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ABSTRACT
Deep Learning (DL) has been recently employed to build smart systems that perform incredibly well
in a wide range of tasks, such as image recognition, machine translation, and self-driving cars. In
several fields the considerable improvement in the computing hardware and the increasing need for
big data analytics has boosted DL work. In recent years physiological signal processing has strongly
benefited from deep learning. In general, there is an exponential increase in the number of studies
concerning the processing of electromyographic (EMG) signals using DLmethods. This phenomenon
is mostly explained by the current limitation of myoelectric controlled prostheses as well as the recent
release of large EMG recording datasets, e.g. Ninapro. Such a growing trend has inspired us to
seek and review recent papers focusing on processing EMG signals using DL methods. Referring
to the Scopus database, a systematic literature search of papers published between January 2014 and
March 2019 was carried out, and sixty-five papers were chosen for review after a full text analysis.
The bibliometric research revealed that the reviewed papers can be grouped in four main categories
according to the final application of the EMG signal analysis: Hand Gesture Classification, Speech
and Emotion Classification, Sleep Stage Classification and Other Applications. The review process
also confirmed the increasing trend in terms of published papers, the number of papers published in
2018 is indeed four times the amount of papers published the year before. As expected, most of the
analyzed papers (≈60 %) concern the identification of hand gestures, thus supporting our hypothesis.
Finally, it is worth reporting that the convolutional neural network (CNN) is the most used topology
among the several involved DL architectures, in fact, the sixty percent approximately of the reviewed
articles consider a CNN.

1. Introduction
In many fields surface electromyography (sEMG) is fre-

quently used [141], such as neurophysiology [74], ergonomics
and occupationalmedicine [122], posture analysis [46], move-
ment and gait analysis [145], EMG-based biofeedback [57],
exercise physiology and sports [26], as well as human-machine
interaction/interfaces (HMI) [38, 14, 186]. In detail, elec-
tromyographic signals (EMG) are biomedical signals that
provide representations of the electrical potential fields pro-
duced by the membrane depolarization of the outest mus-
cle fibers. An EMG signal corresponds to a train of mo-
tor unit action potential (MUAPs) showing each muscle re-
sponse to neural stimulation and presents a random behavior.
Shapes and firing rates of MUAP in EMG signals revealed
to be important source of information that can be used in
several applications. In particular, EMG signal detection re-
quires the use of intramuscular electrodes or surface ones
positioned at a certain distance from sources, i.e., muscle
fibers. Moreover, EMG detectors, especially surface elec-
trodes, collect signals from different motor units at the same
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time thus leading to an interaction of different signals. Just
before the amplification, the amplitude range of the EMG
signal is ±5 mV and is affected by several types of noise: a)
inherent noise in electronics equipment, b) ambient noise, c)
motion artifacts due to the movement of both electrode inter-
faces and cables. There are also other factors affecting the
EMG signals, besides noise [142]: a) electrode structures
and placements, b) physiological, anatomical, biochemical
characteristics of muscles fibers and the amount and type
of tissues between muscle surfaces and electrodes, and c)
crosstalk from nearby muscles. All such factors strongly af-
fect the characteristics of collected signals (e.g. signal am-
plitudes and frequency contents), thus explaining the intra-
subject / inter-subject variability that may be observed when
acquiring EMG signals. Clinical/HMI applications of EMG
signals should clearly rely on reliability and repeatability of
used techniques. The repeatability of sEMG measurements
has been tested by many researchers, and a critical issue con-
cerning features of single-channel sEMG signals, obtained
in different tests and days, concerns with the repeatability
of electrode positions and inter-electrode distances [73, 130,
143, 157]. It can be observed that the reproducibility of es-
timates of the sEMG characteristics under isometric or dy-
namic conditions is generally not excellent. This observa-
tion is partially caused by a persisting lack of standards in
this field. A substantial contribution to this issue has been
received by some researchers’ effort in defining the standard
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procedures to follow for acquiring EMG signals [77], start-
ing from the use of electrodes grids and the automatic iden-
tification of regions of interest. Besides electrode design,
many researchers also started to investigate new signal pro-
cessing techniques that could robustly decipher all key in-
formation encoded in the EMG signals; some of these tech-
niques are based on artificial intelligence (AI) [139].

Researchers interested in myoelectric man-machine in-
terfaces have long been aware of the high potential of the
AI in EMG signal (pre-)processing [48, 116] and myoelec-
tric prosthesis represent one of the most worthy application
examples. In fact, thanks to the direct association between
the action potential produced by the motor neurons and the
electrical activity induced in the innervated muscle fibers,
muscles cab be considered as biological amplifiers of effer-
ent nerve activity in applications of man-machine interfac-
ing. Nowadays, data-driven approaches, which are mainly
based on machine learning (ML) techniques, represent the
most used solution for implementing the mapping between
EMG signals and the device to be driven [186, 75, 113, 40]
after the model-driven approaches that use EMG signals as
the input to specific physical models of the musculotendon
system [38, 39, 37, 36, 43, 41].

Over the past decades the weakness of the myoelectric
prosthetic hands offered by industry and the need to develop
more intuitive and efficacious EMG-based human-prosthesis
interfaces have clearly boosted the research on data-driven
approaches [14]. Therefore, several researchers started fo-
cusing on developing new machine learning-based methods
for detecting the intended hand gesture from forearm mus-
cle activations and better controlling prosthetic devices [79].
ML techniques have demonstrated to be valid in several oth-
ers domains where the quantitative EMG (or QEMG) plays
an important role [204]. As an example, ML approaches
have been widely used to develop intelligent systems for sup-
porting clinicians in diagnosing and staging diseases that
affects the human motor system, such as myopathy, neu-
ropathy, amyotrophic lateral sclerosis, Parkinson’s disease
[85, 177, 147, 90, 204, 117, 42, 138, 45, 47].

In biomedical applications, as well as in other contexts,
the increasing amount of multi-modal physiological infor-
mation, together with an increased problem complexity and
all subsequent difficulties concerning the extraction ofmean-
ingful hand-crafted and domain-dependent features, limit the
power of the traditional shallowmachine learning approaches,
despite the considerable research works carried out for op-
timising performance of available classifiers [107, 108, 66,
133, 216, 93, 29, 44, 67]. Deep Learning (DL) overcomes
these limitations allowing an increasing transformation of
data into a more abstract representation.

Deep learning is actually a growing breakthrough tech-
nology in data analysis [208, 34, 134, 103, 27, 196, 194, 137,
135, 211] and it is becoming as the leading ML approach
both in general image processing and computer vision do-
mains [33, 31, 35, 201, 195, 218, 136, 62, 54]. Moreover,
promising results emerge from deep learning networks in
various medical fields, since deep learning can be intended

Figure 1: Number of published papers related to Deep Learn-
ing and EMG signals per year.

as an improvement of artificial neural networks, based on
more layers that enable higher abstraction levels and better
predictions from data [30, 28].

Researchers have therefore begun to investigate the abil-
ity of DL to process and decode sEMG data (see Figure 1),
also thanks to the recent launch of several EMG recording
benchmark databases, e.g. NinaPro [16], BioPatRec [152],
CapgMyo [80], UCIDatabase [167], CSL-HDEMG [8], Phy-
sioNet [86] and MASS-DB [151]. Such a growing trend in
science also includes many other physiological signals, for
instance electroencephalogram (EEG), electrocardiogram (ECG),
and electrooculogram (EOG), as discussed in two recent sur-
veys [78, 76]. Nonetheless, as these two surveys address
papers published up to December 2017, the number of in-
vestigated articles related to the analysis of EMG signals
using deep learning techniques is limited to fifteen. There-
fore, since it seems to be an exponential growing interest on
this subject (see Figure 1), an updated review is necessary to
comprehend the current challenges and future perspectives.

In this work, an amount of papers about the application
of DL techniques on EMG data published from 2014 till
March 2019 has been analyzed and review. After selecting
65 articles on the Scopus database for the survey, the papers
were reviewed and classified into four main categories ac-
cording to the considered final application of the EMG sig-
nal processing: (1) Hand Gesture Classification; (2) Speech
and Emotion Classification; (3) Sleep Stage Classification;
(4) Other Applications. As expected, from the full text anal-
ysis, it resulted that most of the selected papers were pub-
lished from the beginning of the 2018, thus supporting the
rationale of this work. Moreover, it turned out that the ma-
jority of the reviewed papers are related to the hand gesture
recognition and classification, but also other applications,
e.g. sleep stage, speech and emotion classification, are tak-
ing advantage of DL, since they are based on the analysis of
a big amount of data.

2. Deep Learning Architectures
During the last decades, deep learning techniques have

faced a growing research interest because of their inherent
capability of overcoming the drawbacks of traditional ma-
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chine learning algorithms based on hand-crafted features [134,
127, 178, 217]. Deep learning techniques have also been
found to be suitable for the analysis of big data with suc-
cessful applications to computer vision, speech recognition,
pattern recognition, natural language processing, and rec-
ommendation systems [134, 106, 105]. According to recent
surveys on DL methods [134, 92], it can be stated that there
are five main deep learning architectures: deep neural net-
works (DNNs), deep recurrent neural networks (RNN), con-
volutional neural networks (CNNs), autoencoders (AEs) and
deep belief networks (DBNs). The main properties of the
above cited DL techniques are herein briefly summarized.
2.1. Deep Feedforward Neural Networks

Deep neural networks or multilayer perceptrons (MLPs)
can be described as extensions of shallow feedforward neu-
ral networks featuring an increased number of layers and
neuron units per layer [134, 87]. A common feedforward
network behaves by using a composition of several differ-
ent functions; the overall length of the whole function gives
the depth of the model and the deep learning definition. The
complexity of this function can be easily extended by adding
an increasing number of layers. These kinds of networks are
called feedforward networks because the information flow is
computed through the functions of each layer until outputs.
There are not any feedback connections able to feed back in
input the obtained outputs of the model. A deep feedforward
neural network is trained by using a supervised learning pro-
cedure that provides a mapping function between general in-
put patterns and corresponding targets. In deep neural net-
works learning requires computing gradients of complicated
functions, and proper back-propagation algorithm and its re-
cent generalizations can be used to effectively compute these
gradients.
2.2. Deep Recurrent Neural Networks

It is well known that traditional neural network topolo-
gies can process and make decisions on the basis of the un-
derstanding of their current input space. Decisions, indeed,
consider only network inputs, with neither information of
previous ones nor inner states of the network itself. Feedfor-
ward neural networks that include feedback connections are
called recurrent neural networks (RNN) [87]. In detail, in
the RNN architecture, internal states store the values of acti-
vations generated at each time step, thus providing temporal
memory properties [20]. Outputs of RNNs can depend both
on the current states and previous network ones (i.e. RNNs
can produce a decision on a video frame using the informa-
tion of the previous ones). As a consequence, the number
of previous network states to consider reveals to be an im-
portant parameter to be set. Furthermore, RNNs show their
main limitations when there is the need of learning long-
range time dependencies [20, 25, 156]. This important lim-
itation has been addressed by introducing the long short-
term memory (LSTM) network, which, thanks to a chain-
like structure, is able to face the learn long-term dependen-
cies problem [104, 215].

2.3. Convolutional Neural Networks
Convolutional neural networks were defined by Goodfel-

low et al. as artificial neural networks that use convolution
in place of a general matrix multiplication in at least one
of their layers [87, 55, 190, 196, 54, 96, 131, 84, 83, 165,
221, 82, 160, 173, 97, 179, 92]. A CNN makes is based
on weights, biases and non-linear activation functions as an
ANN but, in addition, considers a mathematical convolution
operation in at least one layer. As stated in the previous para-
graphs, regular fully connected networks compute a transfor-
mation of the input layer by using the weight of the fully con-
nected hidden layers. Each neuron of each layer is connected
to all the neurons of the previous one, being independent
from the other neurons (i.e. there are not connection among
neurons belonging to the same layer). Due to their architec-
ture, DNNs are not suitable to process data with grid-like
topology (i.e. time series, image data); in detail, due to the
huge amount of involved weights, regular ANNs and DNNs
do not scale well in image processing applications; the num-
ber of parameters to be learned, indeed, increases rapidly as
the image resolution grows up. For this reason, the CNN ar-
chitecture revealed to be particularly suitable when facing
domains involving multidimensional data, such as images
or volumetric data. The convolutional layer is the core of
a CNN and carries out the computational reduction. For the
sake of a better comprehension, convolution layers can be
considered as a set of filters, whose weights are learned dur-
ing the training phase. The filter shape is properly selected
and, for a bi-dimensional convolution, the depth size is the
same of the input space; as an example, for RGB images, the
shape of filters of the first convolution layer is NxNx3, where
N is an odd number lower than the input width and height
(usually 3, 5 or 7) and 3 because of the images depth (or color
channels). The forward computation consists of a filter con-
volution across width and height, i.e. filter sliding with dot
product among filter weights and corresponding inputs. The
corresponding output is a bi-dimensional activation map for
each filter and the corresponding stack of the activationmaps
along the depth dimension is the output of the convolutional
layer. More convolution layers could be arranged together
with non-linear layers. In applications involving classifica-
tion, one or more fully connected layers are used as output
layers of the network to compute the class scores; an increase
of depth clearly leads to an increase of the trained parame-
ters, however the depth of CNNs and the complexity of the
topology are usually linked to performance outcomes. Due
to the difficulties concerning the training of deep CNNs, a
technique called transfer learning (TL) is commonly used
[193]. TL consists is using a pretrained CNN network on
a very large dataset as initialization or as a feature extrac-
tor. The first approach is specifically used to fine tune the
parameters of the pretrained network continuing the training
on a new dataset, with the possibility to fine-tune the whole
network or just a specific section (i.e. the first convolution
layers that learn to extract generic features could have fixed
weights). The latter approach considers the pretrained net-
work as a feature extractor; in detail, the fully connected lay-
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ers are removed and extracted features are then used as input
of a new fully connected layer or different classifiers, such
as support vector machines.
2.4. Autoencoders

Autoencoders are particular types of neural networks trained
with the aim to copy input data to the corresponding output
layer [87]. Hence the size of the input layer is the same as
the output layer. Autoencoders are trained with an unsuper-
vised learning technique able to leverage neural networks for
a representation learning task, e.g. denoising, feature reduc-
tion, clustering, image processing [212, 202, 203, 132, 101,
214, 114, 220, 159, 88, 123, 223, 185]. An autoencoder has
a hidden layer that generates a latent code that represents the
input. Such a neural network is composed of two main parts:
an encoder that codifies each input into the code and a de-
coder that produces the reconstruction. A valid autoencoder
is not trained to perfectly copy inputs, but to produce out-
puts that resemble the training data. According to both the
internal structure of the network and their training modali-
ties, there are five main AE families [87]: under-complete
AE, regularized AE, sparse AE, denoising AE and varia-
tional AE.
2.5. Deep Belief Networks

Deep belief networkswere one of the first non-convolutional
models to admit training of deep architectures [87, 124, 148,
125, 126, 166, 210, 209]. Before the introduction of deep
belief networks, deep models were considered too difficult
to optimize, but, in 2006, Hinton et al. proposed a novel
efficient learning process demonstrating that deep architec-
tures could be successful by outperforming the best approach
for the MNIST dataset at that moment [100]. A deep be-
lief network was defined as a stack of restricted Boltzmann
machines (RBMs) [102, 99, 149]. Each stacked RBM layer
communicates both with previous and subsequent layers, but
there is no intra-layer communication – this is the restric-
tion in an RBM. RBMs are two-layer generative stochastic
neural networks that can learn a probability distribution over
its set of input, thus an RBM is an unsupervised model. A
deep belief network can then be used either to cluster unla-
beled data in an unsupervised learning scenario or to create a
classifier. Concerning the clustering problem, several works
have demonstrated that applications of DBNs are more ef-
fective than ANNs [134]. When a DBN is used for a clas-
sification problem, it might end with a softmax layer. The
training process is composed of two subsequent steps: pre-
training and fine-tuning. The pre-training helps in optimiza-
tion by better initializing the weights of all the layers. The
Greedy Layer wise algorithm is used to rapidly train each
layer sequentially starting from the bottom layer. Finally, a
fine-tuning, that can be achieved by a wake sleep algorithm
or back propagation, slightly modifies the whole network to
better discriminate among different labels.
2.6. Discussion about Deep Learning

In the last years deep neural networks shown their dom-
inating performance in many fields leading to the develop-

ment of several network topologies. Regarding the theory
behind the training of neural networks, it is limited to topolo-
gies with one of few hidden layers; whereas the theory be-
hindmultilayer networks remains largely unsettled [6]. Allen-
Zhu et al. attempt to formalize a convergence theory behind
deep learning and to explain the empirical finding by Good-
fellow et al. [89], proving that stochastic gradient descent al-
gorithm is able to find a global minima in polynomial time;
the authors assess the applicability of their theory to fully
connected neural networks, convolutional neural networks,
and residual neural networks [6].

The problem of network convergence was faced by Ioffe
et al. too. The authors focus on the difficulties of deep neural
networks training due to the changing of layers distribution
over the training phase, as the parameters of the previous
layers change; this phenomenon, referred by the authors as
internal covariate shift, slows down the training by requir-
ing a lower learning rate. Ioffe et al. successfully addressed
the problem by normalizing layer inputs and performing the
normalization for each training batch; this new Batch Nor-
malization layer allows to increase the learning rates and to
reduce the effects of the initialization [111]. Nowadays, the
Batch Normalization layer is widely used and considered as
a standard layer in deep neural networks and convolutional
neural networks.

Regarding the training time, despite the popularity of
deep learning in wide application fields, there is not a well
know methodology to predict the training time for a specific
problem. Common applications try to infer the training time
as a linear extension of the single epoch timing or from the
number of operations. These approaches are usually an over-
simplification because they ignore secondary aspects of the
training such as data loading or non-optimal parallel exe-
cution. Starting from the definition of the training time as
the product of the training time per epoch and the number
of epochs which need to be performed to reach the desired
level of accuracy, Justus et al. proposed an alternative ap-
proach in which a deep learning network is trained to predict
the execution time for parts of a deep learning network. The
combination of the individual parts provide the prediction of
the whole execution time [115].

Despite the deep learning becomes a widely and largely
used in many artificial intelligence problems due to its abil-
ity to outperform alternative techniques and even humans,
they are not general purpose. The main drawback is the re-
quirement of large amount of data (and annotated output data
in some applications); this sometimes biases the researcher
to work on specific data that lack of generalization, such
as benchmarked datasets, or on tasks where annotation is
easy to obtain instead of on the tasks itself. Fortunately, the
research community continuously produce and share new
public dataset, and there are techniques that allow to reduce
the need of supervision (i.e. transfer learning, unsupervised
learning, and weakly supervised learning) [205].
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Figure 2: Paper Selection Process.

3. Paper search methodology
The literature searchwas performed for articles published

on Scopus until March 2019. The quest concentrated on pa-
pers written in English and included a selection of keywords
covering the two main topics "Deep Learning Methods" and
"Electromyographic Signals" the specific used query string
is “( TITLE-ABS-KEY ( "deep learning*" OR "deep neur*"
OR *cnn* OR autoencoder OR *lstm* OR *rnn* OR "recur-
rent neur*" OR dbn OR rbm OR "deep belief network" OR
"restricted Boltzmann machine" ) AND TITLE-ABS-KEY (
electromyo* OR *emg* OR myoelectric ) ) AND PUBYEAR
> 2013 AND ( LIMIT-TO ( LANGUAGE , "English" ) )”).
Figure 2 reports the flow of information through the different
phases of the paper selection process [144]. An amount of
203 papers was originally selected from a Scopus Bibliomet-
ric Research. Then, all findings, either based on topologies
composed of only one hidden layer or related to the process-
ing of other types of signals (such as EEG, video or photos),
have been ruled out as reported in Figure 2. Among all found
papers, an amount of 65 articles, published in international
journals or conference proceedings, have been selected for
the herein developed review.

Two out of 65 papers are survey/review articles [78, 76].
The remaining 63 papers have been then classified in four
main categories according to the final goal of the EMG sig-
nal processing (see Figure 3): (1) Hand Gesture Classifica-
tion; (2) Speech and Emotion Classification; (3) Sleep Stage
Classification; (4) Other Applications:

• Hand Gesture Classification. Every paper in this cat-
egory explores deep learning techniques for hand/finger
gesture recognition and identification by examining
EMG signals obtained from the main upper limb mus-
cles. These papers reflect most of the chosen articles.

• Speech and Emotion Classification. The research pa-
pers that belong to this group use deep learning meth-
ods for identification of speech and emotion through
EMG signals recorded from the facial muscles.

• Sleep Stage Classification. The papers falling within
this section are researching the application of deep

Figure 3: Number of papers of each individuated category per
year.

neural networks for sleep stage identification and rat-
ing. All these articles consider the processing physio-
logical multi-modal signals like EMGs, EEGs, EOGs
and ECGs.

• Other Applications. All the papers which could not
be allocated in to one of the classes listed above were
marked as "Other Applications".

4. Content review
The bibliometric research clearly revealed the existence

of four classification criteria of papers according to different
final aims: (1) Hand Gesture Classification (see Table 1); (2)
Speech and Emotion Classification (see Table 2); (3) Sleep
Stage Classification (see Table 3); (4) Other Applications
(see Table 4).
4.1. Hand Gesture Classification

As clearly shown in Figure 3, most of the selected papers
concern with the processing of EMG signals acquired from
the muscles of upper limbs. Such finding is closely linked
to many researchers’ recently growing interests in applying
DL methods to a myoelectric control of prosthesis and ad-
vanced natural human-machine interaction interfaces [186].
After a careful review of all papers within this class, CNNs
revealed to be the most commonly used networks, followed
by AEs, RNNs, and DBNs (see Figure 5). According to the
increasing popularity of CNNs in several research fields due
to their proven high performance, several authors proposed
classifiers based on CNNs only [14, 155, 94, 183, 174, 18,
199, 161, 163, 171, 7, 64, 120, 22, 180, 192, 13, 213, 68, 56,
52, 70, 140], or on both CNNs-RNNs [81, 200, 198, 191],
or on CNN-AE [219]. Some authors have alternatively de-
veloped multi-class classifiers entirely based on deep AEs
[222, 110, 128, 164, 163, 3], RNNs [175, 98, 181] or DBNs
[170, 169]. The reviewed papers are presented in Table 1,
where, for each paper, acquisition setups or used database,
number of classified classes, i.e. hand/finger gestures, and
summarized results are reported.
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4.2. Speech and Emotion Classification
In this section, all papers related to facial electromyog-

raphy (fEMG) research have been listed. Although the num-
ber of found papers is not high (see Figure 3), a particular
category is assumed for such papers due to the significant
effect of speech and emotion classification in clinical appli-
cations. More in detail, four papers out of seven examine
the potential of fEMG-based speech recognition techniques
[189, 61, 188, 71, 146], whereas three papers out of seven fo-
cus on emotion detection and classification [118, 1, 95]. Re-
garding with the used methodology, the selected papers use
standard deep neural MLP networks [189, 61, 188], CNNs
[71, 146], and DBNs [118, 1, 95]. In Table 2 the number of
classified categories, i.e. words or emotions, the summary
results, the acquisition setup or the used database, are listed
for each checked paper falling into this class.
4.3. Sleep Stage Classification

In addition to the two above mentioned categories, some
papers often refer to sleep stage classification and rating.
Current sleepmedicine relies on supervised polysomnographic
recording analysis, which involves electroencephalogram, elec-
tromyogram, and electrooculogram signals. This analysis
explains why these particular papers suggest to process mul-
timodal information like physiological signals, for example
EEG, EMG, EOG, ECG. However, it is important noting
that the role of EMG signals in the identification of sleep
stage is not as primary as the contribution of the EEG sig-
nal. Nevertheless, the findings of all selected and updated
studies show that the quality of classification benefits from
the use of EMG signals. Many research studies in this group
focused on CNNs as well as the "Hand Gesture Classifica-
tion" articles [49, 51, 11, 12, 184]. Only one work relies on
the integration of a DBN with an RNN [206]. Table 3 re-
ports acquisition set-ups or used databases, number of clas-
sified classes, i.e. sleep stages, and summarized results of
each article.
4.4. Other Applications

Ten papers out of 63 have not been included in any of the
above presented three categories. Due to the small number
of uncategorized papers, in this subsection the main objec-
tive of each of the ten papers is briefly described including
the specific used deep learning technique. Su et al. have pro-
posed a DBN to predict the onset of muscle fatigue that oc-
curs while holding a load with the upper limbs [176]. Belo
and his colleagues have developed a deep RNN to synthe-
size biosignals including the EMG activations [23]. Xia et
al. proposed a CNN integrated with an RNN for the estima-
tion of hand trajectory [197]. Said et al. presented a stacked
autoencoder for the compression of multimodal biosignals,
i.e. EMG and EEG [24]. Guo et al. developed and tested
a CNN able to predict EMG signals given multi-unit neural
signals recorded with multiple electrode arrays from the cor-
ticospinal tract in rats [91]. Bakiya et al. proposed a DNN to
discriminate healthy subjects from patients affected by the
amyotrophic lateral sclerosis or myopathy [17]. Sengur et

Figure 4: Frequencies of the used deep learning techniques
among reviewed papers. Papers that investigate mixed ap-
proaches are accounted more times.

Figure 5: Frequencies of the used deep learning techniques
among the reviewed papers reported for each individuated cat-
egory.

al. presented a CNN for an efficient classification of amy-
otrophic lateral sclerosis and normal electromyogram sig-
nals [168]. Chen et al. implemented a DBN to extract EMG
features for the estimation of the human lower limb flex-
ion/extension joint angles [53]. Rane et al. developed aCNN
for lower limb muscle force estimation during gait [158]. Fi-
nally, Akhundov et al. proposed a CNN for the rating of the
EMG signal quality in terms of signal to noise ratio [4]. Ta-
ble 4 reports acquisition setups or used database, main goals
of each study, and summarized results of each above cited
study.

5. Published Datasets
Although some of analyzed papers concerns with studies

conducted on proprietary datasets generated from scratch,
most of themworks on publicly available benchmark datasets,
aiming at a validation of new approaches comparing them
with the state-of-the-art. In this section, themost used bench-
mark datasets that have been conveniently organized accord-
ing to the clusters of applications are introduced. The sum-
marized features of considered datasets are reported within
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Reference DL Algorithm Data N° of Classes Results

Shim et al., 2015 [170] DBN 28 Subjects. 2 Bipolar EMG signals. 5 Accuracy: 88.6 %

Atzori et al., 2016 [14] CNN NinaPro Database 50

Accuracy:
- Dataset 1: 66.6 %
- Dataset 2: 60.3 %
- Dataset 3: 38.1 %

Shim et al., 2016 [169] DBN 28 Subjects. 2 Bipolar EMG signals. 5 Accuracy: 89.3 %

Park et al., 2016 [155] CNN NinaPro Database 6 Accuracy: ≈93.0 %

Asai et al., 2017 [13] CNN 8 Bipolar EMG Signals. 4 Accuracy: ≈83.0 %

Zhengyi et al., 2017 [219] CNN-AE NinaPro Database 23 Accuracy: 85.0 %

Zhai et al., 2017 [213] CNN NinaPro Database 50 Accuracy: 78.7 %

Du et al., 2017 [68] CNN
a)NinaPro, b)CSL-HDEMG, a)12, b)12, Accuracy: a)>90 %,
c)CapgMyo Databases c)27 b)>95 %, c)>98 %

Côté-Allard et al.,

2017 [56]
CNN 17 Subjects. 8 EMG Bipolar Signals. 7 Accuracy: 97.8 %

Zia-ur-Rehman et al.,
AE 7 Subjects. 6 Bipolar EMG Signals. 11 Accuracy: ≈98.5 %

2018 [222]

Kim et al., 2018 [120] CNN NinaPro Database 6 Accuracy: >90 %

Chen et al., 2018 [52] CNN 8 Subjects. 16 EMG Bipolar Signals.
a)5 - Wrist Accuracy:
b)5 - Finger a)73.8 %, b)49.8 %

a)NinaPro-DB1, b)NinaPro-DB2, a)52, b)50, Accuracy: a)87.0 %,
c)BioPatRec, d)CapgMyo, c)26, d)8, b)82.2 %, c)94.1 %,Geng et al., 2018 [81] CNN-RNN
e)CSL-HDEMG. e)27 d)99.7 %, e)94.5 %

Ibrahim et al., 2018 [110] AE 9 Subjects. 2 EMG Bipolar Signals. 10 Accuracy: 92.2 %

Duan et al., 2018 [70] CNN 50 Subjects. 8 EMG Bipolar Signals. 10 Accuracy: 94.6 %

Hartwell et al., 2018 [94] CNN 10 Subjects. 8 EMG Bipolar Signals. 14 Accuracy: 84.2 %

RMSE (�nger angles
Sosin et al., 2018 [175] RNN 5 Subjects. 8 EMG Bipolar Signals. 10

estimation): 18.6◦

Tsinganos et al., 2018 [183] CNN Ninapro Database - DB1 52 Accuracy: 70.5 %

Ban et al., 2018 [18] CNN 15 Subjects. 8 EMG Bipolar Signals. 8 Accuracy: 95.0 %

RMSE% (hand force
Xu et al., 2018 [200] CNN-RNN 8 Subjects. 4x16 HD Electrode array. 1

estimation): 8.7

Xing et al., 2018 [199] CNN Ninapro - DB2 17 Accuracy: 83.2 %

Redrovan et al., 2018 [161] CNN 5 Subjects. 8 EMG Bipolar Signals. 8 Accuracy: 91.3 %

Xie et al., 2018 [198] CNN-RNN 10 Subjects. 8x24 Electrode Array. 10 Error Rate: 1.5 %

Zia-ur-Rehman et al.,
CNN 7 Subjects. 8 EMG Bipolar Signals. 11

Classi�cation Error:
2018 [162] 9.8 %

Li et al., 2018 [129] AE 15 Subjects. 8 EMG Bipolar Signals 8 Accuracy: > 95.0 %

Zia-ur-Rehman et al.,
AE 8 Subjects. 6 EMG Bipolar Signals. 11 Accuracy: 98.3 %

2018 [164]

Ameri et al., 2018 [7] CNN 17 Subjects. 8 EMG Bipolar Signals. 8 Accuracy: 91.6 %

Teban et al., 2018 [181] RNN 8 EMG Bipolar Signals. 1
RMSE (�nger angle
estimation): 8 %

Ding et al., 2018 [65] CNN NinaPro database (DB2) 50 Accuracy: 78.9 %

Wangshow et al.,
CNN-RNN

5 Subjects. 8 EMG Bipolar Signals
50 Accuracy: 87.3 %

2018 [191] + IMU

Zia-ur-Rehman et al., 16 Subjects. Six sEMG and Classi�cation error:
2018 [163]

AE
six iEMG electrodes

11
< 1%

He et al., 2018 [98] RNN NinaPro Database. 52 Accuracy: 75.5 %

Ahmad et al., 2018 [2] AE 5 EMG Bipolar Signals. 5 Accuracy: 99.3 %

Becker et al., 2018 [21] CNN 11 Subjects. 8 EMG Bipolar Signals. 3 Accuracy: 91.2 %

8 Subjects. 8 EMG Bipolar Signals
Tao et al., 2018 [180] CNN

+ IMU
6 Accuracy: 98.0 %

Maufroy et al., 2019 [140] CNN 5 Subjects. 8 EMG Bipolar Signals. 21 Accuracy: 91.1 %

Song et al., 2019 [174] CNN UCI Database 6 Accuracy: 87.5 %

Shioji et al., 2019 [171] CNN 8 Subjects. 8 EMG Bipolar Signals. 3 Accuracy: 94.6 %

a) NinaPro database (DB1), a) 52 Accuracy:
b) CSL-HDEMG database b) 27 a) 85.0%, b) 95.4%,Wei et al., 2019 [192] CNN
c) CapgMyo database (DB-a) c) 8 c) 99.7%

Table 1

Summary of publications about Hand Gesture Classi�cation
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Reference DL Algorithm Objective Data N° of Classes Results

20 Subjects. a)45, b)8, Accuracy: a)15.7 %,
Speech 1x8 and 4x8 c)5, d)3, b)45.7 %, c)38.3 %,
Recognition electrode arrays. e)4, f)4, d)60.2 %, e)41.4 %,

Wand et al., 2014 [189] DNN

g)2 f)38.3 %, g)70.7 %

10 Subjects. DNN performs better
Speech than the Gaussian
Synthesis a)6 EMG channels. Map in utterances

Diener et al., 2015 [61] DNN

b)4x8 EMG array.

19

generation.

Speech Word Error Rate:
Wand et al., 2016 [188] DNN

Recognition
EMG-UKA Corpus 10

19.4 %

Speech 10 subjects. Word Error Rate:
Elmahdy et al., 2017 [72] CNN

Recognition 2 EMG Channels.
20

9.2 %

Accuracy:
Emotion Valence: 9 Valence: 75.8 %
Classi�cation Arousal: 5 Arousal: 70.7 %

Kawde et al., 2018 [118] DBN DEAP database

Dominance: 5 Dominance: 69.1 %

Emotion 12 subjects.
Abtahi et al., 2018 [1] DBN

Classi�cation 6 EMG channels.
7 Accuracy: 62.8 %

Speech 5 subjects.
Morikawa et al., 2019 [146] CNN

Recognition EMG Channels.
5 Accuracy: 47.6 %

Emotion
Hassan et al., 2019 [95] DBN

Classi�cation
DEAP database 5 Accuracy: 89.5 %

Table 2

Summary of publications about Speech and Emotion Classi�cation

Reference DL Algorithm Data N° of Classes Results

Cen et al., 2017 [50] CNN PhysioNet Database 5 Accuracy: 69.8 %

Precision: 86.1 %
Yulita et al., 2017 [207] DBN PhysioNet Database 5

Recall: 72.3 %

Chambon et al., 2018 [51] CNN MASS Dataset - session 3 5 Accuracy: ≈ 80.0%

SLPEDF-DB, MASS-DB,
Andreotti et al., 2018 [11] CNN

CAPSLP-DB, RBD-DB
5 Sensitivity: > 60%

38 Subjects. Precision: 81.7 %
Vetek et al., 2018 [184] CNN-RNN

EEG, EOG and EMG.
5

Recall: 78.8 %

Andreotti et al., 2018 [12] CNN MASS-DB 5 Accuracy: 90.0 %

Table 3

Summary of publications about Sleep Stage Classi�cation

Table 6 and Table 7.
5.1. Hand Gesture Classification

The database of NinaPro project [15] is a publicly ac-
cessible database used for research studies on hand gesture
recognition and decoding and for development of hand pros-
theses. NinaPro-DB1 is the first version of this database and
contains sparse multi-channel sEMG samples of 52 gestures
performed by 27 intact subjects. Each sample was recorded
at a sampling rate of 100 Hz with 10 sparsely located elec-
trodes placed on upper forearms. The first 8 components
correspond to the equally spaced electrodes around the fore-
arm at the height of the radiohumeral joint, where the last
two components corresponded to electrodes placed on the
main activity spots of the flexor digitorum superficialis and
the extensor digitorum superficialis, respectively. All hand
poses were recorded by a 22-sensor CyberGlove II and syn-
chronized with all sEMG signals.

NinaPro-DB2 and NinaPro-D3 [15] are the second and
the third version of the NinaPro project database, they con-
tain tasks relating to upper-limb movement respectively per-
formed by healthy subjects and amputees. In particular, NinaPro-
DB2 contains sEMG data recordings from 40 intact subjects
(12 females, 6 left handed and aged 29.9±3.4 years) who per-
form 49 types of hand movement (8 isometric and isotonic
hand configurations, 9 basic wrist movements, 23 grasping
and functional movements and 9 force patterns) relevant to
the activities of daily living. NinaPro-DB3 comprises data
from 11 transradial amputees with disabilities of the arm,
shoulder, and hand, with a score ranging from 1.67 to 86.67
(on a scale of 0–100) for each subject’s ability to perform
the same hand movements as in NinaPro-DB2. Each move-
ment is repeated 6 times with a rest period of three seconds
between them. The EMG signal was recorded using 12 elec-
trodes of a Delsys Trigno Wireless system, which provides
a sampling rate of 2 kHz. Then, the recorded signal was fil-
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Reference DL Algorithm Application Data Results

Muscle Fatigue 6 healthy Subjects.
Su et al., 2016 [176] DBN

Detection 1 EMG Channel.
Accuracy: >80 %

EMG Signal 14 Subjects. Averaged RMSE:
Belo et al., 2017 [23] RNN

Synthesis 14 EMG signals. < 28.0

Ben Said et al., Multimodal Data Compression
2017 [24]

AE
Compression

DEAP Dataset
Ratio: 90 %

3D Hand Trajectory 8 Subjects.
Xia et al., 2018 [197] CNN-RNN

Reconstruction 5 Bipolar EMG signals.
R2: 0.91

EMG Signal 4 Ö 7 electrode array. R2: > 0.2
Estimation from rat 4 Ö 7 electrode array. (EMG signalsGuo et al., 2018 [91] CNN
Spinal Cord Signals 4 EMG channels. reconstruction)

Amyotrophic Lateral
Bakiya et al., 2018 [17] DNN

Sclerosis detection
1 EMG signal Accuracy: 97.7 %

Sengur et al., Amyotrophic Lateral
2018 [168]

CNN
Sclerosis detection

N2001 [99] Accuracy: 96.7 %

Lower-Limb Joint 6 Subjects. RMSE: ≈ 3.3 deg
Chen et al., 2018 [53] DBN

Angle Estimation 10 EMG Signals. �: ≈ 0.96

156 Subjects. 13 estimated signals: Averaged RMSE:
Estimation of several a) Medial knee joint reaction force, a) 216 N
variables of the lower b) Forces of four major muscles, b) 185.0 N

Rane et al., 2019 [158] CNN

limb during gait c) EMG signals of eight muscles c) 0.25

Akhundov et al., EMG Signal Quality Three EMG Datasets.
2019 [4]

CNN
Rating 5 Quality Classes

Accuracy: 99.5 %

Table 4

Summary of publications falling into �Other Applications�.

DL Algorithm CNN RNN AE DBN DNN

Hand Gesture Classi�cation 28 7 7 2 0
Speech and Emotion Classi�cation 2 0 0 3 3
Sleep Stage Classi�cation 5 1 0 1 0
Other Applications 5 2 1 2 1

Total 40 10 8 8 4

Table 5

Summary of the DL methods applied to the individuated paper categories. Papers that
investigate mixed approaches are accounted more times.

tered with a Hampel filter to remove the 50 Hz power line
interference. The electrodes were positioned to combine a
dense sampling approachwith a precise anatomical position-
ing strategy.

Moreover, the BioPatRec database [153] contains a set
of EMG recording sessions from 17 intact subjects provided
under the label “10mov4chUntargetedForearm”. They are
4 differentially recorded myoelectric signals digitalized at
2 kHz with a 14-bits resolution. A usage of four bipolar
electrodes has been proved to be sufficient for the classi-
fication of at least 10 hand/wrist movements. Ten differ-
ent hand/wrist movements were repeated 3 times during 3
seconds with equal relaxation periods between repetitions.
Consideredmovements are: open hand, close hand, flex hand,
extend hand, pronation, supination, side grip, fine grip, agree
or thumb up, and pointer or index extension. These move-
ments were selected as they could be feasible in high-end
commercial prostheses.

Then, the CapgMyo-DBa [80, 69] consists of high-density
sEMG (HDsEMG) signals of 8 isometric and isotonic hand
gestures performed by 18 subjects. The gestures in DB-a

correspond to Nos. 13-20 in the NinaPro database. They
were recorded at a sampling rate of 1 kHz using an elec-
trode array with 128 electrodes that covered the upper fore-
arm muscles (forming a grid of 8 to 16 channels). Each ges-
ture is held for 3 to 10 seconds.

The csl-hdemg dataset [9] contains high-density sEMG
(HDsEMG) data recordings of 5 subjects performing 27 fin-
ger gestures. Each subject recorded over 5 sessions where
10 trials of each gesture is performed in each session. The
sEMG signals are bipolar recorded at a sampling rate of 2048
Hz using an electrode array with 192 electrodes that covered
the upper forearm muscles (forming a grid of 7 to 24 chan-
nels).
5.2. Speech and Emotion Classification

The EMG-UKACorpus database [187] is the most com-
prehensive publicly available corpus for EMG-based speech
recognition. It consists of surface electromyographic and
acoustic recordings of 8 subjects reading speech in English
language, from theBroadcast News domain. Datawas recorded
as normal (audible) speech aswell as whispered/silentlymouthed
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speech. The recording setup consisted of 6 EMG channels
capturing data from major facial muscles namely according
levator anguli oris, zygomaticus major, platysma, depressor
anguli oris, anterior belly of the digastric, and the tongue.
Recordings were performed at 600 Hz sampling rate. The
acoustic signal was recorded synchronously with a standard
headset microphone. The dataset is composed by 61 sessions
and each session comprises 50 sentences.

The DEAP database [121] was developed to achieve re-
alistic human emotional states that are persuaded by mu-
sic videos that were one-minute long. The database con-
tains 32 subjects. For every subject, 40 videos were pre-
sented in 40 trials with EEG and peripheral physiological
recorded signals. In each trial, 32 channels of EEG signals
were recorded at 512 Hz; 4 electrodes were used to record
EOG and 4 for EMG (zygomaticus major and trapezius mus-
cles). All the physiological responses were later downsam-
pled to 256 Hz to reduce processing time. In each of them,
the current trial number was displayed for 2 seconds pro-
ceeded with 5 seconds long baseline and finally the music
video is displayed for 1 minute. Later, the ratings on differ-
ent dimensions (such as valence, arousal, dominance, liking
and familiarity) were acquired. These ratings are subjective
to user’s self-assessment.
5.3. Sleep Stage Classification

The dataset UCD-DB is provided by St. Vincent’s Uni-
versityHospital andUniversity CollegeDublin and it is avail-
able on PhysioNet platform [86]. The dataset consists of 25
recordings of EEG, EOG and EMG signals from subjects
(21 males aged 50 ± 10 years, 4 females aged 28-68 years)
with suspected sleep disordered breathing. Only one EMG
channel was recorded by using 10-20 electrode placements
system at a sampling rate 64 Hz. Five sleep stages, wake-
fulness, N1, N2, N3, and REM, were evaluated by a sleep
expert.

TheMASS-DB [151] is a large dataset comprising EMG
recordings of 200 healthy subjects with ages ranging be-
tween 18 and 76 years (98 males aged 42.7 ± 19.4 years and
102 females aged 38.1±18.9 years). The database contains
single nights and is divided into 5 cohorts.

The SLPEDF-DB [119, 86] comprises 38 two-night record-
ings from 19 healthy subjects (9 males aged 28.3 ± 2.3 years
and 10 young females 29.1±3.4 years). The only EMG sig-
nals was sampled at 1 Hz EMG. The dataset also contains
recordings of EEGs signals that were sampled at 100 Hz.

The CAPSLP-DB [182, 86] consists of 108 single night
polysomnography recordings of 16 healthy and 92 patholog-
ical subjects (66 male aged 48.4 ± 19.2 years and 42 female
aged 40.0 ± 19.4 years). Individuals with sleep disorders
included periodic leg movements, insomnia, as well as 22
REM behavior disorder subjects.

The RBD-DB [10]consists of 21 two-night recordings of
21 subjects (20 male aged 61.5 ± 7.0 years and a female pa-
tient aged 69 years) all suffering from REM behavior disor-
der. Data were acquired by John Radcliffe hospital, Nuffield
Department of Clinical Neurosciences at the University of

Oxford.
5.4. Other Applications

The N2001 database contains clinical signals recorded
and analyzed as a part of Nikolic M. PhD Thesis [150]. This
dataset consists of EMG recordings of a normal control group,
a group of patients with myopathy and a group of patients
withAmyotrophic Lateral Sclerosis (ALS). The control group
consists of 10 healthy subjects (aged 21-37 years). The group
with myopathy consisted of 7 patients (aged 19-63 years).
The ALS group consists of 8 patients (aged 35-67 years).
The recordings were made at low voluntary and constant
level of contraction using visual and audio feedback to moni-
tor signal quality and a standard concentric needle electrode.
The EMG signals were recorded from five places in the mus-
cle at three levels of insertion (deep, medium, low) at a sam-
pling frequency of 23437. The high and low pass filters of
the EMG amplifier were set at 2 Hz and 10 kHz, respectively.

6. From raw EMG signals to deep network
input
The use of different EMG signal acquisition setups, i.e.

sparse and array electrodes, combined with the possibility
to employ several kind of deep learning techniques enables
many solutions for designing network inputs that are com-
puted from the raw EMG signals. The first pre-processing
step commonly consists in filtering any EMG signal with a
digital high-pass/ band-pass filter to remove the low-frequency
artifacts, e.g. movement artifact and baseline noise contam-
ination [60, 19]. A valid alternative regards the application
of the wavelet transform (WT) that is used to reconstruct the
original signal with signal components without noise infor-
mation [154]. The power line interference has also to be re-
moved, and if it is not done by the EMG amplifier a specific
digital filter has to be used, e.g. the spectral Hampel filter
[5].

The pre-processing step is followed by a signal segmen-
tation procedure that aims at extracting several portions of
EMG signals using a time-windows. All information en-
coded within the time windows of avery considered EMG
signals will be then used to construct a specific example used
to train, validate or test an ad-hoc deep network. This means
that the employed network will provide an output, i.e. a
vector of class probabilities for a classification problem or
a set of estimated variables in case of regression problems,
for each time window. The time-window length is a crucial
parameter to be subsequently set, a large window contains
more temporal information but at the same time causes a de-
lay between the event to be detected and the related network
output. On the other hand, a small window is adequate for
real-time applications but considers a limited amount of in-
formation. A large variability of the window length used by
the authors of all reviewed papers has been observed, typical
time-window length values are 30ms, 50ms, 100ms, 150ms,
200ms and 300ms. The time-window length has a particular
relevance when the deep network is included in closed loop
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Database Subjects Gestures Sessions Trials Number of Sampling rate

electrodes [Hz]

NinaPro-DB1 [15] 27 (Intact Subj.) 53 1 10 10 100
NinaPro-DB2 [15] 40 (Intact Subj.) 50 1 6 12 2000
NinaPro-DB3 [15] 11 (Amputated Subj.) 50 1 6 12 2000
BioPatRec [153] 17 26 1 3 8 2000
CapgMyo-DBa [80] 18 8 1 10 128 1000
CSL-HDEMG [9] 5 27 5 10 192 2048

Table 6

Details of the main sEMG benchmark databases used for gesture recognition.

Database Application Subjects Number of Sampling rate

electrodes [Hz]

EMG-UKA Corpus [187] Speech Recognition 8 6 600
DEAP Database [121] Emotion Classi�cation 32 4 256
PhysioNet UCD-DB [86] Sleep Stage Classi�cation 25 1 64
MASS Database [151] Sleep Stage Classi�cation 200 1-5 256
SLPEDF-DB [86] Sleep Stage Classi�cation 19 1 1
CAPSLP-DB [86] Sleep Stage Classi�cation 108 1-2 200-256
RBD-DB [10] Sleep Stage Classi�cation 21 1 256
N2001 Amyotrophic Lateral Sclerosis detection 25 5 23437

Table 7

Details of the main sEMG benchmark databases used Speech Recognition, Emotion Clas-
si�cation, Sleep Stage Classi�cation and Other Applications.

myoelectric controllers where the input latency is a funda-
mental factor to consider. As an example, a maximum time
delay of 300ms can be acceptable when controlling of pros-
theses through EMG signals [109]. Sliding time-window are
usually extracted considering an overlap (also called incre-
ment) that is defined as a percentage of window length. An-
other important factor that is considered to choose the win-
dow length is the sampling frequency of EMG signals [59].
It is also important notice that many authors choose a time-
window length value that is equal to the value used by the
authors of already published works thus allowing a robust
comparison of the model performance. In fact, the possibil-
ity of comparing results plays an important role when work-
ing with public datasets. However, some authors decided
not to consider the windowing approach and prefer to pro-
vide EMG signals at each sampling instant as input to the
network [68]; such approach could be especially followed
when dealing with high-density EMG arrays since they can
provide a lot of activation data at a single time sample.

After all EMG signals have been segmented with over-
lapped time-windows, the process to build network inputs
is clearly highly dependent on the preferred deep network
architecture. Existing approaches can be mainly divided in
two main groups according to the fact that the selected ar-
chitecture (or its first module in case of mixed architectures,
e.g. CNN-RNN) is either 1) a CNN or 2) a DNN, an AE, a
DBN or a RNN. When dealing with DNNs, AEs, DBNs and
RNNs networks input have vector-like shapes. In most of
the cases, such vectors are composed of the values of hand-
crafted features extracted by the window segment of each
acquired EMG signal. All revised articles considered both

the time-domain features and frequency-domain ones that
are usually used in EMG processing [112].

A different approach has to be followed when a convo-
lutional neural network is considered for EMG signal pro-
cessing. CNNs that are employed for traditional image pro-
cessing usually take as input either a (MxN)-size orray or a
(MxNx3)-size one if they have to process a gray or an RGB
image, respectively. As consequence, information contained
within the EMG signals have to be arranged in a (2D or 3D)-
dimensional array. More in details, the specific approach
to follow depends on the used setup that can consider the
acquisition of either high-density sEMG signals [80, 9] or
sparse multi-channel sEMG ones [15]. A solution can intu-
itively consider to arrange EMG signals in a sEMG-image
where each electrode can be regarded as a pixel of the im-
age. Such solution is certainly valid when using high-density
sEMG signals that are collected by a grid of sEMG elec-
trodes [192, 68]. Then in this case the size of the sEMG im-
age will be equal to the electrode array size. However, when
considering sparse multi-channel sEMG signals, the number
of electrodes is limited and their placement is sparse, thus the
above presented approach cannot be directly implemented.
Among all multiple solutions that have been adopted to deal
with sparse electrodes, the main two used techniques con-
sider 1) an (NxL)-dimension matrix where N is the number
of electrodes and L is the time-window length, and 2) a ma-
trix built assembling the spectrogram of each EMG signal
computed on the time-window.

Buongiorno et al.: Preprint submitted to Elsevier Page 11 of 19



Deep Learning for Processing Electromyographic Signals: a Taxonomy-based Survey

7. Discussion
In several research fields, such as image, video and au-

dio processing, deep learning has already demonstrated its
robustness and effectiveness [63, 62, 34, 30, 32]. As this
work has shown, in recent years the scientific community
has been increasingly interested in applying deep learning
methods for EMG signal analysis and processing, thus con-
firming the same tendency that involves other physiological
signals, e.g. EEG and ECG [78, 76]. The search and anal-
ysis performed in this work revealed that the major contri-
bution to EMG signal processing in the field of deep learn-
ing comes from a research focused on myoelectric prosthe-
sis. Such finding has two main reasons: technical limitation
of available commercial products and many existing work-
bench databases. However, in addition to papers dealing
with hand gesture classification, DL techniques have been
also applied to other research fields which consider the pro-
cessing of large amounts of data, e.g. works concerning the
classification of sleep stage, speech or emotion. Regarding
with deep learning methods, convolutional neural networks
turned out to be the most commonly used networks among
the five DL investigated methods: deep neural networks,
convolutional neural networks, auto-encoders, deep-belief
networks and deep-recurring neural networks (see Figure 4,
Figure 5 and Table 5). In some other cases such specific
strategies were combined to take advantage of the pros of
different DL approaches.

As reported within the four tables listing all analyzed
papers, a high percentage of selected papers considers the
analysis of existing workbench datasets thus confirming that
the availability of existing databases has actually boosted the
research in this field. Summarizing outcomes, it can be con-
cluded that: a) the most used datasets among the Hand Ges-
ture Classification papers the Ninapro, CSL-HDEMG, and
CapgMyo; b) in works related to the emotion classification
the most used dataset is DEAP; c) the most used databases
for the investigation of the DL techniques in sleep stage clas-
sification are PhysioNet and MASS. Furthermore, the ad-
ditional significant advantage of using datasets, as is well
known, is the possibility of comparing the results of differ-
ent studies. Unfortunately, it mainly arises from the review
of papers on hand gesture classification, that the compari-
son of results is made difficult by the broad variation among
used setups, i.e., number of acquired EMG signals, adoption
of different types of electrodes, that can be superficial or in-
tramuscular, and number of classes to be classified.

Even though a large amount of EMG data is available
thanks to published datasets, in the authors’ opinion data
augmentation is necessary to improve the both inter-subjects
and inter-sessions variability. Data augmentation is a com-
mon technique to improve results, avoid overfitting and guar-
antee generalization. Data augmentation algorithms used
in image and video processing are already well defined and
consolidated over the recent years [172]. The same cannot
be stated for EMG signal analysis. In-fact, only few of the
herein reviewed papers consider data augmentation. In par-
ticular the authors of three articles augmented the EMG sig-

nals by adding Gaussian noise to the original set of signals
and modulating the signal to noise ratio [14, 219, 183]. Only
one paper dealing with high-density EMG electrodes pro-
poses a random shift of the training images by one pixel in
four directions to improve the system robustness respect to
electrode array positioning [68]. Hence, a deeply investi-
gation of data augmentation techniques in EMG signal pro-
cessing represents a completely open and unexplored field.
At themoment, themajority of the authors primarily focused
on a continuous improvement of the classification/regression
performance [192], whereas, in the authors’ opinion, a big
effort should be put 1) in improving the generalization abil-
ity of the proposed models by introducing new data augmen-
tation methods and 2) in investigating compact deep topolo-
gies to shorten both learning and execution time while main-
taining high performance levels [94].

8. Conclusion
Concluding, in this work recent articles concerning the

processing of EMG signals with deep learning methods that
were published between January 2014 and March 2019 have
searched and reviewed. After a deep text analysis, 65 papers
have been selected for the review. The bibliometric research
showed that the selected papers could be sorted in four dis-
tinct categories focused on different applications: (1) Hand
Gesture Classification; (2) Speech and Emotion Classifica-
tion; (3) Sleep Stage Classification; (4) Other Applications.
As expected, the review process revealed that (a) most of
the papers related to DL and EMG signal processing con-
cern with the hand gesture classification, and (b) the con-
volutional neural network is the most used technique. In
the authors’ opinion the hand gesture classification is the
most studied topic for two main reasons: a) the availabil-
ity of several public and easily accessible datasets and b) the
big limitation of the current myoelectric controlled prosthe-
sis in terms of usability. Moreover, research on the control
of myoelectric prosthesis has a high practical value since it
has a big social impact and can be easily tested on patients
(sEMG is a non-invasive technique). Furthermore, the au-
thors do not think the other presented applications have less
social value than the “hand gesture classification”, however
they are in a research stage yet. Given the impact of both
the hand gesture classification category and the CNN, fu-
ture works could deeply study the CNN topologies used to
classify hand/finger gestures by EMG signals, including a
systematic comparison among the several papers. In the next
future, the research community should also focus in develop-
ing ad-hoc data augmentation techniques for EMG signals.
As emerged in this work, only a couple of articles employed
simple data augmentation procedures involving the signal
to noise ration and the electrodes shift. More studies are
then needed in order to understand the impact of such aug-
mentation techniques on the final performance and perhaps
propose new methodologies. A further effort should also
be put in decoding and interpreting the EMG signals fea-
tures that are automatically extracted by deep architectures.

Buongiorno et al.: Preprint submitted to Elsevier Page 12 of 19



Deep Learning for Processing Electromyographic Signals: a Taxonomy-based Survey

Some researchers already started to correlate the most com-
mon handcrafted features with the feature maps extracted by
convolutional layers [58], however more studies should eval-
uate the robustness of such correlation among several appli-
cation and DL techniques.
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