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ABSTRACT In recent years, with the widespread of Internet and digitized processing of multi-script doc-
uments worldwide, script identification techniques have become more important in the pattern recognition
field. Script identification concerns methods for identifying different scripts in multi-lingual, multi-script
documents. This paper presents a comprehensive overview on research activities in the field and focuses on
the most valuable results obtained so far. The most vital processes in script identification are addressed in
detail: identification and discriminating methods, features extraction (local and global), and classification.
Different kinds of approaches have been developed and promising results have been achieved. This paper
reports SoA performance results. This paper reports methods concerning handwritten, printed, and hybrid
document processing. More research is necessary to meet the performance levels essential for everyday
applications.

INDEX TERMS Handwriting recognition, optical character recognition (OCR), character recognition,
multi-script documents, script identification.

I. INTRODUCTION
Our reliance on the digital world is continuously increasing
with the rapid developments in information and technology
in all aspects of our lives. In administrative and office envi-
ronments, the development of Optical Character Recogni-
tion (OCR) systems have lightened the possibility of creating
paperless solutions. Unfortunately, although the field of OCR
has been one of the oldest and more investigated research
fields, still today OCR systems are just specialized in one
particular script. In order to overcome this limitation, script
identification has been used. In fact, in a multi-script doc-
ument image, script identification is necessary to find text
portions written in the same script, so that script-specific
OCR system can be applied. Hence, script identification
system is one of the most important components in multi-
script document image analysis and it is used for a wide range
of applications such as automatic storage of multi-script

document images, document image retrieval, video indexing
and retrieval, document sorting in digital libraries [40], [62].
Spitz [119] carried out the first extensive research on auto-
matic script identification in 1994. Successively, two compre-
hensive surveys were conducted by Ghosh and Shivaprasad
in 2000 [39] and Pal in 2006 [78]. Moreover, a survey
specifically devoted to Indian script identification was
published by Pal and Chaudhuri in 2004 [77]. It is
worth noting that many researches on script identification
have been devoted to Indian scripts since script identi-
fication is essential in a multi-lingual, multi-script coun-
try like India, where 18 official Indian languages and
12 different scripts are used. Documents are printed in
three languages: English, Hindi (Devnagari) and the offi-
cial regional language. More recently, several international
competitions were also performed on script identification
tasks [106], [109].
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This paper presents a comprehensive survey of dif-
ferent script identification techniques. Section II gives a
brief description of different writing systems. Section III
introduces different document types and highlights the main
discriminating methods. Section IV and V discuss the most
profitable features and the classification techniques for script
identification, respectively. System performances are ana-
lyzed in Section VI. Section VII presents some valuable
trends for future research. Section VIII reports the conclu-
sions of the paper.

II. SCRIPT WRITING SYSTEMS
In the world there are six large writing systems [39], [78].
Each writing system includes one or more scripts and each
script can be used in one or more languages, as Table 1 shows.

1) Logographic system. A logographic system usually
represents complete words. Han script is included in
this system and used in Chinese, Japanese and Korean
writings. This script can be distinguished from other
Western and Asian scripts by its multiple short strokes,
optical character density and appearance-based visual
features.

2) Syllabic system. In this system, each symbol repre-
sents a syllable. Japanese scripts use a mix of logo-
graphic Kanji and syllabic Kanas and are part of this
system. In these scripts, the presence of the simpler
Kanas in between the logograms is less dense than in
Chinese scripts and it is the distinguishing characteris-
tic between Japanese and Han scripts.

3) Alphabetic System. The most important scripts in the
alphabetic system are Greek, Latin, Cyrillic, and Arme-
nian. The Greeks were the first Europeans to learn to
write with an alphabet and from this system alpha-
betic writing spread to the rest of Europe, eventually
leading to creation of all modern European alphabets.
Latin script is used in many languages throughout the
world such as Latin, Cyrillic, and Armenian, as well as
many European languages like English, Italian, French,
German, Portuguese, Spanish, and Austronesia, Mod-
ern Malay, Vietnamese, and Indonesian. Cyrillic script
is used in some Eastern European, Asian, and Slavic
languages such as Bulgarian, Russian, Macedonian,
and Ukrainian. Some characters in the Cyrillic alphabet
are borrowed from Latin and Greek and modified with
cedillas, crosshatches, or diacritical marks.

4) Abjads. In this system, each symbol represents a con-
sonantal sound. It includes Arabic and Hebrew scripts.
The characteristic that clearly identifies Abjad-based
scripts in pen computing systems is the right to left
writing direction.

5) Abugidas. This system includes the Brahmic family
of scripts which originated from the ancient Indian
Brahmi script and makes up almost all of the scripts
of India and Southeast Asia. The northern group of
Brahmic scripts is used in the Devnagari, Bangla,
Manipuri, Gurumukhi, Gujrati, and Oriya languages;

TABLE 1. Script writing systems.

the scripts in south India and southeast Asia are used
in the Tamil, Telugu, Kannada, Malayalam Thai, Lao,
Burmese, Javanese, Balinese languages. One important
characteristic of Devnagari, Bangla, Gurumukhi, and
Manipuri is that words are written together without
spaces. The large number of horizontal lines in the
textual portions of a document can distinguish these
scripts from others.

6) Featural system. This system includes features that
make up phonemes and includes the Korean Hangul
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script. In this system a script is formed by mixing logo-
graphic Hanja with featural Hangul. The Korean script
is less complex and less dense compared to Chinese
and Japanese scripts and it contains more circles and
ellipses.

The six writing systems mentioned above include many
scripts with similar shaped characters: similar shaped charac-
ters are the major source of confusion in script identification.
Usually, each script has several spatial characters, diacritics,
multi graphs (include digraphs) or ligatures that differ with
other scripts in a same writing system. They are significant
in identifying scripts with similar shaped characters each
other. For instance, the 11 languages such as, Afrikaans,
Catalan, Dutch, English, French, German, Indonesian, Lux-
embourgish, Malay, Portuguese, Spanish alphabets consisted
of Latin alphabet based 26 characters, and they are distinguish
together with spatial characters, diacritics, multi graphs and
ligatures. In particular, the 26 Latin characters are included
in all language alphabets and only three of them (English,
Indonesian and Malay) are without diacritics. Other 8 types
of language alphabets (Afrikaans, Catalan, Dutch, French,
German, Luxembourgish, Portuguese, Spanish) contain sev-
eral diacritics. These diacritics can be used to distinguish
the 8 kinds of scripts in character level script identifica-
tion. On the other hand, some diacritics are common for
a number of scripts. For example, the diacritic ’’é’’ is not
useful for character level script identification since it is com-
mon for Afrikaans, Catalan, Dutch, French, Luxembourgish,
Portuguese and Spanish. In this case, other factors of these
languages should be considered, such as multigraphs and
ligatures.

A comparison of multigraphs and ligatures in the 11 Latin
alphabet based scripts shows that Afrikaans, Catalan, Dutch,
and Luxembourgish alphabets have no multigraphs and
ligatures. English, French, German, Indonesian, Malay,
Portuguese and Spanish alphabets contain several multi-
graphs. Ligatures are present in English, French and German
alphabets. Therefore, these multigraphs and ligatures can be
used as significant factors to identify these types of scripts
in character level script identification. It is worth noting that
some diacritics are not useful since they are common for
several scripts. For example, the digraph ’’ch’’ is common for
English, French, German, Portuguese and Spanish alphabets.

Arabic, Persian and Uyghur characters are similar to each
other: they have 18 common characters. Moreover, Arabic
and Persian alphabets have 8 common characters, Arabic and
Uyghur have 2 common characters, Persian and Uyghur have
6 common characters. There are 6 Uyghur characters differ-
ent fromArabic and Persian. Thus, character level script iden-
tification is not efficient to the 3 scripts and word/connected
component level script identification should be considered.

III. SCRIPT IDENTIFICATION METHODS
Most research in the field of script identification con-
cerns documents either printed or handwritten scripts. How-
ever, since several documents may contain text blocks with

TABLE 2. Script identification: documents types vs acquisition.

both printed and handwritten scripts, some research is now
addressing hybrid documents. Hence, on the basis of con-
tent type, documents can be classified into three categories:
printed, handwritten and hybrid.

Furthermore, document acquisition can be performed not
only through optical scanners but also via cameras and cam-
corders. Of course, the device used for document acquisition
can affect document image quality and therefore specific
script identification methods have recently been proposed for
video and camera-based acquisitions.

Table 2 summarizes some of the most relevant research
in the field of script identification, categorized by document
type and acquisition device. Earlier research on script iden-
tification of printed, handwritten and hybrid documents is
discussed in the following. For each document type, different
methods presented in the literature are introduced accord-
ing to the kind of data they use to perform script iden-
tification: Page/Paragraph/Text-block, Text line, Word, or
Character.

A. SCRIPT IDENTIFICATION IN PRINTED DOCUMENTS
Most script identification research was carried out on
printed documents. The main sources of printed documents
include books, magazines, journals, dictionaries, etc.. Some
researcher prepared multi script texts using automatic trans-
lating software [36] or other software [5] firstly, then multi
script documents are obtained as computer printouts. Since
the diversity of scripts and the deficiency of available
public databases, most of the researcher built their own
databases/datasets, as Table 3 summarizes.

1) PAGE/PARAGRAPH/TEXT BLOCK LEVEL
SCRIPT IDENTIFICATION
Most research on printed document script identification has
been carried out at the page level. Hochberg et al. [46]
used cluster-based templates for discriminating 13 different
scripts. Spitz [119] proposed a language identification
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TABLE 3. Script identification: features.

scheme where the words of 26 different languages were
first classified into Han-based and Latin-based scripts.
Successively, the actual languages were identified
using projection profiles of words and character shapes.
Jie Ding et al. [34] presented a method which uses a
combined analysis of several discriminating statistical fea-
tures to categorize European and Oriental language scripts.
Chaudhuri and Pal [21] developed a system for identifying
Bangla and Devnagari (Hindi) scripts using a classifica-
tion tree. Research on printed document script identifica-
tion was also conducted at text block level. For instance,
Peake and Tan [85] proposed a method based on Multiple
Gabor filters and grey level co-occurrence matrices to extract
the texture features of five major scripts.

2) TEXT-LINE LEVEL SCRIPT IDENTIFICATION
In text-line level script identification, a text block is firstly
divided into lines. Pal and Chaudhuri [71] developed an
automatic technique for separating text lines using script
characteristics and shape based features. They also proposed
a system for the identification of printed Roman, Chinese,
Arabic, Devnaguri and Bangla text lines from a single docu-
ment [72] and a method of identifying text lines of different
Indian scripts from a document [73]. An automatic technique
for the identification of Japanese and English script portions
from a single line of a printed document was proposed by
Chanda et al. [13]. Padma and Vijaya [68] developed a mono-
thetic algorithmic model to identify and separate Telugu,
Hindi and English text lines from a printed multilingual
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document. A simple and efficient technique of script iden-
tification for Kannada, Hindi and English text lines was
presented by Prakash et al. [90]. Ferrer et al. [36] proposed a
LBP-based line-wise script identification system to identify
ten different scripts.

3) WORD LEVEL SCRIPT IDENTIFICATION
Dhanya and Ramakrishnan [33] presented a success-
ful method for identifying script at word level in a
bilingual document containing Roman and Tamil scripts.
Jaeger et al. [48] used a Gabor filter analysis of textures
and a multiple classifier system with four different classifiers
to identify Arabic, Chinese, Hindi, and Korean scripts at
word-level. Dhandra et al. [28], [29] proposed an automatic
technique for script identification at word level based on the
morphological reconstruction of two printed scripts: Telugu
and Devnagari. A SVM based method was proposed by
Chanda et al. [14] for the identification of printed English and
Thai scripts at word level from a single line of a document
page. Chanda et al. [15] proposed a SVM based technique
for word-level identification of Sinhala, Tamil and English
scripts from a single document page, and a SVM based
scheme for the identification of printed word-level English,
Devnagari and Bangla scripts [16].

4) CHARACTER LEVEL SCRIPT IDENTIFICATION
Pal and Sarkar [74] used a combination of topological, con-
tour and water reservoir concept based features to identify
printedUrdu script. Rani et al. [91] carried out experiments on
multi-font andmulti-sized characters with Gabor features and
Gradient features to identify Gurumukhi and English scripts
at character or numeral level.

B. SCRIPT IDENTIFICATION IN HANDWRITTEN
DOCUMENTS
Handwritten documents are another important area of appli-
cation for script identification systems. Of course, script iden-
tification of handwritten documents is more challenging than
script identification of printed documents. In fact, there are
some relevant differences between printed and handwritten
script identification. For example, some scripts resemble each
other much more in handwritten documents than in printed
ones. Moreover, handwriting styles can be very variable. The
experimental documents, which are written by different indi-
viduals at different times, enlarge the inventory of possible
character andword shapes in handwritten documents. In addi-
tion, ruling lines and character fragmentation are common in
handwritten documents due to the variety of papers and writ-
ing instruments used. All these differences can create huge
challenges for script identification in handwritten documents.

1) PAGE/PARAGRAPH/TEXT BLOCK LEVEL
SCRIPT IDENTIFICATION
The first study conducted on handwritten script iden-
tification was carried out by Chaudhuri [22] and was
similar to that proposed by Hochberg et al. [46] for

printed documents. However, the resulting classifica-
tion accuracy was lower than that for the printed
documents. An online handwritten script recognition
system was proposed by Namboodiri and Jain [64]
for classifying six major scripts at word level. Eleven dif-
ferent features and six types of classifiers were considered.
A method based on the texture features for script identifi-
cation in a handwritten document image was proposed by
Hiremath et al. [44]. Ghosh and Shivaprasad [39] proposed
an handwritten script identification method in which a ‘‘pos-
sibilistic’’ approach was used for cluster analysis.

2) TEXT-LINE LEVEL SCRIPT IDENTIFICATION
Namboodiri and Jain [64] proposed a method to classify
words and lines into one of the six major scripts: Arabic,
Cyrillic, Devnagari, Han, Hebrew or Roman. The classifica-
tion is based on eleven different spatial and temporal features
extracted from strokes of the words.

3) WORD LEVEL SCRIPT IDENTIFICATION
Roy et al. [96] proposed a word-wise handwritten script
identification method for Indian postal automation regard-
ing Bangla and English script identification at word-
level. The method mainly uses water reservoir concept
based features, fractal-based features and a Neural Network
classifier. Roy and Majumder [97] also developed a tech-
nique for script separation of handwritten postal docu-
ments in Bangla, Roman and Devanagri scripts. Run Length
Smoothing Algorithm (RLSA) was used to segment the
document pages into lines and then into words. Fractal-
based, busy-zone and topological features were used along
with a Neural Network (NN) classifier for script iden-
tification. A script separation technique of Roman and
Oriya scripts for Indian Postal automation was proposed by
Zhou et al. [133]. They presented a script identification
method based on water reservoir concept based features,
fractal dimension based features and topological features
with an NN classifier. Sarkar et al. [103] presented an
automatic separation system for word-level script identifica-
tion from Bangla or Devanagri mixed with Roman scripts.
Dhandra and Hangarge [30] used a two-stage approach. In the
first stage, some global and local features were applied to
identify the text words. In the second stage, the numeral
written in different scripts was identified. To test the sys-
tem, Kanada, Devanagri and Roman scripted handwritten
documents were considered. A word-wise handwritten script
identification system for bi-script documents written in Per-
sian and Roman scripts was proposed by Roy et al. [99].
The system used a simple and fast computable sets of
twelve features based on fractal dimension, position of small
components and topology. A scheme for document level
handwritten script identification from six popular Indian
script documents was presented by Roy et al. [98]. In the
proposed scheme, a small set of features based also on
fractal dimension are computed using an MLP classifier.
Obaidullah et al. [67] proposed a scheme to identify the
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six popular Bangla, Devnagari, Malayalam, Urdu, Oriya and
Roman scripts in Indian documents, and compared perfor-
mance using different well-known classifiers.

4) CHARACTER LEVEL SCRIPT IDENTIFICATION
Pal et al. [75] proposed a modified quadratic classifier based
scheme for the recognition of off-line handwritten numerals
of six popular Indian scripts: Devnagari, Bangla, Telugu,
Oriya, Kannada and Tamil. Razzak et al. [93] presented a
fuzzy rule based approach for the recognition of both Urdu
and Arabic numerals in an unconstrained environment.

C. SCRIPT IDENTIFICATION IN HYBRID DOCUMENTS
Hybrid documents include printed and handwritten texts.
A multi-lingual automatic identification of Arabic and Latin
in both handwritten and printed script was proposed by
Ben Moussa et al [6]. A method for Arabic and Latin text
block differentiation for both printed and handwritten scripts
is discussed by Kanoun et al. [50]. The method is based on a
morphological analysis for each script at the text-block level
and a geometrical analysis at line and connected component
levels. Benjelil et al. [8] proposed an accurate system based
on a steerable pyramid transform for Arabic and Latin script
identification at word level. By using new structural features,
a successful attempt was made by Saidani et al. [101] to iden-
tify the Arabic or Latin script of a machine printed or hand-
written document at word level.

D. SCRIPT IDENTIFICATION IN VIDEO FRAMES
AND CAMERA BASED IMAGES
The extraction of script information from video frames or cam-
era based images has not been much explored so far. Unlike
printed or handwritten documents, video and camera based
script identification methods first require the extraction of
textual information: this is an important and very complex
task. In printed and handwritten documents, text in black
appears generally on a simple background (colorless). How-
ever, script recognition in video and camera based images
originates from complex conditions and suffer from low res-
olution, blur, complex background, noise, orientation prob-
lems, different fonts and font sizes of video text, etc. All
these complications make this problem more difficult and
challenging than printed and handwriting document identi-
fication. Some approaches on script information from video
frames or camera based images at different levels are reported
in the following.

1) PAGE/PARAGRAPH/TEXT BLOCK LEVEL SCRIPT
IDENTIFICATION
Gllavata and Freisleben [42] presented an approach for
discriminating between Latin and Ideographic scripts by
a set of low-level features. The decision is made using a
K-Nearest Neighbour classifier. New Spatial-Gradient based
Features (SGF) were proposed by Zhao et al. [132] for script
identification at block level for six scripts namely, Arabic,
Chinese, English, Japanese, Korean and Tamil.

2) TEXT-LINE LEVEL SCRIPT
IDENTIFICATION
Phanet al. [87] proposed two features, namely smoothness
and cursiveness, for video script identification at text-line
level. In their approach, English, Chinese and Tamil scripts
were considered.

3) WORD LEVEL SCRIPT IDENTIFICATION
Sharma et al. [104] used Zernike moments, Gabor and
gradient features with SVM classifiers to identify English,
Bengali and Hindi scripts. A study of word level multi
script identification from video frames is proposed by
Sharma et. al. [107] using different combinations of tex-
ture based features namely, Local Binary Pattern (LBP),
Gradient, Histogram of Oriented Gradient (HoG) and Gra-
dient Local Auto-Correlation (GLAC) features. SVMs and
ANNs classifiers were applied for English, Bengali and
Hindi scripts identification. This experiment pointed out
the efficiency of gradient features for low resolution,
blur, complex background, and noise video based images.
Shivakumara et. al [112] developed a word level script iden-
tification method for Arabic, Chinese, English, Japanese,
Korean and Tamil scripts by using new Gradient Angu-
lar Features. Bag-of-Visual Words based word-wise
script identification from video images is presented by
Sharma et al. [108] for five different south Indian scripts.

4) CHARACTER LEVEL SCRIPT IDENTIFICATION
Li and Tan [54] reported a script identification based on sta-
tistical features technique to identify character level English,
Arabic and Chinese scripts of camera-based images. The
experimental results show that this method is tolerant to
moderate perspective variations and document skew.

IV. FEATURES FOR SCRIPT IDENTIFICATION
Feature extraction is a vital part of any practical recognition
system. In the last few years, different kinds of features
have been evaluated for script identification based on the
characters of each script.

Two broad categories of features have been established in
the script identification field, as Table 4 summarizes [26]:
local feature and global feature. Local features are extracted
from small textual components of the document image.
Therefore, they strongly depend on the effectiveness of
the segmentation procedure. Statistical-, structural- and
template-based characteristics are examples of local fea-
tures [26]. Global features are extracted from blocks of text of
the document image. Texture- and Steerable pyramid-based
features are examples of global features [26].

A. LOCAL FEATURES
The analysis of local features mainly considers the analysis
of intrinsic features such as character shape based features,
structural features, statistical features, morphological, topo-
logical and contour based features, water reservoir principle
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TABLE 4. Script identification: features. TABLE 4. Continued. Script identification: features.

based features, etc. The extraction of these features is time
consuming, but they convey relevant characteristics for script
identification [26], [30], [69], [112]:

1) STATISTICAL FEATURES
Statistics-based features extract mathematical characteristics
as the mean and variance of the width, height, ratio and area
of the connected components. They concern methods that
identify scripts through the analysis of the upward concav-
ity, vertical and horizontal projections, etc. These methods
are more suitable to scripts that differ significantly in style.
Statistics-based approaches are highly sensitive to noise and
image quality and all features are extracted at higher levels
such as words, lines and text blocks. Some of the commonly
used statistical features are [52]: Horizontal projection pro-
files [8], [17], [23], [24], [27], [33], [34], [52], [72]–[74],
[76], [77], [90], [101]; Water reservoir-based features [6],
[13], [17], [74], [76], [95], [96]; Bounding box feature [13],
[94], [118], [126]; Character pitch features [13]; Upward
concavities [53], [118], [119].

2) STRUCTURE/GEOMETRIC FEATURES
Structural features include loops, cusps, endpoints, starts
points, etc.. Structural features depend on the instinctive
aspects of writing and are based on the geometric appearance
of scripts. Some typical structural features are [11], [17], [73],
[96]: Head-line (heuristics) features [17], [27], [71], [73],
[96], [99]; Fractal-based features [6], [67], [122]; Topological
features [15], [97], [99]; Morphological features [17], [28],
[29], [31], [56], [64].
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3) TEMPLATE MATCHING FEATURES
In the template-based approach, an unknown pattern is super-
posed directly on the ideal template pattern and the degree
of correlation between the two is used for classification.
In general these methods have advantages in distinguishing
similar scripts although they are strongly sensitive to the font
and size variations of characters [21], [38], [46], [127].

B. GLOBAL FEATURES
Global features for script identification are based on DCT,
DWT, Gabor, steerable pyramids, and Radon transform [19],
[22], [43], [70], [75], [79], [89], [97], [120]. These are robust
to noise, small skew, and faster in computation than local fea-
tures. In general, global features are considered to be efficient
in characterizing large size texture patterns, e.g. text blocks.
Furthermore, since these features regard a text block as one
single entity, analysis at the levels of text lines, words or con-
nected components is not possible [26, 30]. Typical global
features are derived from texture analysis approaches and
include Gabor Filter [59], [66], [82], [85], [87], [88], [92],
Wavelet Transform features [3], [44], [73], Discrete Cosine
Transform (DCT) [92], Gray level co-occurrence matrix [9],
[44], rotation invariant features [85], gradient features [16],
[91], [104], [132], steerable pyramid transforms [7], [8], etc..

V. CLASSIFICATION TECHNIQUES FOR
SCRIPT IDENTIFICATION
Although classification is a crucial step of script identifi-
cation systems, the literature shows that only a few simple
classifiers were used in earlier works, as Table 5 reports [21],
[31], [34], [46], [118], [119], [129]. The K-Nearest
Neighbor (K-NN) classifier has been extensively used in
script identification systems based on Gabor filter [81],
[85], Cartesian moments [1], appearance based model
approaches [125], grey level co-occurrence matrix fea-
tures [85], statistical-based features [20], stroke density and
distribution-based features [56], texture features [20], [42].
Support vectormachine (SVM) has also been applied to script
identification. SVM-based systems for script identification
use structural features, topological features and water reser-
voir principle based features [14], [15], Zernike moment–
based feature [18], [104], Gabor, and gradient features [104].

Other classification methods were considered for script
identification such as Neural Network [9], [96], quadratic
classifier [43], [64], [75], [126], [134], rule-based classi-
fiers [1], [90], [92], [93], Linear Discriminant Classifiers
[43], [55], [83], Gaussian Mixture Model [11], [48], [50],
[99], etc..

VI. PERFORMANCE ANALYSIS
Performance of some of the most significant systems pre-
sented in the recent literature are reported in Table 6. More
precisely, Table 6 shows that different kinds of features,
e.g., statistical features, structural features, symbols match-
ing features and texture features, were generally used for
script identification. Indeed, these features express only some

TABLE 5. Script identification: classifiers.

characteristics of scripts that are generally not sufficient for
script identification. Conversely, texture features are gener-
ally more efficient than others, but they cannot be applied
reliably at word and character level within a document. Fur-
thermore, to achieve better results, different kinds of features
and classifiers were used. Experimental results show that a
particular feature, that is generally efficient within a set of
scripts, is not necessarily useful for other scripts. In English,
Kannada, Hindi multi-script documents [32], [69], [81], tex-
ture features with a K-NN classifier were more useful than
other features. For identifying different scripts in Indian
documents, whatever classifier was used, both Global and
Local features demonstrated to be efficient. Moreover, results
obtained using a single feature (either local or global) were
generally worse than those obtained using both features [31],
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TABLE 6. Comparison results. TABLE 6. Continued. Comparison results.

[83]. In Han, Roman and some alphabet multi script identifi-
cation methods, an SVM classifier with different extracted
features achieved higher identification results than K-NN
and NN classifiers [19], [55], [127]. For Arabic and Latin
scripts, an RBF classifier was more efficient than a K-NN
classifier [6].

It is worth noting that approaches in Table6 are diffi-
cult to be compared since performance have been estimated
using databases collected in laboratory environments. In fact,
although there existed several public datasets containing nat-
ural images with texts, they are mainly related to the text
recognition task [109], [128]. Some datasets specifically
devoted to script identification have been also realized [46],
[87], [132]. Among the others, the SIW-10 dataset was
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TABLE 7. Public databases.

developed for script identification [110]. The SIW-10 dataset
contains more than 13,000 multi-scripts images including
textual components from 10 languages. Therefore, to date,

it can be considered as one of the most valuable benchmark-
ing dataset for research in script recognition.

VII. FUTURE WORK AND TRENDS
Although in the last twenty years there have been many
advances in the field of script identification, a great deal of
work is still necessary to improve accuracy and efficiency
of script identification systems. Some of the most valuable
directions of research are here addressed.

The first point is that, as Table 3 shows, many researchers
constructed database/datasets by themselves collecting data
in laboratory according to the requirement of their research
work. These datasets are different in type, size, scanning
resolution and image format. Besides, these datasets are not
publicly available. Therefore, specific work is necessary to
define some standard data formats and to realize and release
public datasets for script identification.

Table 7 summarizes some of the public datasets that have
been considered by the script identification research com-
munity. Most of these databases are referred to research in
the field of OCR [117], [49], handwriting recognition [4],
[58], [60], document analyzing [60], writer identification
and classification [2], [4], [61], [60], signature recogni-
tion and verification [35]. Only few public databases are
specifically devoted to script identification [110], [10], [49].
Moreover, databases for script identification are limited in
terms of script/language type, font types and sizes, lack
degraded/noisy images, etc.. In particular, many databases
are devoted to specific scripts, such as English, Chinese,
Arabic, German, French, Japanese, Korean, Devanagari,
Bangla, whereas no databases are available for research on
other scripts. Of course, along with the expansion of research
on script identification, the blank of some scripts in this area
will be amended in the future work.

Furthermore, most of researches is based on offline script
identification technology, but there are only few reports about
online script identification technology. With the spreading of
PDAs and smartphones, the demand of online script iden-
tification technology is increasing. At the same time, for
everyday useful aims, also automatic translation should be
considered. Just think to a tourist needing for a fast auto-
matic translation of a signboard. Of course the development
of online script identification systems will require a great
amount of work and it is an extraordinary challenge for the
research community.

VIII. CONCLUSION
Script identification is an important task in an OCR system
for multi-lingual, multi-script documents. Many script iden-
tification methods have been proposed for written scripts at
different levels within a document— page/paragraph level,
text-line level, word level, and even character level.

Compared to the field of document analysis and optical
character recognition, research on script identification is still
limited. In fact, studies were focused so far on identifying the
major scripts in the world such as English, Arabic, Indian,
Chinese and Japanese. Indeed, many other scripts exist that
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have received no apparent attention. The identification of
video and camera based images is another research area for
which more research is necessary, since mobile and cheap
devices become more and more widespread.

Concerning features and classification methods, although
it is quite difficult to obtain conclusive results, Gabor filter
and statistical features are certainly some of themost effective
characteristics for script identification as well as kNN and
SVM are the most valuable classifiers.

It can be concluded that although many advancements
have been made, additional research is necessary the field
of script identification. A crucial step is certainly the cre-
ation of new standard databases for multi-lingual, multi-
script identification, to evaluate comparatively different script
recognition systems and support the research community
active in the field.
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