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a b s t r a c t

The interplay between the chirality of many biological molecules and the energy injected
at small length-scales as the result of biological processes is at the base of the life of
the cells. With the aim of unveiling the connection between these two features, here we
analyze by means of lattice Boltzmann simulations the behavior of an active droplet of
cholesteric liquid crystal under the effect of intense active doping, within the framework
of active gel theory. We find that a droplet of chiral liquid crystal, fueled by active force
dipoles, develops defect loops (closed disclination lines) that pierce the interior of the
droplet, leading the droplet to develop an erratic motility mode. When the droplet is
fueled by in-warding active torque dipoles, three different dynamical regimes develops
at varying both the thermodynamic chirality and the strength of active energy injection:
a stable rotational state at low activity, an intermittent disclination dance regime, and
a turbulent state where closed disclination lines formation is inhibited and new pairs
of oppositely charged surface defects leads to the development of chaotic rotational
motion. Finally, we show that out-warding torque dipoles are able to sustain a periodical
dynamics at higher chirality characterized by the nucleation/annihilation of pairs of
disclination rings.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Biological matter organizes in complex structures [1–3] to guarantee the correct functioning of the processes at the base
of life, even in the smallest living organisms, i.e. prokaryotic cells. For instance, DNA develops a double chiral structure that
allows for strong and flexible morphologies which are important for the dynamics of DNA replication and transcription.
Some species of bacteria, such as E. Coli, are equipped with filamentous proteins–flagella–protruding from their body.
hese often exhibit a helicoidal structure that, when twisted, acts in a fan-like fashion, thus allowing bacteria to move [4,5].
any other cytoskeletal proteins aggregate into chiral structures or perform twisting movements [6,7], as in the case
f acto-myosin and microtubules, that are implemented by cells for structural stability and axonal transport [8] (the
echanism responsible for the movement of organelles through the cytoplasm). These biological systems mostly evolve

n fluidic environments where hydrodynamic interactions play a fundamental role in the aforementioned processes and
he dynamics of chiral structures may result into a source of angular momentum on the surrounding fluid. Therefore,
nderstanding the relevance of chirality in such non equilibrium systems is crucial for capturing the physics of cellular
ife.
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This particular kind of soft matter falls under the classification of active matter [2,9], comprising those systems that
are capable to convert internal or chemical energy into motion. In the last decades this field gathered the attention of
the physics community both for the possible application in the design of new smart materials, and for its connection to
more fundamental problems related to the physics of non-equilibrium phenomena [10–19]. For instance, the individual
constituents of active gels (i.e. bacteria, acto-myosin or microtubules bundles) exhibit the natural tendency to align and
assembly in a nematic (or polar) fashion, thus giving rise to an active liquid crystal. Both experiments and numerical
simulation on this kind of active systems have highlighted the existence of three dynamical states, which can be selected
by tuning the rate at which energy is introduced in the system by the action of the active constituents. For small activity,
when reactive and dissipative effects are capable of absorbing the energy injected, the system settles into a quiescent state,
similar to its equilibrium counterpart where no significant flow can be detected. As activity is increased, active injection
is capable of exciting bending deformations of the liquid crystal pattern that behave as energy sources. This regime is
usually characterized by the occurrence of patterned flows and is typically addressed as spontaneous flow [20–25]. By
further increasing activity, the system enters a chaotic state, named active turbulence [26–32], characterized by defect
proliferation and time-dependent flows resembling the ones usually observed in turbulent fluids flowing at high Reynolds
number. The origin of such phenomenon is drastically different from usual turbulence, where chaos emerges as the result
of energy transfer between different length-scales due to advective mechanisms. On the contrary, active systems flow at
negligible Reynolds numbers, where viscous effects dominate over advection [28] and the resulting chaotic dynamics is
due to the non-trivial interaction between the liquid crystal and the underlying fluid. We will continue to refer to this
regime as turbulent or chaotic, as customary in works on active matter.

Many models have been advanced to describe the behavior of active matter, and in particular active fluids, ranging from
particle-based approaches [33–37] to mesoscopic ones [9,38–42]. Among the latter, the active gel theory was found to
successfully reproduce a certain number of behaviors found in experiments [11,12,43–46]. Here, the orientational features
of the active agents are encoded in a vector or tensor field (according to the symmetries of the particular system under
consideration), whose dynamics is coupled to the hydrodynamics of the underlying fluid. Activity is usually introduced
by means of a coarse-grained description of the stress exerted by constituents on the surrounding environment [2,22].

Recently, we made use of the active gel theory to analyze the behavior of an active cholesteric liquid crystal confined
in a droplet embedded in an isotropic passive fluid [47]. In presence of tangential anchoring of the liquid crystal at the
interface, we found that the droplet develops different behaviors at varying both chirality and the intensity of activity. In
particular, a passive nematic droplet (where activity and chirality are both null) sets into a configuration that minimizes
the free energy of the system (see later), characterized by two boojums (+1 aster-like point defects) at the poles. By
ncreasing activity over a certain threshold, the nematic pattern on the droplet equator develops bending deformations
hat induce a regular rotational motion around the axis defined by the two boojums. A similar picture also applies for chiral
roplets, but only at small cholesteric powers. Indeed, if the chirality of the liquid crystal is strong enough, the mutual
ffect of elasticity and activity leads to the recombination of defects: starting from the poles, the two boojums move close
o each other with the inner structure of the liquid crystal characterized by a line of strong twist connecting the center of
he droplet with the two surface defects—a configuration reminiscent of the well-known Frank-Pryce structure [48,49].
ctivity still powers the rotation of the droplet, which, due to its asymmetric pattern, is linearly propelled in the direction
ormal to the plane of rotation of the two boojums.
In our previous paper we mostly addressed this low/middle range of activity. Here, we will focus on the active turbulent

tate which can be reached both rising the activity (for any chiral power) and/or chirality (even at very small activity).
n the following we will discuss the effect of confinement and chirality on the dynamical state of the droplet. We will
how how the momentum supplied by activity is used to generate disclination loops in the droplet interior and how their
reation/annihilation dynamics fuels the erratic motion of the droplet itself. Moreover, we will consider the case of an
ctive term in the stress tensor which acts as a source of angular momentum. In this case, we find that, for low activity, the
elative handedness of thermodynamic and non-equilibrium chirality may trigger the onset of different non-equilibrium
teady-states characterized by the intermittent dynamics of the active liquid crystal. By increasing the strength of active
orque dipoles, the droplets enters a chaotic state, where the formation of disclination loops is inhibited and the droplet
oes not develop translational motion. Nevertheless, further pairs of oppositely charged defects develop on the surface,
eading to chaotic rotational motion.

. Model and numerical methods

In order to address the features of an active liquid crystal droplet suspended in a Newtonian fluid we introduce a
calar field φ to describe the concentration of active material and the Q -tensor, whose principal eigenvector n – namely
he director field – defines the direction at which the active constituents point, on average, in a certain position in space.
n the uni-axial approximation we can write

Qαβ =
S
2
(3nαnβ − δαβ ), (1)

where the scalar field S accounts for the local degree of order of the liquid crystal. The dynamics of both order parameters,
φ and Qαβ is coupled to the dynamics of the underlying fluid whose velocity will be denoted with v. In the following
ection we will present the free energy of the system and the dynamical equations which rule the evolution of the
ynamical fields. Later on, we will summarize the main features of the hybrid lattice Boltzmann approach that we made
se of to time-integrate the equations.
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2.1. The model

The equilibrium properties of the system are described by the following Landau-De Gennes free energy functional [50]

F
[
φ,Qαβ

]
=

∫
dV

[
a
4
φ2(φ − φ0)2 +

kφ

2
(∇φ)2

+A0

[
1
2

(
1 −

χ (φ)
3

)
Q2

−
χ (φ)
3

Q3
+

χ (φ)
4

Q4
]

+
KQ

2

[
(∇ · Q)2 + (∇ × Q + 2q0Q)2

]
+ W (∇φ) · Q · (∇φ)

]
. (2)

The first term in the free energy describes a double-well potential whose minima are found in 0 and φ0, which correspond
o regions poor and rich of active material, respectively. Here the parameters a, kφ control the surface tension and the
nterface width of the droplet, which ensure the droplet to maintain an approximatively spherical shape, despite active
njection. The second line describes the first-order isotropic-nematic phase transition [50] so that the liquid crystal (LC) is
onfined in those regions where χ (φ) = χ0 +χsφ > 2.7, with χ0 = 10χs = 2.5. The energy cost of elastic deformations of
the LC pattern is modeled by the terms proportional to KQ , where we adopted the single elastic constant approximation.
hirality is introduced at an equilibrium level by adding a term proportional to the curl of the Q -tensor that favors the

twisting of the LC. The parameter q0 sets the strength of the chirality so that |q0| = 2π/p0, where p0 is the pitch of
the cholesteric helix. Right-handed chirality, as the one here considered, is achieved by requiring q0 to be positive. To
compare the cholesteric features of the LC and the geometry in which is confined, we introduce the adimensional number
N = 2R/pO that counts the number of windings the LC director performs inside a droplet of radius R. The last term in Eq. (2)
is an anchoring term that favors tangential anchoring when W > 0.

The dynamical equation for the conserved concentration field is a convection–diffusion equation:

∂t + ∇ · (φv) = ∇ ·

(
M∇

δF
δφ

)
, (3)

where M is the mobility parameter. The Beris-Edwards equation rules the dynamics of the Q-tensor:

(∂t + v · ∇)Q − S(W,Q) = Γ H, (4)

where W = ∇v and the strain-rotational derivative is given by

S(W,Q) = (ξD + Ω)(Q + I/3) + (Q + I/3)(ξD − Ω) − 2ξ (Q + I/3)Tr(QW), (5)

ith D and Ω respectively denoting the symmetric and asymmetric part of W. The adimensional parameter ξ controls
he aspect-ratio of the liquid crystal molecules. In this paper we consider ξ = 0.7 which corresponds to flow-aligning
rod-like molecules. Γ is the rotational viscosity, while the molecular field, driving the LC towards equilibrium is given by

H = −
δF
δQ

+
I
3
Tr

(
δF
δQ

)
(6)

Finally, the Navier–Stokes governs the flow evolution:

(∂t + v · ∇)v = ∇ ·
[
σ pass

+ σ act] . (7)

Here, we split the stress tensor contribution into a passive and an active term. The first one accounts for the dissipative
and reactive contributions (stemming from the free energy and invariant under time reversal). In more detail, we consider
an isotropic pressure term

σ
hydro
αβ = −pδαβ ,

with p the hydrodynamic pressure. Viscosity dissipation is given by:

σ visc
αβ = 2ηDαβ ,

with η the shear viscosity. The relaxation dynamics of the two order parameters affects the hydrodynamics through the
following passive terms:

σ bm
αβ =

(
f −

δF
δφ

)
δαβ −

δF
δ(∂βφ)

∂αφ, (8)

where f is the free energy density, and

σ el
αβ = −ξHαγ

(
Qγ β +

1
δγ β

)
− ξ

(
Qαγ +

1
δαγ

)
Hγ β
3 3
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Table 1
Mapping between physical and simulation units. Length-scale l∗ = 1 µm, time-scale
t∗ = 10 ms and force-scale f ∗

= 1 nN are set to 1 in LB units.
Model parameters Simulation units Physical units

Shear viscosity, η 5/3 1.67 kPa s
Elastic constant, KQ 0.01 50 nN
Shape factor, ξ 0.7 Dimensionless
Diffusion constant, D = Ma 0.007 0.06 µm2 s−1

Activity, ζ 0–0.01 (0–100) kPa
Active torque, ζ̄ 0–0.05 (0–50) µN/m

+2ξ
(
Qαβ −

1
3
δαβ

)
QγµHγµ + QαγHγ β − HαγQγ β . (9)

o introduce activity in the model, we consider a phenomenological active stress tensor [1] given by:

σ act
αβ = −ζφQαβ − ζ̄ ϵαµν∂µ(φQνβ ). (10)

ere, the first term is derived by coarse-graining the force exerted by the swimmers, proportional to the force dipole
ctive parameter ζ . In the following we will limit our analysis to the case ζ > 0 corresponding to extensile entities that
roduce outward-pointing force dipoles on the fluid. The second term, proportional to ζ̄ describes the source of angular
omentum provided by torque dipoles that swimmers deploy on the surrounding environment. For positive ζ̄ the active

orque corresponds to a pair of outwarding torques (analogue to the one which opens a bottle cap). In turn, ζ̄ < 0
escribes an inward pair of torques (similar to the one used to close a bottle cap). Importantly, the non-equilibrium twist
ntroduced by the activity may reinforce or oppose the handedness of the thermodynamic twist, which is determined
y the sign of q0. Therefore, what is physically meaningful is the relative orientation of the thermodynamic handedness
ith respect to the one introduced by active torques. For instance, in our paper we consider a right-handed LC by setting
0 > 0. In this case, outwarding active torques (ζ̄ > 0) result into flows which strengthen the thermodynamic twist.

Conversely, a negative active torque would have the opposite effect, countering the handedness of the LC. The opposite
would happen in case of a left-handed cholesterics.

Despite an actual realization of the system that we consider here has not yet been realized, it is possible to map
simulation parameters into physical units, on the base of similar experimental systems. This mapping can be obtained by
putting in correspondence the grid spacing with the typical length-scale l∗ of the constituents (∼ 1 µm for microtubules
uspensions); the time scale t∗ = 10 ms is chosen so to have a reference speed v∗

= l∗/t∗ ∼ 100 µm/s compatible with
the typical intensity of flows in active cytoskeletal (or bacterial) suspensions, while the force scale f ∗

= 1 nN is set to
match the typical stress exerted by active constituents on the surrounding fluid. All other quantities can be obtained by
rescaling the units of measure with respect to l∗, t∗, f ∗. Some relevant parameters are reported in Table 1.

2.2. The numerical method

The dynamical equations have been integrated by means of a hybrid lattice Boltzmann (LB) method [51] which
combines a predictor–corrector LB treatment for the Navier–Stokes equation [9,52] with a finite-difference algorithm
to solve the order parameters dynamics, implementing a first-order upwind scheme for the convection term, and
fourth-order accurate stencil for the computation of space derivatives.

The evolution of the fluid is described in terms of a set of distribution functions fi(rα, t) (where the index i labels
different ranging from 1 to 15) defined on each lattice site rα . Their evolution follows a discretized version of the
Boltzmann equation in the BGK approximation [53]:

fi(rα + ξ⃗i∆t) − fi(rα, t) = −
∆t
2

[
C(fi, rα, t) + C(f ∗

i , rα + ξ⃗i∆t, t)
]
.

Here {ξ⃗i} is the set of lattice velocities, that for the D3Q15 scheme implemented here are ξ⃗0 = (0, 0, 0), ξ⃗1,2 = (±u, 0, 0),
ξ⃗3,4 = (0, ±u, 0), ξ⃗5,6 = (0, 0, ±u), ξ⃗7−15 = (±u, ±u, ±u), where u is the lattice speed. The distribution functions f ∗ are
first-order estimations to fi(rα + ξ⃗i∆t) obtained by setting f ∗

i ≡ fi in Eq. (11), and C(f , rα, t) = −(fi − f eqi )/τ + Fi is the
collisional operator in the BGK approximation that can be expressed in terms of the equilibrium distribution functions
f eqi and supplemented with an extra forcing term for the treatment of the anti-symmetric part of the stress tensor. The
physical hydrodynamical observables, i.e. density and momentum of the fluid, are defined in terms of the distribution
functions as follows:∑

i

fi = ρ
∑

i

fiξ⃗i = ρv. (11)

Analogous relations also hold for the equilibrium distribution functions, thus ensuring mass and momentum conservation.
To correctly reproduce the Navier–Stokes equation we impose the following condition on the second moment of the
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equilibrium distribution functions:∑
i

fiξ⃗i ⊗ ξ⃗i = ρv ⊗ v − σ̃ bm
− σ̃ el

s , (12)

and on the force term:∑
i

Fi = 0,∑
i

Fiξ⃗i = ∇ · (σ̃ el
a + σ̃ act ), (13)∑

i

Fiξ⃗i ⊗ ξ⃗i = 0,

here we denoted with σ̃ el
s and σ̃ el

a the symmetric and anti-symmetric part of the polar stress tensor, respectively. The
quilibrium distribution functions are expanded up to the second order in the velocities:

f eqi = Ai + Bi(ξ⃗ · v) + Ci|v|2 + Di(ξ⃗ · v)2 + G̃i : (ξ⃗ ⊗ ξ⃗ ). (14)

ere coefficients Ai, Bi, Ci,Di, G̃i are to be determined imposing conditions in Eqs. (11) and (12). In the continuum limit
he Navier–Stokes equation is restored if η = τ/3.

We made use of a parallel approach implementing Message Passing Interface (MPI) to parallelize the code. We divided
he computational domains in slices, and assigned each of them to a particular task in the MPI communicator. Non-local
perations (such as derivatives), have been treated through the ghost-cell approach [54]. Simulations have been performed
n a cubic lattice of size L = 192. The Q -tensor was randomly initialized inside the droplet and set to 0 outside. The values
f free energy parameters are a = 0.07, kφ = 0.14, A0 = 1, KQ = 0.01, and W = 0.02. The rotational diffusion constant Γ

s set to 2.5, while the diffusion constant to M = 0.1. All physical observables have been written in lattice units, as usual
n computational works on active matter.

We initialize a droplet of concentration field with radius R = 32, by setting φ = φ0 inside the sphere and 0 outside.
he liquid crystal is set to zero outside the droplet, while inside is initialized with the uniaxial profile of Eq. (1), with
= 1 and the director field n randomly oriented. The radius of the droplet has been chosen so to allow the cholesteric
elicoidal pattern to smoothly vary in the droplet bulk and ensure numerical accuracy in derivatives computation.

The angular velocity of the droplet has been computed as: ω⃗ =
∫
drφ

∆r × ∆v
|∆r|2

, where ∆r = r − R and ∆v = v − V,

ith R and V respectively the position and the velocity of the center of mass of the droplet. The identification of defects
n the LC structure was carried out implementing the Westin metrics [55].

. Active turbulence and disclination line proliferation in cholesteric droplets

Much effort has been recently spent to understand the motility properties of active nematic (achiral) droplets [11,44,
6–58] and polar droplets [59–62]. Many factors are capable of influencing the dynamical state of active droplets, ranging
rom surface tension, anchoring strength and kind of active forcing, even if most of them have been analyzed exclusively
or achiral liquid crystals in bidimensional environments. In particular, a bidimensional nematic droplet (N = 0) is able to
evelop spontaneous motion for extensile active forcing either in the absence of anchoring or when the LC is tangentially
nchored at the interface. This is because, active injection favors bending deformations of the extensile liquid crystal, thus
eading to an asymmetric internal configuration resulting in a net source of momentum. On the contrary, homeotropic
nchoring triggers the formation of local distortions of the droplet leading to rotation. In contractile systems, the liquid
rystal is unstable under splay deformations and the interplay between anchoring and activity is found inverted, so
hat tangential anchoring favors rotation and homeotropic or no anchoring lead to translational motion. Nevertheless,
idimensional droplets can also develop erratic motion if asymmetries arise as the result of strong active forcing. In this
ase the motion becomes erratic and no stable pattern can be recognized in the LC arrangement. We will now present
he results of our study, concerning the behavior of an active cholesteric droplet with tangential anchoring evolving in
fully 3D environment. We will mostly address the high activity limit, where the amount of energy injected at small
cales drives the development of chaotic flows. In the next Section we will treat the case of a cholesteric droplet fueled
y active force dipoles, while the further following Sections will be devoted to the effect of active torque dipoles.

.1. Active force dipoles

Before getting involved in the discussion of the results concerning the behavior of a cholesteric droplet under strong
ctive forcing, we will consider the case at N = 0, namely the nematic case. In absence of activity (not shown here),
he droplet relaxes into a configuration that minimizes the free energy in Eq. (2), characterized by the presence of two
ntipodal boojums, in accordance with the Gauss–Bonnet theorem stating that the total topological charge of a vector field
angentially anchored on a sphere is constrained to be +2. In our previous paper [47] we announced that, as the activity
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Fig. 1. Spontaneous flow and active turbulence in a nematic droplet: Panel (a) shows the nematic director on the droplet surface undergoing bending
instability for ζ > 3 × 10−4 . The deformation is greater at the droplet equator and acts as a source of momentum that fuels the regular rotation of
he droplet around the axis defined by the two boojums at the droplet poles. Panel (b) shows a typical configuration of defect lines in the turbulent
egime (here ζ = 1.4 × 10−3). A disclination of semi-integer charge joins a pair +1/2 point defects on the surface (see inset) piercing the interior
f the droplet. Fueled by activity, two defects may eventually overcome elastic repulsion and (momentarily) join to form a +1 surface defect (as in
he top part of the droplet), resulting in the vanishing of the associated disclination line. For stronger active doping further disclination loops may
e produced in the bulk.

arameter ζ is progressively increased, the droplet undergoes different dynamical regimes: first a quiescent regime, where
o difference can be effectively detected from the passive case, a rotational regime (see panel (a) in Fig. 1), where the
roplet sets up a stationary rotational motion around the axis connecting the two boojums and, finally, a turbulent regime.
For an active LC confined in a droplet, the most relevant control parameter is the dimensionless activity θ = ζR2/K ,

hich measures the importance of the rate of energy input with respect to elastic relaxation. Indeed, the mechanism at
he base of the self-sustained flows developing in the system is the instability of extensile active nematics to bending
eformations. Regions of strong deformations, such as point or line defects and/or bendings of the LC, act as a source of
omentum, being the active force density proportional to the gradients of the Q -tensor (f ∝ ∇ · Q). As long as elastic
nd dissipative phenomena can absorb and dissipate the energy injected, a non-equilibrium stationary regime is reached
nd eventually the droplet sets up into the stable rotational motion previously mentioned. In such regime the dynamics
s basically driven by the mutual balancing of active injection and viscous dissipation, since elastic absorption is highly
uppressed, having the LC attained a stationary pattern. But what if the rate at which energy is injected is not compensated
y dissipation? In this case the excess energy may strengthen elastic deformations, which result into stronger active forces,
ence in the increment of the total kinetic energy. Active flows are then capable to advect the LC, pulling it apart from
ts stable orbit, resulting in further deformations leading to further momentum source. The consequent dynamics is no
ore periodic and the flows become chaotic.
The deformations of the nematic pattern on the surface leads to the splitting of each of the two antipodal boojums

nto two pairs of +1/2 point defects which are connected by a disclination line that pierces the interior of the droplet
see Fig. 1(b)). The energy deployed due to the strong deformation in the neighborhood of the defect lines favors the
ormation of new defects even in the droplet interior. Despite both point and line defects are topologically stable in a full
D geometry, we found that closed disclination lines are more likely to form for energetic reasons. These disclination loops
ndergo a chaotic evolution and eventually merge or annihilate with other loops evolving in the bulk. This phenomenology
as important effects on the overall dynamics of the droplet. Indeed, the asymmetric configuration of LC patterns leads
o a net injection of momentum which results into the rambling motion of the droplet, depending on the inner defect
tructure.
We now take into account the effect of active force dipoles on a cholesteric droplet. Even in this case we found

hree different regimes with some important differences with respect to the nematic case. The LC bulk configuration is
haracterized by two antipodal boojums as previously described for a nematic droplet. Nevertheless, in this case twisting
eformations develop even in absence of activity, to minimize the free energy. As activity is increased the droplet starts
o rotate around the axis defined by the two boojums, but only for N ≲ 1.5. At higher chirality, activity favors the
ecombination of the two defects that are pulled together as the effect of an activity-induced attraction. The steady-
tate configuration resembles the Frank-Pryce structure, usually found in cholesteric droplets at strong chirality (N ≳ 5).
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Fig. 2. Erratic motility of cholesteric droplets in the active turbulent regime: Top panels (a–c) show the contour plot of droplets and their defect
lines for different cholesteric strengths (N = 0, 2, 4 respectively) at the same value of the activity parameter ζ = 2 × 10−4 . The structure of the
isclination lines becomes progressively more and more curved as chirality is increased. This has important effects on the motility properties of the
roplet. Bottom panels (d–f) show the trajectory of the centers of mass of the droplets shown in the top panels in an observation range of 1.2×106

B iterations. As chirality is increased the motion becomes more chaotic and changes in direction more and more frequent.

hough, the rotational state is preserved and while the two defects orbit around each other, the droplet is linearly
ropelled due to the asymmetry of the LC configuration in the interior of the droplet [47].
How does chirality influence the onset of the turbulent dynamics? The mechanism is basically the same as in the

ematic case previously analyzed: the energy that is injected due to active mechanisms favors the formation of new
isclinations in the bulk (see Fig. 2(b–c)), favored by the distortions of the LC induced by the twisted cholesteric
tructure. Consequently, as N is increased, the structure of the defect lines becomes more and more distorted and defect
ormation/annihilation rate grows. As a result, the onset of the turbulent regime occurs at progressively lower values
f the activity parameter ζ . The asymmetry thus generated causes the droplet to move due to unbalanced momentum
njection. Moreover, chirality has an important effect on the trajectory followed by the droplet (see bottom panels in
ig. 2). Indeed, while in the nematic case the trajectory exhibits long lapses of linear motion, as chirality is increased,
ore and more changes in direction occur, in accordance with the observation that the dynamics of the defect lines in

he droplet’s bulk becomes correspondingly more chaotic.

. Active torque dipoles

We now discuss the case of a cholesteric droplet fueled by active torques only. Analogously to the previous case,
he behavior is determined by comparing the intensity of dipolar torque activity proportional to ζ̄ and the equilibrium
properties of the LC, hence the adimensional number which best assesses the response of the system is given by θ̄ = ζ̄R/K .
he dynamics of our cholesteric droplet strongly depends on the sign of ζ̄ . Indeed, while out-warding torque dipoles
ζ̄ > 0) strengthen the handedness of our (right-handed) LC, in-warding torque dipoles (ζ̄ < 0) counter it. Next Section
ocuses on the latter case, while the former is addressed in Section 4.2

.1. In-warding active torque dipoles

We start our discussion from the case of a cholesteric droplet fueled by in-warding active torque dipoles, where the
ompeting mechanism between thermodynamic chirality and non-equilibrium twist gives rise to different dynamical
egimes. For small values of the active torque parameter |ζ̄ |, and due to the imposed tangential anchoring, the droplet
ets up into a configuration characterized by the presence of two boojums at the poles, as shown in Fig. 3(b), regardless
f the intensity of thermodynamic chirality, which induces a twisted bipolar pattern in the LC arrangement on the droplet
urface. This configuration is roughly stationary and the droplet rotates around the axis defined by the two +1 surface

efects, with approximately constant angular velocity (see inset of panel (a) in Fig. 4).
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Fig. 3. Cholesteric droplets fueled by active torques only: Panel (a) shows the different behaviors of the droplet found when varying both the
ntensity of in-warding active torques and the cholesteric power. Panel (b) shows the nematic configuration on the surface of the droplet in the
otational regime at N = 3 and ζ̄ = −10−3 . Panel (c) and (d) show the structure of the disclination lines connecting point defects on the droplet
urface at N = 3 respectively for ζ̄ = −3 × 10−3 (disclination dance regime) and ζ̄ = −8 × 10−3 (turbulent regime).

By increasing |ζ̄ |, active torques favor the splitting of each of the two +1 boojums into two +1/2 defects. This has
important effects on the arrangement of the liquid crystal in the droplet bulk, since semi-integer defects on the surface
are connected in pair by a disclination line which pierces the droplet interior (see for instance Fig. 3(c)). The development
of disclination lines has topological origin. Indeed, while line disclinations with integer topological charge are intrinsically
unstable [63], disclinations with semi-integer charge are perfectly allowed and may generate from the splitting of a +1
point defect into two +1/2 defects. The dynamical response of the droplet at moderate |ζ̄ | strongly depends on the
ntensity of thermodynamic chirality. In particular, for N ≤ 3, we found that the disclination lines attain a regular spiral
hape (Fig. 3(c)) in the gray region of the phase diagram in Fig. 3(a) and set up a periodical motion triggered by the mirror
otation of the two pairs of point defects. As the disclination lines wire around each other, they end up intersecting and
ecombining, thus leading to the mutual swap of the linked defect pairs. This wiring/rewiring dynamics is addressed as
isclination dance [47] and is characterized by the oscillation of the angular velocity between positive and negative values
dark blue line in Fig. 4(a)), evidence of the switching behavior.

For N ≥ 4, instead, the shape of the disclination lines is much less regular, even at very small active torques
ζ̄ ≤ −0.003), and the droplet cannot support regular motion. Active flows, sustained by the injection of angular
omentum, strengthen the deformations induced by chirality and the dynamics becomes chaotic (blue diamonds in
ig. 3(a)). However, such regime is reached for any value of N for strong enough values of the in-warding torque dipole
ζ̄ |, and is characterized by the proliferation of new pairs of oppositely charged semi-integer point defects on the surface,
onnected by disclination lines in the droplet bulk (Fig. 3(d)). Indeed, in this chaotic regime, no closed loop develops in
he interior of the droplet regardless of the intensity of both ζ̄ and N . This is a fundamental difference with respect to
the case of a droplet fueled by active force dipoles, where both open disclination lines (connecting surface defects) and
closed loops (in the bulk) were found.

Interestingly, we find that the chaotic dynamics of the disclination lines does not lead to the motion of the droplet.
Nevertheless, the surface defects undergo a non-trivial evolution, continuously nucleating and annihilating in pairs, under
the effect of active forcing and elastic repulsion. This leads to a chaotic rotational dynamics, as suggested by the behavior
of the angular velocity ω⃗ for the case at ζ̄ = −0.011 and N = 1, plotted in Fig. 4(a). The absence of translational motion
is related to the symmetry properties of the shape attained by the droplet in the turbulent regime. Indeed, as |ζ̄ | is
increased from the rotational/disclination dance regime towards the chaotic region of the phase diagram, the droplet
progressively looses its spherical shape and deforms. To quantify this behavior, we introduce the spherical and cylindrical
deformation parameters as d /d and d /d , respectively, where d > d > d denote the (time-averaged)
min dmax min med max med min
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Fig. 4. Rotational velocity and deformations in droplets fueled by in-warding active torques: Panel (a) shows the typical profiles of the components
of the angular velocity in the three possible dynamical regimes at varying the intensity of the in-warding active torque at N = 1. The constant
angular velocity for the rotational regime at ζ̄ = −3× 10−3 is shown in the inset. The dark blue line shows the oscillating behavior of ωn (being n
the axis of rotation) in the disclination dance regime at ζ̄ = −5× 10−3 , while other profiles refers to the Cartesian components of ω in the chaotic
regime at ζ̄ = −1.1 × 10−2 . Panel (b) shows the spherical and cylindrical parameters. Panel (c) shows the time-averaged modules of the angular
elocity at varying the intensity of the in-warding torque dipoles for different values of N . Black dots correspond to the first case in the chaotic

region.

Fig. 5. Dynamical regimes of cholesteric droplets with out-warding torque dipoles (ζ̄ > 0): Panel (a) shows the behavior of the cholesteric droplet
t varying both N and ζ̄ . Panel (b) shows the components of the angular velocity at N = 3 and ζ̄ = 7×10−3 in the red region of the phase diagram.

igenvalues of the Poinsot matrix associated to the concentration field. Fig. 4(b) shows that as the intensity of the in-
arding active torque is raised, the spherical parameter rapidly decreases (regardless of N) and the droplet attains the
hape of a prolate ellipsoid, thus preserving cylindrical symmetry, since the cylindrical parameter is roughly constant and
lose to 1. Hence, while overall rotations are supported by the loss of sphericity, translational motion does not occur since
he overall momentum injection is globally balanced, in accordance to preserved cylindrical symmetry.

The transition to the turbulent regime is also accompanied by a discontinuity in the (time-averaged) magnitude of the
ngular velocity ω⃗ signaled by a sharp jump for any value of N (highlighted by a black dot in Fig. 4(c)). Moreover, |ω⃗|

inearly increases with |ζ̄ | and decreases with N , since at lower chirality, the pattern attained by the liquid crystal is less
ffected by the chiral elastic interaction and its effects are suppressed with respect to local non-equilibrium energy input
rovided by the active torque, leading to faster rotations.

.2. Out-warding active torque dipoles

In this Section we will address the response of our cholesteric droplet to the active forcing provided by out-warding
orque dipoles (ζ̄ > 0). At small ζ̄ (black squares in Fig. 5(a)) a rotational regime with similar features as in the previous
aragraph is found. The range of stability of such regime is extended with respect to the case with in-warding torque
ipoles, since in the present case there is no competing mechanism between the handedness of the cholesteric structures
eveloped by the LC and the flow induced by non-equilibrium flows. Interestingly, the transition towards the chaotic state
blue diamonds in Fig. 5(a)) occurs at lower ζ̄ for LC with weaker chirality.

While for N ≤ 2 we observe a direct transition from the rotational to the turbulent state at ζ̄ = 9 × 10−3, a new
ynamical regime appears if LC with shorter pitch are considered. Indeed, for N ≥ 3 and strong enough active torques
see red circles in Fig. 5(a)) the droplet enters a state characterized by a periodic dynamics, summarized in panels (a)–(f)
f Fig. 6 (and supplementary movie). Starting from the twisted bipolar configuration – characteristic of the rotational
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Fig. 6. Nucleation-annihilation dynamics in cholesteric droplets with out-wading torque dipoles: Panels (a)–(f) show the evolution of the disclination
lines during a cycle of the periodic nucleation-annihilation dynamics found in droplets at large N . First, the two antipodal boojums split to form
two couples of semi-integer defects (panel (a)) which undergo rotational dynamics (panel (b)). Sustained by activity, each couple of defects rejoin to
form a boojum at the poles (signaled by the white spots at the droplets poles), leaving the droplet bulk populated by ring disclinations (panel (c).
These migrate towards the center of the droplet (panel (d)), merge with each other (panel (e)) and finally annihilate (panel (f)), restoring the initial
twisted bipolar configuration.

regime – each boojum located at the droplet poles, splits into two defects of +1/2 charge (panel (a)), giving rise to a
short disclination line. First, the semi-integer defects slightly move apart and undergo a precessional dynamics around
each other (panels (a)–(b)), then, under the effects of the attraction due to the active forcing, the two surface defects tend
to rejoin into a +1 defect at each pole (white spots in panels (c)), resulting in the formation of two small disclination
loops in the bulk (panel (c)). These migrate towards the center of the droplet (panel (d)) with two boojums at the poles,
merge with each other (panel (e)) and finally annihilate (panel (f)), leaving the droplet in the initial twisted bipolar state.

Such intermittent dynamics exhibits relevant differences from the disclination dance regime found at ζ̄ < 0. First,
in the present case this periodical state only appears at large enough chirality and second, the direction of rotation is
preserved during the evolution, as shown by panel (b) of Fig. 5, where the components of the angular velocity are plotted
for the case at N = 3 and ζ̄ = 7 × 10−3.

5. Conclusions

In this paper we presented an analysis of the chaotic dynamics of an active cholesteric droplet fueled by active force
and torque dipoles, in which we varied both the intensity of the activity parameter and cholesteric power. In the case of a
droplet fueled by force dipoles only, we found that the onset of turbulence is driven by the splitting of antipodal boojums
into +1/2 point defects, paired by disclination lines that pierce the interior of the droplet. By increasing the intensity of
the cholesteric power we find that disclination loops may nucleate (and eventually annihilate) in the bulk of the droplet.
Their chaotic dynamics leads to the symmetry breaking of the LC arrangement, which is the fundamental ingredient to
the development of the erratic motion of the droplet.

Cholesteric droplets fueled by in-warding active torques exhibit three different dynamical regimes which can be
selected by tuning both thermodynamic chirality and the intensity of angular momentum injection. At small |ζ̄ | the droplet
develops a stable rotational motion around the axis defined by two boojums at the poles. For small chirality (N ≤ 3), a
isclination dance regime is found at intermediate values of |ζ̄ |, characterized by the wiring/rewiring dynamics of two
isclination lines. By further increasing the intensity of the in-warding torque dipoles the droplet undergoes a transition
rom the rotational towards a turbulent state with the proliferation of semi-integer defects on the surface of the droplet
onnected by line disclinations which pierce the droplet bulk, leading to a chaotic rotational dynamics. We found that
igher chirality (N ≥ 4) determines the suppression of the intermittent disclination dance dynamics and the droplet
irectly undergoes the transition to the chaotic regime from the rotational state.
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Switching the sign of the active torque ζ̄ , we found that out-warding torque dipoles favor the transition to the
urbulent state at weaker chirality (N ≤ 2), while at higher chirality a periodical dynamics characterized by the
nucleation/annihilation of pairs of ring disclination set up at intermediate active forcing, before entering the chaotic state
at higher ζ̄ .
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