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Abstract
The phase-separation process of a binary mixture with order-parameter-
dependent mobility under shear flow is numerically studied. The ordering is
characterized by an alternate stretching and bursting of domains which produce
oscillations in the physical observables. The amplitude of such modulations
reduce in time when the mobility vanishes in the bulk phase, disfavoring the
growth of bubbles coming from bursted domains. We propose two equations for
the typical sizes Rx and Ry of domains finding the long-time behaviors Rx ∼ t5/4

and Ry ∼ t1/4 in the flow and shear directions, respectively, in the case of sur-
face diffusion. A reduction of the excess viscosity with increasing shear rate is
observed in simulations.

Keywords: phase separation and segregation in model systems, steady shear
flow, computational techniques, simulations

(Some figures may appear in colour only in the online journal)

1. Introduction

The phase separation process when a mixture made of two components is suddenly quenched
below the critical temperature is a well studied and understood phenomenon [1]. Immediately
after the quench, coherent regions rich in either of the phases form and grow. Typically, if
scaling holds, these domains can be characterized in terms of a single time-dependent length
scale R(t) which grows at late times with a power law R(t) ∼ tα, where t is time. The problem
is very interesting and attracts a lot of interest [2–10].

In the case of binary mixtures with constant mobility, the value of the exponentα depends on
some general properties of the considered system. For a nonconserved scalar order parameter,
as in ferromagnets, it results to be α = 1/2 [1]. When the order parameter is conserved and
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hydrodynamic effects are ignored, is found α = 1/3 [11]. External shear flow is known to
modify deeply phase separation producing elongated domains as in simulations [12, 13] and
experiments [14–16]. Numerical solutions of the scalar order parameter dynamics [17] as well
as analytical [18] and numerical calculations [19] in the large-N limit of an N-vector order
parameter, which corresponds to the self-consistent approximation of the scalar case, gave
confirmation of the existence of anisotropy in the growing domains with two characteristic
lengths and two different exponents. The growth exponent is not affected in the shear direction
perpendicular to the flow while in the large-N limit the exponent along the flow direction is
increased by 1 [18, 19]. Moreover, all the physical observables are modulated by oscillations
on a logarithmic time scale which are related to a cyclic mechanism of storage and dissipation
of elastic energy.

A more realistic phase separation scenario, that takes into account the diffusion of molecules
of different species along interfaces between domains of different composition, can be obtained
by considering an order-parameter-dependent mobility Γ(ϕ) ∝ [1 − c(T)ϕ2] [20] where ϕ is
the difference of concentrations of the two components of the mixture. The term c(T) → 1
for temperature T → 0 and c(T) → 0 for T → Tc, Tc being the critical temperature. This form
of the mobility is such that in the case of a deep quench (T → 0) the diffusion in the bulk,
where ϕ � 1, is suppressed while it is favored along interfaces where ϕ � 0. This latter mech-
anism, known as surface diffusion (SD), has growth exponent α = 1/4 [21] and has relevant
technological and scientific applications, for example, in deep quenches of polymer mixtures
[22] and coarsening of porous structures by surface diffusion [23]. On the other hand, for
shallow quenches (T � Tc) the mobility stays constant and phase separation proceeds by the
Lifshitz–Slyozov mechanism [24] with the aforementioned growth exponent α = 1/3. In this
case the growth of domains is related to bulk diffusion (BD), since molecules of one compo-
nent evaporate from more curved interfaces and diffuse through the bulk of the other component
diminishing the curvature of the interface. We add for completeness that in the case of asym-
metric mixtures the minority phase forms isolated droplets. These collide due to Brownian
motion and coalesce with the same growth exponent of the Lifshitz–Slyozov mechanism [25].
Numerical studies of phase separation in binary mixtures with field-dependent mobility found
confirmation of the exponent α = 1/4 for c = 1 as expected for a scalar order parameter [22,
26–30]. For intermediate values 0 < c < 1 there is a crossover between α = 1/4 andα = 1/3.
In the case of an N-dimensional order parameter with mobility given by Γ (ϕ) = 1 − cϕ2/N
simulations gave α = 1/6 for c = 1 and a crossover from α = 1/6 to α = 1/4 for 0 < c < 1
with N = 2, 3, 4 [31]. We remark that the diffusive exponent of a vectorial order parameter
is also 1/4, due to a different physical mechanism form that of SD. A more general form
Γ(ϕ) = [1 −ϕ2/N]β with β > 0 has been also introduced and solved in the scalar case N = 1
[32] and in the large-N limit [33]. Effects of shear flow have been considered in the large-
N limit for this latter form of the mobility that includes the standard case with β = 1. It is
found that domains grow with characteristic length t(2β+5)/2(β+2) along the flow direction and
t1/2(β+2) along the shear direction with logarithmic corrections [34] and oscillations of the
physical observables appear to be damped [35]. However, domain morphology during phase
separation cannot by fully outlined when using the large-N limit since interfaces are missed in
the vectorial model [11]. For this reason we want to consider the effects of shear flow on the
phase separation process in the case of a scalar order parameter with field-dependent mobility
by solving numerically the phenomenological equation of the order parameter in two spatial
dimensions. The novelty of the present study relies on addressing for the first time the effects
of surface diffusion in the simulation of a phase separating binary mixture under shear.

The paper is organized as follows. Section 2 describes the model and section 3 is devoted
to present and discuss numerical results. Phenomenological equations for the typical sizes
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of domains suggest domain growth with power laws t5/4 and t1/4 in the flow and shear
directions, respectively. Simulations give compatible results and provide direct evidence of a
cyclic stretching and bursting of domains which are responsible of oscillations in the phys-
ical observables. The amplitude reduces in time due to the vanishing of the mobility in
the bulk phase which makes difficult the growth of bubbles coming from bursted domains
thus finding confirmation of the argument put forward in reference [35]. Finally, we draw
conclusions.

2. The model

The equilibrium properties of the system we are considering, are described by the
Ginzburg–Landau free-energy

F{ϕ} =

∫
dr

{
−a

2
ϕ2 +

b
4
ϕ4 +

κ

2
|∇ϕ|2

}
(1)

whereϕ is the order parameter. As usual, it is assumed b > 0 ensuring stability. The coefficient
a = (Tc − T )/Tc can be considered as a reduced temperature where T is the temperature of the
system and Tc is the critical value below which the fluid is ordered. When T < Tc the polyno-
mial terms of the free-energy density have two symmetric minima located at ϕeq(T) = ±

√
a/b

which are the equilibrium values of the order parameter. Finally, the parameter κ > 0 encodes
the energy cost for the creation of interfaces between domains of different composition. The
chemical potential difference between the two components can be computed from equation (1)
and is given by

μ =
δF
δϕ

= −aϕ+ bϕ3 − κ∇2ϕ. (2)

The time evolution of the order parameter ϕ is described by the convection–diffusion
equation

∂ϕ

∂t
+∇ · (ϕv) = ∇ · [Γ(ϕ)∇μ] . (3)

The convective term on the lhs couples ϕ to the external velocity field which is given here by
a linear shear flow v = γ̇yex where γ̇ is the shear rate, y the coordinate along the y-direction
(shear direction), and ex the unit vector along the x-direction (flow direction). We assume the
fluid to be very viscous so that the Reynolds number (ratio of inertial to viscous forces) is
very low and the capillary number [ratio of viscous to interfacial (in two dimensions) forces]
is very large. In this way hydrodynamic effects are neglected in the present model so that
equation (3) is not coupled to the Navier–Stokes equation for the flow field. Very recently the
general case, when the capillary number is not large, has been considered in reference [36]
for the phase separation of sheared binary mixtures. We also neglect thermal fluctuations. The
mobility depends explicitly on the order parameter in order to have a more realistic description
of the phase separation, especially for polymer mixtures [20], and is given by

Γ(ϕ) = Γ0
[
1 − ϕ2/ϕ2

eq(0)
]

(4)

where Γ0 is a constant. We comment here about the role of the temperature on the mobility
when there is no external flow (v = 0). In the case of a deep quench (T → 0), the diffusion
in the bulk, where ϕ � ϕeq, is suppressed since Γ(ϕeq(T)) → 0 promoting surface diffusion.
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On the other hand for shallow quenches (T → Tc), the mobility is not significantly reduced in
the bulk since the ϕ2

eq(T) � ϕ2
eq(0). In this limit the Cahn–Hilliard equation [37] is recovered

whose numerical solution [38] gives evidence of the growth exponent α = 1/3 typical of bulk
diffusion.

Equation (3) can be written in a dimensionless form [38] after redefining time, space, and
field scales by τ = κ/(2Γ0a2), ξ =

√
κ/a, and ϕeq(T), respectively. In the following the sym-

bol will denote dimensionless quantities. The only relevant parameters in the dimensionless
equation are the mobility and the shear rate. The mobility assumes the form Γ̂(ϕ̂) = 1 − λϕ̂2,
where λ = ϕ2

eq(T)/ϕ2
eq(0) goes from 0 to 1 when the temperature is reduced from Tc to 0, the

bulk equilibrium values of the order parameter are ±1, and the shear rate is ˆ̇γ = γ̇τ .

3. Numerical results and discussion

We have simulated equation (3) in two dimensions by using a finite-difference scheme. The
field ϕ(r, t) is discretized on the nodes (xi, yj) (i, j = 1, 2, . . . , L) of a square lattice with space
step Δx and L × L nodes. Time is discretized in time steps Δt. Periodic boundary conditions
were implemented in the x-direction while Lees–Edwards boundary conditions [39] were used
in the normal direction. The latter conditions require the identification of a point on the lower
row at (xi, y1) with the one located on the upper row at (xi + γ̇LΔt, yL) (i = 1, 2, . . . , L) to
take into account the space shift due to shear. The time derivative in equation (3) was imple-
mented by using an explicit first-order Euler algorithm [38] while standard central difference
schemes were adopted for spatial derivatives appearing in the convective and diffusion terms
[40].

Simulations were run using lattices with L = 1024. We fix a = b = κ = Γ0 = 1 and write
the mobility in equation (3) as Γ(ϕ) = 1 − λϕ2 with 0 � λ � 1. This form of the mobility
allows us to consider a deep quench (λ = 1) where SD is the leading diffusion mechanism. In
this case the numerical model can become unstable when |ϕ| > 1, due to numerical fluctua-
tions, since the mobility results to be negative. To overcome this problem we used a fine mesh
with Δx = 0.5, 1 and a very small time step Δt = 10−3 enforcing the value 1 (−1) to ϕ when-
ever ϕ > 1 (ϕ < −1). Neither relevant differences were observed for the two values of Δx nor
significant violation of field conservation could be appreciated. Equation (3) was also solved
by using intermediate values λ < 1. The limit case λ = 0 allows the simulation of a quench
where BD dominates the phase separation process. In this way it was possible to consider the
crossover between surface and bulk diffusion mechanisms under the presence of shear. The
system was prepared in a disordered state (T > Tc) with 〈ϕ〉 = 0 corresponding to a symmet-
ric composition of the mixture, 〈. . .〉 denoting an average over the system. The results here
exposed were obtained with Δx = 1, γ̇ in the range [10−3, 5 × 10−2], λ = 0, 0.4, 0.8, 1, and
averaging over five independent realizations of the system. All the quantities in the following
are expressed in units of Δx, Δt, and ϕeq.

The morphology of the phase-separation process in the SD case (λ = 1) is shown for
γ̇ = 5 × 10−2 in figure 1 at consecutive values of the strain γ̇t on a portion of the whole lattice
of size 256 × 256. At the beginning a bicontinuous structure is formed yet with no appreciable
deformation induced by shear. For values γ̇t > 1 the external flow starts to modify domains
which are elongated, tilted, and then bursted by shear when accumulated stress overcomes sur-
face tension. At γ̇t = 7 it can be noted that domains are stretched by the flow and characterized
by different thicknesses. At later times the flow further deforms domains which may break up,
due to the aforementioned mechanism, giving rise to several bubbles which spread all over
the system (γ̇t = 16). In the SD case the suppression of bulk diffusion inhibits the growth of
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Figure 1. Configurations at consecutive times of the system in the case with λ = 1.
Black/white domains correspond to positive/negative values of the order parameter ϕ.
A portion of size 256 × 256 of the whole lattice is shown.

these small bubbles originating from the shear-induced bursting of domains. As a matter of
comparison we plot in figure 2 the configurations at the same value of the strain for the values
λ = 0, 0.8. It is evident that by decreasingλ, the number of bubbles in the system reduces being
minimum in the case with λ = 0 where bubbles can grow by bulk diffusion. This feature will
be further discussed in the following. As a consequence, bubbles cannot be further deformed in
the SD case by the flow but can eventually merge with larger domains when these are stretched
again by the flow and reach some bubble (γ̇t = 24). In the large-N limit [35] it was found that
the phenomenon of elongation and bursting of domains is cyclic. Here we find an indication
of this periodic behavior but the finite size of the computational domain does not allow the
observation on very long times to find full evidence of periodic behavior on a logarithmic time
scale.

In order to characterize the size distribution of growing domains, the normalized probability
distributions functions P(Lx,y) of finding domains of lengths Lx and Ly along the flow and
the shear directions, respectively, were computed. First we estimated the extensions Lx of the
unidimensional domains of different composition along all the rows of the computational mesh.
From the recorded values of Lx , we finally computed P(Lx). The same procedure was followed
along the shear direction to compute P(Ly). The plots of P(Lx) and P(Ly) are shown in figure 3
at different times with λ = 1. At γ̇t = 1 both P(Lx) and P(Ly) have a single main peak at
Lx1 � Ly1 � 5, corresponding to initial isotropic domains, and a small shoulder in the tail.
Later anisotropy effects become evident in the distributions. Along the flow direction it is
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Figure 2. Configurations at γ̇t = 16 of the system in the cases with λ = 0 (left) and
0.8 (right). Black/white domains correspond to positive/negative values of the order
parameter ϕ. A portion of size 256 × 256 of the whole lattice is shown.

Figure 3. Probability distribution functions P of domains of length Lx (left panel) and
Ly (right panel) at strains γ̇t = 1 (black line), 7 (red line), 16 (green line), and 24 (blue
line) in the case with λ = 1.

possible to observe at γ̇t = 7 the formation of a second peak at Lx2 � 20, corresponding to
more elongated domains, which prevails on the other one at Lx1. Along the shear direction, at
the same time, the main peak decreases in height while the distribution broadens corresponding
to the presence of domains with different thicknesses. The further stretching of domains is such
that the peak at Lx2 moves at following time towards a larger value (� 40) while the breaking
of elongated domains, which promotes the formation of bubbles, is such that the peak at Lx1

dominates (see γ̇t = 16 in figure 3). This supports the previously described picture where one
can observe an alternate dominance of elongated and bursted domains. At the same time the
peak of P(Ly) at Ly1 grows again while the tail decays more rapidly with Ly than at the previous
time as consequence of the formation of bubbles of typical size Lx1 � Ly1. At the last time
considered in figure 3) the peak at Lx1 of P(Lx) still grows while the second peak moves at
Lx2 � 60, since domains continue to be stretched, decreasing in height and broadening. The
distribution P(Ly) does not change significantly. Figure 4 compares the probability distribution
functions in the BD and SD cases. It is found that the peak at Lx1 is always higher in the SD case
for γ̇t > 10 while in the BD case there is an alternate dominance of the peaks at Lx1 and Lx2.
This confirms the larger abundance of bubbles which cannot grow after their formation since
the variable mobility suppresses diffusion in the bulk. Therefore bubbles cannot be elongated
too much by the flow and this also reflected in the distribution P(Ly). Indeed its peak at Ly1
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Figure 4. Probability distribution functions P of domains of length Lx (upper panels)
and Ly (lower panels) at strains γ̇t = 12, 16 in the cases with λ = 0(◦), 1(•).

does not change significantly in height for γ̇t > 10 while in the BD case the peak shows weak
oscillations since domains are continuously stretched and bursted while growing.

In the isotropic case without shear it was proposed the following equation for the domain
size R(t) [26]:

dR(t)
dt

= (1 − λ)
A
R2

+ λ
B
R3

(5)

where the first and second terms on the rhs take into account the bulk and surface diffusion,
respectively, A and B being two constants. It comes out that R(t) grows in time with a power
law with exponentsα = 1/4 for λ = 1 and α = 1/3 for λ = 0. A crossover between these two
regimes was found in numerical simulations for intermediate values of λ [26]. In the case with
shear, denoting by Rx and Ry the sizes of an elongated domain along the flow and the shear
directions, respectively, equation (5) can be generalized to:

dRx(t)
dt

= C0γ̇Ry + (1 − λ)C1

(
1

R2
x
+

1
R2

y

)
+ λC2

(
1

R3
x
+

1
R3

y

)
(6)

dRy(t)
dt

= (1 − λ)C1

(
1

R2
x
+

1
R2

y

)
+ λC2

(
1

R3
x
+

1
R3

y

)
(7)

where C0, C1, and C2 are constants. The first term on the rhs of equation (6) takes into account
the growth along the x-direction caused by the advection of domains due to the shear and is
related to the amount of flow intercepted by the domain which is proportional to γ̇Ry. Solving
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Figure 5. Average sizes of domains along the flow (filled symbols) and the shear
(empty symbols) directions as functions of time for the cases with λ = 0(�), 0.4(�),
0.8(�), 1(•). The lines have slopes 1/4 and 5/4.

Figure 6. Excess viscosity as a function of time for the cases with λ = 0(�), 0.4(�),
0.8(�), 1(•). The line has slope −3/2.

the equations under the hypothesis Rx � Ry at long times, we find the asymptotic behaviors
Rx ∼ γ̇t5/4 and Ry ∼ t1/4 with λ = 1 and recover the results Rx ∼ γ̇t4/3 and Ry ∼ t1/3 with
λ = 0 [17]. The average sizes Rx and Ry of domains were computed in simulations in two
different ways. By measuring the total lengths Ix and Iy of the interfaces between domains
along the flow and the shear directions, respectively, we defined Rx,y = L2/Ix,y. The second
procedure relies on the use of the structure factor C(k, t) = 〈ϕ(k, t)ϕ(−k, t)〉, where ϕ(k, t) is
the Fourier transform of the order parameter. From this quantity, the average sizes of domains
were computed as

R′
x,y(t) = π

∫
dkC(k, t)∫

dk|kx,y|C(k, t)
. (8)
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Figure 7. The maximum of the excess viscosity as a function of the shear rate in the case
with λ = 1. The full line is the best fit with slope −0.91 ± 0.11.

The time behavior of Rx and Ry is reported in figure 5 for λ = 0, 0.4, 0.8, 1. We found that
R′

x and R′
y have time dependencies similar to the ones of Rx and Ry being R′

x,y(t) � Rx,y(t)/3
over the explored time range. It can be seen that Rx � Ry until γ̇t � 1, independently on λ,
while later Rx grows faster than Ry. We find that the growth of Rx at long times is slower when
increasingλ as expected from the asymptotic solution of equation (6). However, the limited size
of the simulated system does not allow us to have a reliable estimate of the growth exponent
along the flow direction. The size Ry along the shear direction shows oscillations which are
related to the alternate stretching (minimum of Ry) and breaking (maximum of Ry) of domains.
The amplitude of such oscillations shrinks when increasing λ. In the case of surface diffusion
(λ = 1) oscillations appears to reduce significantly in time. The same behavior was observed
in the large-N limit [35] where all the physical observables showed damped oscillations on a
logarithmic time-scale. In that model it was guessed that the damping of oscillations might
have been related to the suppression of bulk diffusion. In this paper, we directly show that
bubbles, coming from the bursting of overstretched domains, cannot be elongated too much
by the flow. As a consequence, we observe less wide oscillations which further reduce in time
since the mechanism of growth inhibition becomes more effective. Indeed we find evidence,
as illustrated in figures 1 and 3, of this picture. However, the period of observation, due to the
finite extension of the simulated system, is limited to a bit more than one cycle of stretching
and bursting.

Of experimental interest is the excess viscosity which measures the variation of the mixture
viscosity with respect to the homogeneous case. It is defined as [41]

Δη = − 1
γ̇

∫
dk

(2π)2
kxkyC(k, t) (9)

whose time behavior is shown in figure 6 for different values of λ. We find that the excess
viscosity grows oscillating reaching a global maximum at γ̇ � 8 when domains are stretched.
Later Δη decays to zero due to the dissipation of the energy stored by elongated domains when
they start to burst after further stretching. It appears that the excess viscosity shows, when
increasing λ, reduced oscillations in the long time limit, due to the inhibition of the growth of
circular domains coming from bursting, and a slower time decay. In the SD case the behavior
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of the excess viscosity in the long time limit can be obtained by assuming that scaling is ver-
ified asymptotically. This implies that the structure factor can be written in the anisotropic
case as C(k, t) ∼ RxRyf(kxRx, kyRy) [17]. Then it can be shown that the excess viscosity
Δη ∼ 1/(γ̇RxRy) has asymptotic behavior Δη ∼ γ̇−1/2(γ̇t)−3/2 where the exponent −3/2 is,
indeed, smaller than the value −5/3 valid in the BD case [17]. However, present simulations
do not allow a reliable estimate of the decay exponent.

Finally, the values (Δη)M of the excess viscosity at its maximum are plotted as a function
of the shear rate in figure 7 in the SD case. A reduction of (Δη)M can be seen and can be
understood in the following way. The previous scaling analysis of the excess viscosity behavior
suggests that, for a fixed value of the strain γ̇t, the scaling Δη ∼ γ̇−1/2 should hold. We find
in simulations an effective exponent −0.9 which is smaller than the expected one.

4. Conclusions

In this paper we have studied numerically the phase separation of a binary mixture under shear
flow when the mobility depends explicitly on the order parameter. The morphology of patterns
has been analyzed and discussed by computing the probability distribution functions of the
size of domains along the two spatial directions. When surface diffusion dominates the coars-
ening of the mixture, it is found that domains are elongated, tilted, and finally bursted by the
flow. This process repeats in time producing oscillations in physical observables as in the case
with constant mobility where bulk diffusion is the leading mechanism. Here the novelty is that
bubbles, coming from the disruption of stretched domains, cannot grow due to the reduction
of the diffusion in the bulk phase when surface diffusion prevails. As a consequence, the oscil-
lation amplitudes in the size of domains as well as in the excess viscosity reduce in time going
from the bulk to the surface diffusion. This gives a direct evidence of the picture put forward in
the large-N limit [35]. A generalization of a phenomenological equation for the typical size of
domains has been proposed. This allows us to obtain the asymptotic behaviors of characteristic
measures of growing patterns along the flow and the shear directions. Numerical simulations
show that the growth slows down when going from bulk diffusion to surface diffusion. The
same behavior is also observed for the excess viscosity whose maximum value, at fixed strain,
decreases with increasing shear rate.
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