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ON FILIPPOV SOLUTIONS OF DISCONTINUOUS DAES OF
INDEX 1 -
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ABSTRACT. We study discontinuous differential-algebraic equations (DDAEs) with
a co-dimension 1 discontinuity manifold ¥. Our main objectives are to give suffi-
cient conditions that allow to extend the DAE along ¥ and, when this is possible,
to define sliding motion (the sliding DAE) on ¥, extending Filippov construction
to this DAE case. Our approach is to consider discontinuous ODEs associated to
the DDAE and apply Filippov theory to the discontinuous ODEs, defining slid-
ing/crossing solutions of the DDAE to be those inherited by the sliding/crossing
solutions of the associated discontinuous ODEs. We will see that, in general, the
sliding DAE on X is not defined unambiguously. When possible, we will consider
in greater details two different methods based on Filippov’s methodology to ar-
rive at the sliding DAE. We will call these the direct approach and the singular
perturbation approach and we will explore advantages and disadvantages of each
of them. We illustrate our development with numerical examples.
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tial equations, Filippov, sliding solutions, singular perturbation theory, discontinu-
ous slow-fast systems.

2000 AMS mathematical subject classification: 34A36, 34A09, 65L80.

1. INTRODUCTION

In this paper we study discontinuous DAEs (differential algebraic equations) with
a co-dimension 1 discontinuity manifold ¥. By discontinuous DAE, DDAEs for
short, we mean a DAE system where either or both the differential system and the
algebraic constraint change discontinuously as solution trajectories reach a given
discontinuity surface .

For us, ¥ will always be a surface of co-dimension 1, that is ¥ will be always
defined as O-set of a smooth function:

(1) Y :={zeR" : h(z)=0, h: R" = R}.

Geometrically, ¥ divides R™ in two regions, Rt and R™, according to whether h(x) >
0 or h(x) < 0. We note that with this form of ¥, differential equations (ODEs not

DAESs) with discontinuous right-hand side have been studied for a very long time,
1
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F1GURE 1. Crossing and Sliding Point.

n(x) R, n(x) R

and that Filippov construction provides a powerful and well established theory to
provide some meaning to these systems; see [9]. Next, we briefly recall the key points
of Filippov theory.

Suppose one has the piecewise smooth ODE
(2) R : i=f"(z), h(z) <O, RY: &= f%"), h(z)>0,

with x € R*, f£:R* - R", h: R" = R, and ¥ as in (1). Here, f* are assumed
to be C! (at least), and h is at least C? in a neighborhood of ¥. Now, let € ¥ and
compute the quantities

(3) wH(z) = VA (2)f*(z) .
Then, z € X is a crossing, respectively sliding, point of (2) if
crossing: w™(z)-w*(x) >0, sliding: w (z) w*(z) <0,
and further an attractive sliding point if
(4) w () >0, and w(z)<O0.

See Figure 1 for an illustration. (The case of w™(x) < 0 and w™(z) > 0 correspond
to a so-called repulsive sliding point, which is an ill-posed configuration, and not
further considered). Whereas, in the generic case, at crossing points of 3 the vector
field is naturally defined as f~ or f*, the vector field at attractive sliding points is
not uniquely defined. Filippov theory postulates that, at an attractive sliding point,
the solution must remain on ¥ and will obey a differential system with vector field
chosen as that convex combination of f~ and f* which lies on the tangent plane at
Y. That is, the sliding vector field is defined as:

w™(x)
w—(z) —wt(x)
To reiterate, upon classifying points of ¥ (and, thus, parts of ¥) as crossing or at-
tractive, then one defines sliding motion according to Filippov theory on the portion

of ¥ which is attractive. Further, Filippov theory postulates that, generically, one
will leave 3 with f~ or f* precisely when o =0 or a = 1.

(5) i = (1-a)f (x)+aff(r), where a=
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It should be appreciated that Filippov theory is not the only possible way to
make sense of a discontinuous ODE like (2), and alternatives to Filippov theory
exist; e.g., for control problems, see [21]. Filippov himself in [9, pp.61-63], gives a
clear exposition of when the sliding vector field of a physical system can be defined
as in equation (5) or whether a different definition should instead be considered.
We point out (e.g., see [8, 21]) that the Filippov sliding vector field —see above— is
also the vector field selected by a limiting process of a numerical discretization about
the discontinuity surface; that is, the limit of the chattering behavior of a numerical
trajectory that switches between the two given vector fields about the discontinuity
surface (hysteresis). In the present paper, we will limit our consideration to Filippov
construction when considering DDAEs.

Remark 1. The paper [3] contains an overview of models, theory and numerics
of hybrid systems, i.e. systems of ODEs or DAEs with instantaneous transitions
triggered by zero sets of discontinuity functions. In [18] efficient numerical methods
for discontinuous DAFEs are presented. In the papers just cited, only crossing solu-
tions (transitions) are taken into account (also in [17] transitions triggered by time
dependent events for linear switched DAEs are considered). However, for DDAFs,
there 1s no analog to Filippov sliding mode theory, and our main scope in this work
18 to understand how to do this in the present DDAFE case.

It must be appreciated that models of discontinuous DAEs have been proposed
in the chemical engineering literature, see [1, 4], where the authors also proposed
Filippov-like sliding solutions. Likewise, some effort on solvability and index reduc-
tion techniques for discontinuous DAEs is in [15, 19] who also put forward some
Filippov-like solution techniques. However, no justification for these techniques has
thus far been provided, and to fill this gap is one of our scopes in the present work.

Our goal is to study the solutions of DDAESs, and classify and define attractivity
of ¥ and crossing/sliding solutions, by adapting the known Filippov theory for
discontinuous ODEs to the DDAEs. We will then follow this approach:

(i) we will consider discontinuous ODEs that have same solutions as the DDAE
in R~ and R™;
(ii) we will apply Filippov theory to the discontinuous ODEs;
(iii) we will define sliding/crossing solutions of the DDAE to be the same as the
sliding/crossing solutions of the resulting discontinuous ODEs.

We will restrict to index 1 DAEs, but even this “simpler” case presents consider-
able challenges when trying to define attractivity of ¥ and ensuing sliding motion on
it. We will investigate the occurrence of sliding motion and give sufficient conditions
that allow one to define Filippov sliding solutions along 3. Some restrictions on 3
will be necessary to establish whether crossing or sliding should take place. More-
over, unless we make further restrictive assumptions on the algebraic constraints of
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the DAE under study, multiple sliding solutions of Filippov type can be defined on
3} and this in turn might give rise to different qualitative behaviors and hence to
ambiguous sliding dynamics. In a nutshell, we can sum up our insight as saying
that in general sliding solutions are not unambiguously defined. We will elaborate
on these aspects in this paper.

In Section 2, we recall some basic results for smooth DAEs which are useful for
our purposes. In Section 3, we discuss restrictions on X, appropriate forms for
the algebraic constraints, and explore three possible approaches to define Filippov
sliding solutions on X. In the standard DAE case, these three approaches are in fact
equivalent to one another, but for DDAEs they can be quite different. In Section
4, we further restrict the form of the constraint defining the discontinuity surface
> and provide a comparison in greater detail of the direct substition and singular
perturbation approaches. In Section 5 we will present results for a DDAE arising
in chemical engineering, and finally in Section 6, we give conclusions and briefly
discuss the case of higher index.

2. SMooTH DAES

In the smooth case, the standard form of DAE we consider is one with differential
variables y € R? and algebraic variables z € R?, where d + a = n the dimension of
the ambient space, and can be given as

©) {g(y,Z)ZO N

where the functions f : R? x R* — R% and ¢g : R% x R* — R® are assumed to
be sufficiently smooth: we will require f € CP(R? x R%) and g € C?(R? x R?), with
p > 1. The DAE (6) is subject to initial conditions (yo, 29) satisfying the algebraic
constraint: g(yo, z0) = 0, and we further will assume that the matrix

(7) 8_9 is invertible along solution trajectories .
2

In DAE terminology, the requirement (7) states that the DAE (6) is of index 1. We
note that the class of problems (6)-(7) is also called a ODE with constraints, or a
semi-explicit DAE of index 1, or a Hessenberg index 1 DAE; see [2]. Of course,
the assumption (7) makes it possible, using the implicit function theorem, to locally
solve the algebraic constraint for z in function of y : z = k(y), where k : R — R®
is CP. Substituting this in the differential equation for y one is left with a standard
initial value problem of ODEs. As simple as this consideration is, let us hence
rewrite (6) with this acquired knowledge:

®) 200D 200 s0 = w20
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Of course, now one just has to solve the DAE (8), but for later use let us nonetheless
express three (mathematically equivalent) ways in which one may proceed.

(1) Direct Substitution Approach or state-space form. This is the approach given
by integrating the ODE

(9) g=F k), t=0, y(0)=yo.
The solution in this case is y(¢) and then one recovers z(t) = k(y(t)).
(2) Singular Perturbation Approach. Here one considers the enlarged system

y=1(y2) _ _
(10) [IZ]2 20 w0 = 0=
and then let e — 0. If we call (y(t), z.(t)) the solution of the ODE (10),
then (using [20], and see Theorem 21 below) one has that lir%(yg(t), 2e(t)) =

e—

(y(t), z(t)), the same solution of (9).
(3) Weak Formulation Approach. Here one differentiates the algebraic constraint
in order to define a differential equation for z. Doing so in (8) gives

(11) {Z _ ky(y)f(y,z) , >0, y(O) =%, Z(O) =20 -

Again, the exact solution of (11) is the same as the solution of (9).

As we will elaborate in this work, these three formulations above are usually not
equivalent when dealing with nonsmooth DAEs.

Remark 2. It is worth remarking that the three formulations recalled above have all
been used in the literature on numerical methods for DAEs; e.g., see [11, 12].

3. GENERAL INDEX 1 DDAE

There are many ways to generalize index 1 DAEs to nonsmooth index 1 DAEs (or
DDAESs). For example, consider the general model below, where both vector fields
and algebraic constraints change (discontinuously) as the differential and algebraic
variables cross a hypersurface >:

— y:f_(y7z) + {y:f+(yaz)
12) R : 2 , h(y,z) <0, RT: , h(y,z) >0,
(12) {z:k (y) (y,2) z=kt(y) (y,2)

with (y,2) € R4 x RY, f* R x R* — RY, k* : R? - R%, h: R?x R® - R, and we
are letting ¥ := {(y,2) € R x R* : h(y,z) = 0}.

Remark 3. We have assumed to have the same algebraic variables in RT and R™.
FEven when this is seemingly not the same, we substituted directly in the respective
differential system those that are not in common in the two regions. This case, for
example, arises in Example 5 below.
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In the model (12), the fact that the function h depends on both y and z means
that to define points on ¥ as attractive or crossing, we must be able to access the
derivative of z. In other words, in R* we must view the respective DAEs according
to the “weak formulation approach,” since we must be able to access the derivative
of the algebraic variables, in order to obtain a well defined derivative Lh(y(t), z(t))

for trajectories that approach ¥ from R~ or R*; viz., Lh(y(t), z(t)) = hyy + h..
In short, we effectively need to consider the enlarged piecewise smooth system of
ODEs for xz = ‘z} € R", given by
(13)
- 3 fi(yaz) :| + . |i f+(yvz) 1
R z=1,_ _ , h(z) <0, R"™ : x= , h(z) >0,
bl ey B W) ay) M
with given initial conditions xy. However, we must be careful that the initial condi-
tions xy be compatible with the original (12); that is, if we have xy = ZZ/O € R,
0
then it must be that zp = k™ (yo), and if 2y € RT, then it must be zg = k¥ (yo).
As a consequence, for zq € X, we require that k7 (yg) = k7 (yo) and this same con-
dition must be satisfied along a suitable sliding solution. Hence, in order to apply
Filippov’s approach to (13), we require that:

(14) If o= m €Y, then k(y) = k™ (y).

Without (14), the problem (13) is not well posed. So, for (13), we assume that (14)
holds and call k(y) the common value of k% on X.

With this in mind, the case of the DDAE (12) reduces to the discontinuous ODE
problem (13), which we can treat according to Filippov theory for discontinuous
ODEs. Then, for example, at a point # = (y,2) € ¥ the values of w* are as in
(3): wH(x) = hy(x)f=(x) + ho(z) (kF(y)f*(2)). And, x € ¥ is, say, an attractive
sliding point if w™(z) > 0 and w*(x) < 0. Sliding motion, therefore, will take place
according to

(15) & = H — (1-a) {J/:_

Y

(y,2) f(y,2) _ w(y,2)
(f_)] o [k;(f*)} caly,2) = w(y,2) —wt(y, z)’

with zg € ¥, 7o = (yo, k(yo))?. In what follows, for ease of notation, we will drop
the dependence of a on (y, z). In order to ensure that during sliding motion on X
the solution of (15) remains on the manifold z = k(y) as well, we must require that
also the derivatives of k™ and £~ coincide on . Hence, we must have the following,.

Compatibility Condition 1. For the DDAE (12) to be well defined, we require
that

(16) If (y,2)€X, then k' (y)=k"(y), kS (y) =k, (y) .
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FiGURrE 2. Example 4.

z=k'(y)

h(y,z)=0

I I I I
22 24 26 28 3

Example 4. The following problem is an instance of (12).

- y=-1 _ + y=-1 _
R {z:2y—2’y 2 <0, RT: { z>0.

Here the discontinuity function is h(y,z) = y — z, and the functions defining the
1

algebraic variables are k™ (y) = 2y — 2 and k¥ (y) = 3y + 1. There is only the point
(2,2) on X satisfying the compatibility condition, and thus this is the only possible
initial condition on X. For (y,z) € ¥ then k™(y) = k= (y) = k(y) = 2. In ./ 2
the solid line is h(y,z) = 0, while the dashed lines above and below the solid one
are respectively z = k™ (y) and z = k™ (y). The point in bold is the point (2,2) on
the intersection of the three lines. The arrows indicate the direction of motion of the

solution of the DAFE in the two subregions R~ and R*.
After rewriting the discontinuous DAE as in (13), we have
w =1 and wt = —1/2 thus a=2/3.

As a consequence, we would slide on X with differential equation y = 2z = —1,
remaining on ¥ but not on z = k(y). Indeed, while (14) is satisfied, the relation
(16) is not. The vector field y = 2 = —1 obtained applying Filippov sliding vector
field to (13) fails in describing a dynamic compatible with the original discontinuous
DAE and hence can not be used in this context. See Example 5 below to see what
happens instead when (16) is satisfied.

Example 5. This is an example of @ DDAE (12) that satisfies (16). As we will
see, the Filippov sliding vector filed obtained by rewriting the original DDAFE as a
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discontinuous ODE as in (13), is compatible with the original problem had the sliding
solution remains on the intersection of 3 with the algebraic constraint z = k(y). The
problem is the following:

- y=—z-"Ty B + . y=z+1l—-y
R {Z:2y2—y+1’y z+1 <0, R™: {z:y2+y , y—z+1>0.
For this problem we have k™ (y) = 2y* —y+1, k™ (y) = y*+y and they both intersect
the discontinuity line z = y + 1 at the point (1,2). Hence on %, z = k(y) = 2. We
rewrite the DAE as in (13) and obtain

- y=-—2-Ty + y=z+1-y
an R {z: Cri-dy {z: Qy+1D)(+1-y)
The components of the vector fields normal to ¥ are w™(y,z) = (8y + 1)(4dy — 2)
and wt(y,z) = —4y and X is attractive for y > 1/2 and z = y + 1. The point
(1,2) satisfies this condition so that it is an attractive sliding point. If we compute
Filippov sliding vector field for (17) at {(1,2)}, we obtain y = 2 = 0 and the sliding
solution remains at the intersection point of ¥ with z = k(y).

To sum up, for the model (12), we propose the interpretation based on (13) as the
appropriate interpretation to use for deriving a Filippov theory, for as long as the
compatibility condition expressed by (16) is satisfied on X. In the next section, we
consider the cases in which the discontinuity surface depends only on the differential
variables y. We will see that different -non equivalent- interpretations are possible

when kT £ k™ on X.

4. DISCONTINUITY FUNCTION INDEPENDENT FROM THE ALGEBRAIC VARIABLES

In this section we deal with Hessenberg Index 1 DDAEs with discontinuity func-
tion that does not depend on the algebraic variables, i.e. h = h(y). Therefore, our
model DDAE is the following.

- . y:fi(yaz) + . yzf*(y,z)
(18) R : {z:k_(y) , h(y) <0, R™: {Z:kJr(y) , h(y) >0,
with (y,2) € R x Re, f£: R4 x R* — R4, k* : RY — Re Above, the function
h : RY — R, is assumed to be sufficiently smooth, we will let ¥ = {(y,2) €
RYx R : h(y) =0}, and 2, := {y € R? : h(y) = 0}, and will further assume that
hy is full rank for all y € ¥,,. As a consequence, ¥, is a smooth (d — 1)-dimensional
manifold embedded in R%.

Admittedly, the model under study might seem reductive. For one thing, it may be
hard to rewrite an Index 1 DAE in Hessenberg form; moreover, in the literature (see
[1, 4, 15, 19]) several authors have put forward Hessenberg DDAFEs with a different
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number of differentiable and algebraic variables in each subregion. However, we
restrict our analysis to equation (18) where in each subregion there are the same
differentiable and algebraic variables, and do so in order to derive a Filippov theory.
In particular, the restriction on the differentiable variables is essential to apply the
original Filippov theory; the restriction on the algebraic variables, on the other hand,
could be dropped in certain cases, see Remark 20 for an example. Regardless, we
will see that unexpected difficulties arise already in our simplified scenario of (18).
As a matter of fact, unless we further restrict the class of DDAEs we consider, it is
not possible to give a non ambiguous definition of crossing and sliding points and
hence crossing/sliding solutions for Filippov type DDAEs.

In the quest for a non ambiguous Filippov type DDAE on ¥, we first restrict our
attention to DDAEs with smooth algebraic constraints. Under this restriction, we
can define sliding/crossing points in a non ambiguous way and, in case of sliding,
we can define a unique Filippov sliding solution regardless of the equivalent discon-
tinuous ODE we consider. This restriction and the results associated with it might
seem at first trivial, however the need to put on firm ground these fairly intuitive
ideas will become apparent after Section 4.2. There, we consider DDAEs with dis-
continuous algebraic constraints and show how a Filippov based approach does not
even allow a non ambiguous classification of sliding/crossing points on X..

4.1. Smooth algebraic constraint. The first restriction we put on (18) is that
the function(s) k*(y) expressing the algebraic constraint be the same (in principle,
it would be sufficient for them to be the same in a neighborhood of ¥). So, we will
take k= (y) = k*(y) = k(y) and k to be at least a C? function for all y € RY; Example
3.1 in [4] is of this type. This will turn out to be the easy case, when all three classic
approaches for DAEs give the same sliding vector field of Filippov type. In spite of
the fact that this is indeed a simpler case, we discuss it for completeness here below.

Hence, the model under study can be written as

)= *(y,2), h(y) =0,
(19) {yz:k(é)? fcfry)alfy.

Presently, we can rewrite BT = {(y,2) € R? x R® | h(y) = 0}, and since solutions of
(18) must satisfy z = k(y), the study of crossing/sliding regions can be restricted to

S ={ly,z)eX | 2=k(y)}.

Without loss of generality let (yo,20) € R™, 20 = k(yo) and assume that the solution
of (19) with initial condition (yo, zo) reaches S at time ¢ at the point (7, k(7)).

Next, we will show that all three possible reformulations (see Section 2) of the
DDAE as a discontinuous ODE will give the same sliding vector field for the DDAE.
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(1) Direct substitution, cfr. (9). We rewrite (19) as

(20)

(21)

(22)

(23)

g =f*(y.k(y)), h(y) 0.

We classify sliding/crossing regions of ¥, via Filippov theory. Let y € ¥,
and consider the components of f* normal to X,

w¥(y) = hy (Y) [y, k(y)) -
Then, a point § € ¥, is a crossing, respectively sliding, point of (20) if
crossing: w™ (g) - wt(y) >0, sliding: w (y) - wt(y) <0.
Moreover § € X, is an attractive sliding point, respectively repulsive sliding
point, if
w (y) >0, and w™(y) <0, (w(y) <0, and w'(y)>0).
The point § € ¥, is a tangential exit point into R™, respectively into R, if
into R~ : w(y) =0, w'(y) <0, w, () #0,
into R : w*(7) =0, w (y) >0, w, () #0.

Repulsive sliding points will not be considered in the sequel, since trajecto-
ries through these (i.e., starting at these) are not uniquely defined. Crossing
and attractive sliding points, instead, give rise to crossing or sliding Filippov
solutions.

At a crossing point, solution trajectories simply leave X, and pass from a
region to the other, changing the vector field, hence producing a continuous
but not smooth solution. At an attractive sliding point, instead, solutions
trajectories will be forced to remain on X, (and hence on X). According

to Filippov theory, motion will proceed by solving the following differential
equation

y=0—-a)f (v, k() +af (v, k) = fr(y, k), y{) =17,

where a = «(y) is such that ¢ is in the tangent plane to X,

h(y) fr(y, k(y)) = 0,
and thus
aly) = w”(y)
w(y) —wt(y)
so that a(y) € (0,1) because of (22). The solution trajectory will continue
solving (23) until it may reach an exit point, that is a point where it will
leave X,/ a fact that generically will occur at tangential exit points. For later

comparison, let us call (y(t), z(t)) = (yas(t), k(yas(t))) the solution obtained
with the present “direct substitution” approach.
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(2) Singular perturbation formulation, cfr. (10). We replace the DDAE in each of

(25)

(26)

(27)

the subregions R* with a singularly perturbed discontinuous ODE as follows:

{y = f*(y,2), h(y) 20
i=1(k(y)—=2)

It is well known that solutions of (25) converge uniformly (in a time in-
terval that does not contain the initial time) to solutions of (19) in each
subregion R* as the parameter e goes to zero (e.g., see Theorem 21 below).
For as long as it remains in R, call (yg,(t), 25,(t)) the solution of (25) with
initial condition (v, o), so that

i (45 (1),25,(6) = ((0) 2(0)

uniformly in time in [0,¢]. It follows that for e sufficiently small, there exists
t =t such that (yg,(tc), 25, (c)) reaches ¥ at the point (g, Z.). Notice that,
by continuity, we must have

te = t, Je =Y, Z — Z,
but we cannot expect z. = k(y.) for € # 0. In order to classify a cross-
ing/sliding point of (25), we first write the components of the vector field
normal to X:

wi(ya Z) = hy(y)fi(y7 Z)
A point (y, z) € ¥ is a crossing (sliding) point for (25) if

crossing: w' (y, 2)w™ (y, z) > 0, sliding: w* (y, 2)w™ (y, 2) < 0.

The conditions above do not depend on €, hence a point (y,z) € X is
a crossing/sliding point for (25) for all e. From this and (26) it follows
that for e sufficiently small (g, Z.) is a crossing/sliding point if (g, k(y)) is
a crossing/sliding point. If (g, ) is a crossing point, then (yg,(t), 25, (t))
crosses X to enter RT. If, instead, (7., Z.) is an attractive sliding point, then
(Y5 (1), 25, (f)) remains on X, as solution of the following ODE

y=1-af (y,2) +a f(y,2),
ez = (k(y) — 2),

with af chosen so that h,y = 0, i.e. o = a(y,z) = hy(hy(y)ff(y’z)

(f~—FT)(y2
perturbation theory (again, see Theorem 21) ensures that in the limit for

¢ — 0, solutions of (27) converge to solutions of the DAE

J=(1=a")f(y,2) +’fT(y,2), z=k(y),

where o = #% the same value as in (24). The theory guarantees

uniform convergence in [t + 0,¢ + A], with § > 0, and with A > 0 chosen so
that the solution of (27) remains on ¥ in the time interval [, + A]. Since

- Singular
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Z. — k(¥), in this case the convergence is uniform in [t,¢ + A]. Therefore,
taking the limit as e — 0 of (yg,(t), 25, (t), we have that this coincides with

(y(t), z(t)) for t < ¢ and further with (yga(t), 24a(t)) while sliding,.

Remark 6. System (25) is a discontinuous slow fast system with a smooth
slow manifold. In [5] the authors study the qualitative behaviour of these
discontinuous systems and they compare it with the qualitative behaviour of
the reduced system, the same as (20) in this paper. They show that if the
reduced system has an equilibrium or a periodic orbit on the discontinuity
manifold, then, for e sufficiently small, also the slow-fast system does. The
proof of their result is based on results of singular perturbation theory as well.

(3) Weak formulation, cfr. (11). Here we consider the weak formulation of the
DDAE (19):

y=1"y2) g =f(y,2)
2%) {Z = ky(y) [ (y,2)” hy) >0, {Z’ =ky(y) [ (y,2)’ Mly) <0,

(

subject to consistent initial conditions (yo, z9) in R~. Denote with (yy (), 2w (1))
the solution of (28), so that at ¢ the solution reaches S at the point (7, k(7).

Following Filippov, the conditions for (y,k(y)) to be a sliding/crossing
point are the same as in the “Direct Approach” of point (1) above, and if
(7, k(7)) is a crossing point, then (yy(t), zy(t)) crosses S to enter RT. If
instead (7, k(7)) is an attractive sliding point, (yy (), zw(¢)) must remain on
>, as solution of the differential equation

y = (1 - Oé)f_(y, Z) + af+(y7 2)7
(29) = (1= a)k,f(y,2) + ok, [ (y, 2),
y(t) =7, 2(t) = k@),

with a so that hly =0, i.e.,

B hy(y) [~ (y, 2)
(30) W= 0T 0.9 — T w2

Since z(t) = k(y(t)) satisfies the differential equation for z in (29), then
2w(t) = k(yw(t)) while sliding so that a in (30) is the same as in (24). It
follows that yy (t) = yas(t)-

We reiterate here that, under the assumption of a smooth algebraic constraint, and
for initial condition yo, 20 = k(yo), the functions (yas(t), k(yas)), imeo(ys, (1), 25, (1)),
and (yw (), 2w(t)), are all the same for all ¢. Therefore, in this case of smooth
algebraic constraint, any of these can be called the Filippov solution of (19).
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4.2. Discontinuous algebraic constraint. In this section we study the DDAE
(18) where the algebraic constraints are different, in particular on X, k= (y) # k™ (y).
In light of the results in Section 3, in particular see (14), the Weak formulation
approach will not be considered, since we would need k*(y) = k™ (y) on X, which
we do not have. For this reason, in this section we consider (see Section 2) only the
Direct Substitution Approach and the Singular Perturbation Approach.

Our goals are the following: (i) highlight that the definition of sliding/crossing
points depends on the specific approach we choose, and therefore that the sliding
solution is in general not the same for the two approaches; (ii) show that, under
certain assumptions, the singular perturbation approach leads to the use of a convex
combination of the algebraic constraints during sliding motion; (iii) show that the
sliding DAE on ¥ obtained as limit of the singular perturbation approach is not
necessarily of index 1.

4.2.1. Direct Substitution Approach. Much like in (9), we consider the following
discontinuous ODE in R?

. Ty E (), h(y) >0,
(31) y_{f‘(%k‘(y)), hy) <0,

with discontinuity surface 2, = {y € R?h(y) = 0}, and ¥ = 3, x R%. System (31)
is the same as [1, eq. (29)].

When adopting this approach, we say that a point y € ¥, is a crossing/sliding
point for (18) if it is a crossing/sliding point for (31). Namely:

crossing:  hy(9)f~ (9, k™ () hy(@) S (5, k7 (5)) > 0,
sliding: 1y (9)f (9, k™~ (¥)) hy(9) (5. k7 (9)) <O,
and further an attractive sliding point it
hy(@)f~ (9, k~(5)) >0 and hy(9)f" (5, k" (5)) <0.
Sliding motion —according to Filippov theory— will take place as in (5), namely
hyf~
hy (f~=f%)

and indeed the Filippov theory known for ODE systems applies to the discontinuous
DAE in this case.

32) ¢ = (1—a)f (y,k (y) +af (y,k"(y)), where a=

Remark 7. We must notice that in the rewriting (31), there is no longer any explicit
dependence on the algebraic variables z. As a consequence, z is not specified on
Y by using the formulation (31)-(32).



14 L. DIECI, C. ELIA, L. LOPEZ

4.2.2. Singular Perturbation Approach. In this section, we consider a certain singu-
larly perturbed problem (see (33) below) as a possible mean to define solutions of
the DDAE, similarly to what is done for DAEs (see the e-Embedding method in [11]
and [12] ). We extended this approach to DDAEs.

At the same time, the singular perturbation problem we put forward is quite
interesting in its own right, and it directly relates to singular perturbation theory
of discontinuous slow-fast systems . This topic has seen several contributions in
the past years, see for example [10], for discontinuous singularly perturbed systems
with the discontinuity depending only on one slow variable, [13] for planar slow fast
systems with discontinuity manifold depending also on the parameter € and [5] for
slow-fast systems with a smooth slow manifold). Our model DDAE is the reduced
slow system of the following discontinuous slow fast system

y:f_(y7z> . y:f+(yvz)

(33> {EZ:kJ(y)—Z 7h(y><0’ {ez'zk*(y)—z 7h(y)>0

System (33) has a discontinuous slow manifold (if £~ # k™) and nonsmooth slow
variable (if f* # f~) . When € = 0 in (33), the reduced system is the same as (18).
Now, in R*, singular perturbation theory ensures that, as e — 0, solutions of (33)
converge uniformly in time to solutions of (18). The convergence is uniform in a
closed interval that does not contain 0 if the initial condition is not consistent with
the algebraic constraint.

The conditions for crossing or sliding points on X for (33) are the same for all €
since h = h(y) does not depend on z. Following our characterization given in the
Introduction, see (4) and Figure 1, a point (y,2) € X is a crossing (resp. sliding)
point for (33) if the following is verified

(hy(W) f~ (y, 2)) (hy () f " (y, 2)) > 0 (vesp. (hy(y) [~ (y,2))(hy(y) T (y, 2)) <O0).

Let (yo,k (y0)) € R~ and denote with (y(¢), 2(t)) the solution of (18) with initial
condition (yo, k~ (yo)). Assume that (y(t), z(t)) reaches 3 transversally at time ¢t =
t at the pomt (9,k~(y)) = (y,2); then, it must be h,(y)f (g,Z) > 0 and, by
continuity, hy(y)f~ (y,z) > 0 in a neighborhood of (7, z) on X. Let (y.(t), z(t)) be
the solution of (33) Wlth initial condition (yo, &~ (yo)). Tikhonov’s Theorem (again,
see Theorem 21) guarantees that

lim(ye(?), ze(t)) = (y(1), 2(1)),

in a suitable time interval [0, T]. Uniform convergence of (y.(t), z(t)) to (y(t), 2(?))
and h,(y)f(y,z) > 0 imply that there is a time ¢t = ¢, such that (ys(fg),zg(te))
reaches ¥ at the point (7., z.) and

limt, =¢, limy. =79, limz, = z.
e—0 e—0 e—0

Note that, in general, for € # 0, z. # k™ (y.).
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Notice that if {, < t, for € sufficiently small we can continue the solution of

{ y:f7<y7z)
e2=k"(y)—z’

up to ¢ as long as f~ and k™ are defined in a neighborhood of ¥. Then the uniform
convergence is in [0, ].

We study (33) with the aid of Filippov theory. Then we will define solutions of
(18) on ¥ as the limit for € — 0 of Filippov solutions of (33).

Remark 8. When following the singular perturbation approach, we decide whether
solutions of (18) slide on X or cross it at a given point by looking at the limiting
behaviour of Filippov solutions of (33). There is indeed no criterium to classify
(9, 2) as a crossing/sliding point for (18).

We proceed as follows. Assume that (7, Z) € X is an attractive sliding point for
(33), i.e. it satisfies the following:

(34) hy()f(y,2) <0, hy(y)f~(y,2) > 0.

Then, for € sufficiently small the point (., Z.) is an attractive sliding point for (33)
as well. On X we consider sliding motion defined by the classic Filippov construction
relative to the system (33), that is from:

{y =1 —a)f (y,2) + af *(y,2),

(35) ez=01-a)k (y)+ak™(y) — 2.

Due to continuity of solutions with respect to initial conditions, since (¥, z.) —
(y,2), we consider the following initial conditions for (35): y.(0) = 4, 2.(0) = z. We
denote the solution of the Cauchy problem as (y.(t), z.(t)). In (35) a is determined

hTf_( € Ze) . .
m. Settlng e=101n (35)

we obtain the reduced differential algebraic equation

y=00-a)f (y,2) +af(y,2),
z=(1—a)k(y) + ak™(y),
hy )]~ (9,2)

hy (Y)(f~ =) (y,2
the algebraic constraint z = (1 — @)k~ (y) + ak*(y). Beware that the existence of

a solution is not always guaranteed. However, in Theorem 13 we show that under
certain assumptions there exists a function z = (y) that satisfies the algebraic con-
straint. We denote with (yo(t), z0(t)) the solution of (36). Convergence of solutions
of (35) to solutions of (36) as € — 0 is not always guaranteed, even when the alge-
braic constraint can be explicitly resolved. Below, we give sufficient conditions for
convergence following arguments used in singular perturbation theory (see [20, 14]).

in order to insure sliding on X: o = a(y, z) =

(36)

with a = a(y, z) = 7 and y(0) = y. The solution of (36) must satisfy
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Once convergence is verified (in a time interval that does not contain 0, since in
general 2(0) # 2.(0)), then we can use (36) as sliding equation for (18).

Remark 9. Equation (36) for sliding solutions on 3 is used in [4, Equations (14)-
(15)] without justification. However, the convergence of solutions of (33) to solutions
of (36) as € goes to 0 is not always guaranteed since (35) is not continuous at € = 0,
and use of (36) requires justification. Moreover, it is not clear how to classify a
point (y,z) with z # k*(y), as a sliding/crossing point for (18).

Remark 10. [t is important to stress that there is a key difference between sliding
motion defined by the direct approach, see (31)-(32), and sliding motion defined by
the singular perturbation approach. The key difference is that in the latter approach
the algebraic variables z are defined, whereas in the former they are not.

Let
(37) Gy,2) = (1—aly,2))k™(y) +aly, 2)k"(y) — 2 =0,
with a(y,z) = hy(Z@)’((?)_f__ﬁ)z(L 5+ characterize the slow manifold of (35). Equation

(36) blows up the dynamics of (35) along the slow manifold. Consider the time
stretching 7 = £ and rewrite (35) using the derivative with respect to 7

{y’ =e((I—a)f (y,2) +af(y.2)),

(38) Z ==k (y) +ak’(y) -z

with initial conditions y(0) = g, and 2(0) = zZ = k= (). If (ye(t), 2.()) is the solution
of (35) then (y.(e7), zc(e7)) is the solution of (38). Setting € = 0, we obtain the fast
system

\
7= (1—aly,2)k (y) +aly, )k (y) — 2,

with y(0) = g, 2(0) = z. Notice that, as long as the point (y, z) is an attractive
sliding point of (33), o is in (0,1) and it is a smooth function of (y, z) inheriting
the same regularity of f~ and f*. Hence the vector field in (39) is smooth. In the
following we will consider (39) as a differential equation in R* depending on the
parameter y. We denote with (y(7), 2(7)) = (y, 2(7)) its solution. Continuity with
respect to the parameter € insures that the solution of (38) converges to the solution
of (39), i.e.,

(39)

lii%(yg(m'), ze(eT)) = (y, 2(7)),

in a time interval [0, 7] with 7y so that the solution of (39) exists in [0,7]. In
Proposition 11 below, we show that under certain assumptions solutions of (39)
exist for all 7 > 0 and hence 7y can be taken sufficiently large. Denote with K (y)
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FIGURE 3. Plot of the function G = G(y, z) for y fixed in function of z

G(y.2)

the convex hull of k™ (y) and k™ (y) in R*: K(y) = conv{k™(y),k (y)}, and define
the following set

Yk ={(y,2) € X | (y, ) satisfies (34) Vz € K(y)}.

We will show convergence of solutions of the full problem (35) to solutions of the
reduced problem (36) in this set. Hence in what follows we will consider initial
conditions in the set Xx. For (y, z) € Xk, observe that « is in (0,1). We fix y and
consider the map G(y,-) : K(y) — R*, G(y,2) =1 — a(y,2)k (y) + a(y, 2)k (y).
Since a € (0,1), G(y,-) maps K(y) into itself and Brouwer Fixed Point Theorem
implies that G(y, ) has a fixed point in K (y). It follows that the fast equation (39)
has at least one equilibrium in K(y). We would like to give sufficient conditions
so that (39) has a manifold of asymptotically stable equilibria depending on the
parameter y, z = ¢(y). In Proposition 11 we restrict our attention to the case of
one algebraic variable, i.e. @ = 1, and in Theorem 13 we consider a = 1 together
with two differential variables, i.e. d = 2, and h linear.

Proposition 11. Let a = 1 in (18), G : R* x R — R, k* : R — R. Denote with
K(y) the convex combination of k™ (y) and k= (y) in R. Then for all y such that
(y, z) € Xk, there exists at least one asymptotically stable equilibrium of (39).

Proof. We study the sign of G in the set K(y) for (y,z) € Y. Without loss of
generality, let k= (y) < k™ (y). Then

Gy, k™ (y)) = a’(y. k= () (k" (y) — &~ (y)) > 0,
Gy k() = (1 = a(y, k" () (k™ (y) — k¥ (y)) < 0.
Therefore, G(y,z) has a zero in K(y), see Figure 3. Given the sign of G(y, )
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at the extrema k~(y) and kT (y), there must be at least one asymptotically stable
equilibrium of (39). O

From the proof of Proposition 11, see Figure 3, we see also that, for (y,2) € Yk,
solutions of 2’ = G(y, z) with initial condition in K (y) remain inside K (y) and hence
solutions of (39) are defined for all 7 > 0. It follows that lim._,o(y.(eT), z.(eT)) =
(g(7),2(7)), in [0,70] with 7y arbitrarily large. We now consider the case of one
algebraic variable and two differential variables, i.e., a = 1 and d = 2, together with
h linear. Without loss of generality let h(y) = y;.

Remark 12. When (18) has two differential variables, the vector field in (39) is
on % and hence it depends on just one parameter. It follows that the conditions in
item (i) and (ii) in Theorem 13 below are generic. In particular: we do no consider
canard points (4o = 0 in (i), see [14]) and triple equilibria (in (ii) the additional
condition on equilibria) since they are not generic for d =2 and a = 1.

Theorem 13. Let a =1, d = 2 and h(y) = y;1. Assume (y,k™(y)) € Xk. Denote
with (g, z(y)) the equilibrium of (39) closest to (g, k= (y)). Assume that one of the
two assumptions (i)-(ii) below is satisfied:

(i) [:G(5,2)],_. ) # 0
(i) [ZG(y, Z):|z:z(gj) = 0 together with

0?2 0
Z z=2(y) Yy (7,2(9)
g =e3[(1—a)f~ +af'](F,2(y) #0.
Moreover, for any other possible equilibrium (y,z): G(y,z) = 0, we assume
that
a 2

If [@G(y,z)} =0, then {%G(y,z)}

Z=z

£0.

z=

Then, there exists p : R — R defined in a neighborhood of §a, such that G(y, o(y2)) =
0 and moreover there exists T' > 0 such that

iy (1.(0),2c(1) = ((0): (e vn(t))), uniformly in (5.7, 6> 0.

Case (i) implies that ¢(y2) = z(y). The same equality is not guaranteed under case
(ii).

Proof. The proof follows by using results of singular perturbation theory. We use
Tikhonov’s Theorem (see Theorem 21, [20]) for the proof of (i), while for (ii) we
also have to consider what happens at fold points of 2 = G(y, z). This case is not
contemplated in Theorem 21 but it can be studied by looking at the behavior of the
reduced system (36) in a neighborhood of (g, z(y)) (see [14]).
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(i) From the definition of z(y), we have G(7,2(y)) = 0. The assumption

(i)

2G(y,2(y)) # 0, implies that z(y) is a simple zero of G(7, z). Then, by the
Implicit Function Theorem, there exists a neighborhood of ¥, Ij,, a neigh-
borhood of 2(%), I.(5 and a function ¢ : Iy, = L), ¢(%2) = 2(¥), such that
G(y, ¢(y2)) = 0. Moreover, since G(7, z) is positive in a left neighborhood
of z2(y), z(y) must be an asymptotically stable equilibrium of 2’ = G(y, 2)
and for y, in a neighborhood of 7, ¢(y2) must be an asymptotically sta-
ble equilibrium of the fast system (39). The convergence of (y.(t), z.(t)) to
(yo(t), p(e3yo(t))) follows easily from Tikhonov’s Theorem (see Theorem 21
and [20, Section 39]).

The assumptions guarantee that (7, z(7)) is a generic fold of (39), see [16, 6].
Proposition 11 guarantees the existence of at least one asymptotically stable
equilibrium of (39). Denote with z,s(7) the asymptotically stable equilibrium
closest to z(y). Without loss of generality, assume (as in Proposition 11) that
k~(y) < k™ (y), so that in particular it must be z.s(y) > z(y). Under the
given assumptions z,4(7y) is a simple zero of G(¥, z) since otherwise (because
of the change in sign through it), we would have

0 0?
G(@? Zas(g)) = 07 |:_G(y> 2)1 = 07 |:_G<g7 Z):| = 07
az Zas(?) 822 Zas (Zj)

and this contradicts the assumptions in point (4i) of the theorem. Below we
consider four possibilities.
(7)1 [G%G(y, z)] o) > 0 together with g, > 0 in (36). This is illustrated in

9.2(y
the left plot in Figure 4. In the figure we plot the set G(y, z) = 0 in the
(y2, z) plane (i.e. on X) in a neighborhood of (y, 2(¢)), marked as a full
circle in the plot. The curve G(y,z) = 0 on X is a curve of equilibria of
(39). In particular the solid line is the branch of asymptotically stable
equilibria, while the dashed line indicates the unstable equilibria. g5 > 0
implies that the flow of the reduced problem (36) along the stable and
unstable branch of the slow manifold is directed towards the fold. Then
by Tikhonov’s Theorem, solutions of (35) in the limit for ¢ — 0, follow
the slow manifold along the stable branch. At (7, z(y)) then the limiting
solution must continue along the dotted line in Figure 4. This is the
solution of (39) and it satisfies lim, o Z(7) = 24s(y). Then

lim(y(er), 2(e7) = (7. 5(), 7 € 0,7,

with 7y arbitrarily large. For 7y large enough (y.(e7), z.(e7)) enters a
small neighborhood of (7, z.5(7)). From now on, the proof follows the
same reasonings of Case (7). The main difference consists in the fact
that the function ¢ is defined in a neighborhood of g as in Case (i) but
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it has values in a neighborhood of z,s(7). The point (7, z(7)) is then a
jump point for the limiting solution of (35).

[%G(y, z)] <0 together with §, > 0 in (36). This is depicted in

7,2(9)

the right plot of Figure 4. As in Case (i) we plot the stable branch of
equilibria of (39) as a solid line and the unstable branch as a dashed
line. The flow of the reduced problem (36) is directed away from the
fold along the stable branch. Let ¢ : R — R be such that ¢(72) = 2(y)
and z = ¢(y2) is the stable branch of equilibria of (39) in the figure.
Then, by Tikhonov’s Theorem, there exists 7" > 0 such that

P_I)%(ye(t)7 Ze(t)) - (yO(t)7 @(egyO(t))%

in [0,7]. The time instant 7" is chosen such that the solution of (36)
remains on z = p(ys).

[%G(y, z)] >0 together with g, < 0, this can be treated similarly

9,2(9)
to case (i1)s.

[(%G(y, z)] ) < 0 together with g, < 0, this can be treated similarly

9,2(y
to case (i1);.

O

As highlighted in Theorem 13, Case (ii), the DAE (36) on ¥ might not retain

index 1 at some points. Further in the subcases (ii); and (i), of the proof, the
algebraic variable might jump at generic folds while the solution is sliding. See
Example 19 below for an illustration of this phenomenon. At jump points yo(t) is
continuous and not smooth. See also Remark 15 for another instance of jump points
when the assumptions of Theorem 13 are not satisfied.
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Definition 1. Let (y,k (7)) € X k. Then the singularly perturbed sliding solution of
(18) with initial condition y(0) = 7, z(0) = k= () is the function (y°(¢), p(eXyo(t)))
in Theorem 13.

Remark 14. For (y,z) € Xk, the fast system (39) might have more than one
asymptotically stable equilibrium in K(y). For y = y, denote with z(y)~ (resp.
2(g)*) the asymptotically stable equilibrium of (39) closer to k= (y) (resp. kT(g)).
If we consider only two differential variables, d = 2, then generically these equilibria
are simple. Then the Implicit Function Theorem implies that there is a stable branch
of equilibria of (39) through z(y)~, z = ¢~ (2), and one stable branch through z(j)",
z = ¢t (y). It follows that singularly perturbed solutions of (18) that enter ¥ from
R~ will slide along the branch z = ¢~ (y), while solutions that enter . from R
will follow the branch z = ™ (y). This is a main difference with the Filippov theory
for discontinuous differential equations were sliding solutions on co-dimension 1 dis-
continuity manifold only depend on the entry point and not on whether the solution
enters ¥ from R~ or RT.

Remark 15. If the singularly perturbed sliding solution leaves the region Yk at a
point (g, (7)) while following a stable branch of equilibria of the fast system (39)
then the assumptions of Theorem 13 do not hold anymore. But, we are still able to
say what happens to the singularly perturbed sliding solution after the point (7, p(7)).
The solution remains on X until it reaches either a point at which o = 0,1, or a
fold of z = ¢(y). This last exit point in general is not a tangential exit point
and z = z(t) will jump at this exit point, while y(t) will be continuous at the exit
point. See Example 17 for an illustration of this phenomenon. These fold points are
generic exits and we see another main difference with the theory of Filippov systems
for discontinuous ODFEs, where generic exits from a co-dimension 1 discontinuity
manifold can only take place at tangential exit points and the solution is differentiable
at these points.

A main advantage of Definition 1 is that it allows the characterization of sliding
solutions (and sliding points) of a discontinuous DAE via the classic Filippov theory.
Instead, had we defined sliding solutions on ¥ directly as the solution of the DAE
(36), we would have had to extend Filippov theory to the discontinuous DAE without
any justification for such an extension. Moreover, defining the sliding solution of
(18) directly as the solution of equation (36) has other shortcomings.

i) The dynamics of (18) is in general not defined in a neighborhood of the set
G(y, z) = 0, see Figure 5. As a consequence, it is not clear how to establish
whether a point is an attractive sliding point for (18) by looking at the
dynamics in a neighborhood of 3. For the same reason, it is not clear how
to characterize when a sliding solution must leave >. See Remark 15 to see
how to characterize exits of singularly perturbed sliding solutions instead,
and Example 19 for an illustration.
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Ficure 5. DDAE. The dotted curve is the set G(y,z) = 0. The
lighter curves are solution trajectories in R~ and R™.

ii) The equation G(y, z) = 0 is in general nonlinear in z and for each y there
could be more than one z that satisfies it. Is there a mechanism that chooses
the appropriate solution? See Remark 14 for a mechanism in the case of
singularly perturbed sliding solutions instead.

Before looking at a few examples, we emphasize that sliding motion for (18)
cannot be characterized in a non ambiguous way when £~ (y) # k1 (y). To witness,
the “Direct Approach” (with sliding based on (32)) and the “Singular Perturbation
Approach” (with sliding based on (36)) typically lead to different sliding solutions.
This is clear also upon noticing that the equation for « is linear in (32), but nonlinear
(in general) in (36). We illustrate in Example 17.

Remark 16. In [19, (16 a-b)|, the authors put forward a sliding equation on % that
is a combination of (32) and (36). Namely, in order to compute sliding solutions,
the authors of [19] use (32), but also update z = (1 — a(y))k~ (y) + a(y)k*(y) on
Y1, We failed to justify this hybrid approach via singular perturbation and the classic
Filippov theories.

Example 17. In this example we illustrate the following: i) sliding solutions ob-
tained via the “Direct Approach” and the “Singular Perturbation Approach” are
different; ii) exits from % while sliding according to (36) might occur also at points
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that are not tangential exit points. Consider the following DDAE:

(40)

(42)

i)

ii)

h1=2—2ys+1 n=—32+y—1
92:1 ay1<0; y2:1 ,y1>0.
Z=1Y2 z2=2y+1

Direct Substitution. The discontinuous system (31) is

{yl ;2 :yzl-l-l7 Yy <0, {3/11)2:127 yp > 0.

This is a discontinuous ODE in R? and the discontinuity line ¥, = {y; = 0}.

It is easy to see that ¥, is attractive for yo < 1. On X, the value yo =1 is a

tangential exit point into R~ so that solutions of (40) with initial conditions

(0,92), y2 < 1, slide on 3, until they reach y» = 1 and then they leave ¥, to

enter R™.

Singular Perturbation Approach. The singularly perturbed discontinuous ODE
(33) is

h=z—2y+1 h=-32+y—1
Y2 =1 , 11 <0, Yo =1 ;1> 0.
€2 =1y — 2 ez2=2y+1—-2

The set X is the (ys, z)-plane and a point on X is an attractive sliding point
if b f~(y,2) = 2= 22+ 1> 0 and b} fF(y,2) = —224+ys—1<0. Then
Y is attractive for (41) if z > 2ys — 1. In Figure 0 the sliding attractive
points are the ones in the shaded region. The dotted line is z = 2ys — 1
and it is the line of tangential exit points in R~ for (41). Notice that the
intersection between z = k™ (y) and z = 2y, — 1 is the point (0,1,1) and the
sliding solutions of (40) exit ¥ to enter R~ at (0,1) for z = k™ (y). The set
Yk defined in Theorem 13 is

S ={y,2) €8 | 2>2p—1, yp <1},

and it is the striped region in Figure 6. We define the sliding vector field on
Y wia Filippov’s convezification

h=01-a)(z—2p+1)+a(—52+y—1)
Y2 =1
e2=(1-a)y+ a2y +1) — z,

with a such that (1 — a)(z — 2ys + 1) + a(—32 + yo — 1) = 0 From the last

. . _9 1 .
equation we obtain o = a(ys, z) = % In order to study solutions as €
2
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FIGURE 6. Example 17. Attractive region for (41) (the shaded area)
and set Y (the striped area).

2=k*(y)

|1 2=K)

AN

Yy =0
Yo =0
2= 2§’jj+12(yz +1)+y2—2

The equilibria of (43) must satisfy %(yg +1)+ys— 2 = 0. The

curve of equilibria G(yo,z) = 0 is shown on the left in Figure 7 as a light
solid line. The point (1,1) is a tangential exit point for (41), but it is an
unstable equilibrium of (43). It follows that the limit for e that goes to 0 of
solutions of (42) will never approach it. There is instead a fold of (43) at
Yy = 10 — /72 ~ 1.5147 and z ~ 2.4437, sece also the plot of G(y,z) = 0.
The limiting solution of the singular perturbation system must leaves ¥ at
Yo =~ 1.5174 to enter R~. In Figure 7 in the left plot the solid line is the
solution of the singularly perturbed discontinuous system for e = 1072, The
computed solution is obtained applying an event location method to (41) with
a 4-th order variable stepsize Runge Kutta method and relative and absolute
tolerance tol = 1078, The method computes the exit point from 3 into R~
for yo ~ 1.5158 and z ~ 2.0668. This exit point is marked with an asterisk,
and it lies on the intersection between the solution and the dashed line. This
is the line in the (ys, 2)-plane of tangential exit points into R~. In the right
plot, the first component of the solutions obtained with the Direct Approach
and with the Singular Perturbation Approach are plotted in function of time.
Clearly, the two approaches give two different sliding solutions of (42).

Remark 18. The existence of more than one Filippov-like sliding solution is
not necessarily a drawback. Indeed in the literature of discontinuous dynam-
ical systems ambiguous solutions are well known (see [9, 21] for example).
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FIGURE 7.

We believe that there is no correct sliding solution but that each possible so-
lution will have a different applicability. For example if we wish to define the
algebraic variable while sliding, then the direct approach is not able to give
us this information.

Example 19. In this example we show that (36) might lead to a discontinuous z,
while sliding. Consider this DDAE

(44) y2:1 ) y1<0a ?/2:1 ; y1>0
Z:_y2+% z:—y2+%
The discontinuity set 3 is the (ya, z)-plane. Now (33) is
(45) y2:1 5 y1<07 192:1 ; y1>0
€= (—y2+3—2) €= (—y2+32—2)

All the points on X (except z = 0) are attractive sliding points for (45) and the
corresponding Filippov sliding equation is the following

1 =0
(46) Yo =1 ,
eZ=—yp+i3+a(z)—z

with a(z) = Hﬁ' Here, G(y,z) = —y2 + 5 + ﬁ — z. The curve G(y,z) = 0
has two folds on X that can be computed imposing dizG(y,z) =0: (3,-3) and
(1.567,—0.148). In Figure 8 we show the solutions of (45) with initial condition
(0.1, 0, %) and € = 0.1, dotted line, and ¢ = 0.01, dashed line. The solid line is the
curve G(y, z) = 0. The numerical solutions are computed with event location method
applied to (45), (see [8]). As € approaches 0, the solution follows the set z = k™ (y)
in RT, then it reaches X2 and starts sliding on it along the set G(y,z) = 0. When
it reaches the fold (0,1.567,—0.148) it jumps and keeps sliding on the branch of
attractive equilibria of the reduced fast systemy; =0, vy, =0, 2/ = —y2+%+a(z)—z.
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FIGURE 8.

5. AN IDEAL GAS LIQUID INTERACTION MODEL

In this section we study an ideal gas liquid model (see [1, 4]) used in the chemical
engineering literature for soft drink production. In the tank a mixture of COy, HoO
and H,COs is present. The mixture leaves the tank through the outlet tube until
its level drops below the tube. When this happens, the C'O, is the only substance
that leaves the tank through the tube, see Figure 9. The first instance is described
by the liquid model, the second by the gas model. For a thorough description of the
model we refer the reader to the papers [1, 4]. Below we just give the equations that
model the gas-liquid interaction and solve the nonsmooth DAEs using the Direct
Approach and the Singular Perturbation Approach.

The variables v, y2 and y3 are the molar hold ups for COy, H,O and H,COs.
The algebraic variable z instead is the molar flow rate of CO, through the valve. In
[1, 4] two additional algebraic variables are considered in the liquid model, namely
the molar flow rate of H,O and of HoC'O3. See Remark 20 below. The discontinuity
surface is h(yz,ys) = %2 + £ —V;. The model equations we consider are written
below. The liquid phase is defined for h(ys,y3) > 0 while the gas model is defined

for h(ys,y3) < 0.
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FiGURE 9. Ideal gas liquid model

COs + HyO + HyCOy CO,
Liquid model Gas model
(dy1

& Fy -z — kue

d —_
Liquid model: G = B gk X(P = Pou) — k52
{
h(y2,y3) > 0 J -
% - _mle(P - Pout) + kc%
<47> . °T le(P B POUt) B ﬁkl)((P - Pout>7
(41 = [y — 2z — k42
d
Gas model: % = Fy — kc%
h(y2>y3) <0 dys __ L Yiy2
W - (& V
\ z= kQX<P_Pout)
with

P

i RT Y2 + Y3
— s g —P7 V — 2257
V — 2/ 01— Y3/ Pa 1640 — P a
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and 0.4333
Fi=05 = F=15 k=253 y_q
kl:2'57 kg:37 X:17 Pout =1

R =0.0820574587, T =293, p, =16, p =50.

Remark 20. In [1, 4] the liquid model and the gas model do not have the same
number of algebraic variables. More specifically, the liqguid model equations have two
additional algebraic variables: zo and zs, defined as z; = —mle(P — Pout),
1t = 1,2. The differential equations for ys and ys are then written in function of
29 and zs as: dd% = Fy — 2z — k%52 and % = —z3 + kA2, We substituted the
expressions of zo and z3 in the differential equations for ys and ys. Thus, even if in
the original DDAE the algebraic variables in the two subregions are seemingly not
the same, the direct substitution of the algebraic variables that are not in common

allows to rewrite the model equations as in (18).

In this model the derivative of y; is the only one that depends on the algebraic
variable z. Since hT f£(y, 2) = %yg + piayg, it follows that @ does not depend on g
and hence does not depend on z. It follows that the attractivity of X is independent
from the algebraic variable. This together with the linear dependence of ¢, on z
implies that the Direct Approach and the Singular Perturbation approach give the

same sliding equations.

In Figure 10 we plot the numerical approximations of (y;(t), y2(t), y3(t)) computed
for the Singularly Perturbed System with ¢ = 0.01 and for the Direct Approach
system. The initial conditions are respectively (0.72 95 0 3.4) and (0.72 95 0).
The time interval for the numerical computations is [0,10]. Both solutions are
computed via an event location integrator. For the integration we used an adaptive
Runge Kutta Fehlberg method with absolute and relative tolerance 107°. The two
numerical solutions are indistinguishable in the plot.

In Figure 11 we plot z(¢) computed with the Singular Perturbation Approach.
The solution starts in the gas phase, then enters the liquid phase, finally it starts
sliding. The crossing and sliding points are marked with circles in the figure. The
value of « at the entry point is a ~ 0.5338, at the last computed point is o ~ 0.9496.
The Direct Approach does not allow to compute z(t) during sliding motion.

6. CONCLUSIONS AND DIFFICULTIES

In this paper we adopted a Filippov based approach to study discontinuous DAEs
(DDAES) of Index 1, in Hessenberg form, with a co-dimension 1 discontinuity man-
ifold X. Already in this seemingly simple case, in our work we showed that restric-
tions are needed in order to guarantee the existence of a unique solution. The key
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FiGURE 10.

FIGURE 11.
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is to account for the interplay between the manifolds ¥ and that expressed by the
algebraic constraints.

Since Filippov theory was developed (see [9]) for discontinuous ODEs, then we
proposed the following approach in order to extend it to DDAEs.

e Rewrite the DDAE under study as a discontinuous ODE with same solution.

e Study the resulting discontinuous ODE via Filippov methodology.

e Obtain a characterization of crossing/sliding points and sliding solutions in
the present DDAE case.

We summarize below our main results.

i) In the most general case of ¥ being the 0-set of a function h(y, z), we need
that the algebraic constraint is continuous and differentiable in a neighbor-
hood of ¥ in order to extend the results of Filippov theory.

ii) In case X is the zero set of a function h = h(y), we consider three differ-
ent formulations to rewrite the DAE as an ODE (the Direct Substitutions
Approach, a Singular Perturbation Approach and one based on a Weak For-
mulation of the problem).

(a) When the algebraic constraint is smooth, the classification of cross-
ing/sliding points and sliding solutions does not depend on the partic-
ular approach chosen. We conclude that in this case the DDAE is well
defined.

(b) If the algebraic constraint is discontinuous, then the Weak Formulation
is not properly defined. Moreover, the classification of crossing/sliding
points and sliding solutions is in general not equivalent for the Direct
and the Singular Perturbation approaches.

The extension of our results to the case of discontinuity surface of higher codimension
(e.g., see [7]) and the case of index 2, remain to be done.

For example, extension to the results to Index 2 DAEs in Hessenberg form is in

principle simple, but will require further restrictions. Indeed, consider the index 2
DDAE:

(48) R~ : {yozzfg_%)z), h(y,2) <0, RY: {yozzf;?@f), h(y,2) >0,

As usual, we differentiate the algebraic constraint with respect to y:

(49)
y=1"(y2) y=1"y,2)
{0 = gy ()2 ") =0 {0 = ).z M0
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Then, if f£ # 0 we can rewrite the two algebraic constraints locally as z = k*(y),
and the results of Sections 3 and 4 apply. But, we note that now we have to impose
more restrictive conditions on the constraints than we have in the case of index 1.

7. APPENDIX. TIKHONOV’S THEOREM.

The purpose of this Appendix is to give details on Tikhonov Theorem, as presented
in [20, Setion 39].

Consider the following singularly perturbed problem

(50 UZ e

with f(y,2) : R x R* — R4 G(y,2) : R x R* — R% a,d > 1, f and G are C!
functions in E, with E open subset of R? x R, Let y(0) = 7, 2(0) = z and denote

with (y.(), z¢(t)) the solution of the corresponding Cauchy problem. If we set € =0
in (50) we obtain the reduced problem

o) 0=

with initial condition y(0) = g. The solution of (51) must belong to the set G(y, z) =
0. When ¢ — 0 the solutions of (50) have almost zero derivative with respect to
y unless the solution trajectory is in a O(e) neighborhood of the set G(y,z) = 0.
It means that solutions of (50) either diverge of they converge to solutions of (51).
Tikhonov’s Theorem explores the behavior of limiting solutions of (50) as € — 0,
under the following assumptions:

a) There exists a compact convex set A C R? and a function ¢ : A — R?,
¢ € C'(A), such that (y,p(y)) € E and

Gy, o(y)) = 0.
b) There exists n > 0, n independent of y, such that

if [[z—oWl <n z#ey), yecA,

then G(y,z)#0, ye€ A.

This means that the root z = ¢(y) is an isolated root of G(y, z) = 0.
c) The root z = p(y) is an asymptotically stable equilibrium of the boundary
layer equation

2 =Gy, 2),

for y fixed, y € A.
d) The asymptotic stability of z = ¢(y) is uniform for y € A.
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Theorem 21. Suppose assumptions (a)-(d) are satisfied and moreover assume that
Z is in the basin of attraction of ¢(y) for the equation z' = G(y,z). Denote with
(yo(t), z0(t)) the solution of the reduced problem (51) with initial conditions y(0) = ¥,
2(0) = ¢(y). Then the solution of the full problem (50) converges to (yo(t), z0(t)) as
€ goes to 0, i.e.,

hme—>0 ye(t) =Y (t)7 0 <t < Ta

lim. g 2.(t) = p(yo(t)), 0<t <T,

where T > 0 is such that z = p(yo(t)) is an isolated asymptotically stable equilibrium
of 2 = G(yo(t), z), for 0 <t < T. The convergence is uniform in [0,T] for y.(t)
and is uniform in [ty, T] with 0 < t1, for z.(t). O
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