanistic details underlying a
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