
ORIGINAL RESEARCH
published: 22 May 2019

doi: 10.3389/fnagi.2019.00115

Frontiers in Aging Neuroscience | www.frontiersin.org 1 May 2019 | Volume 11 | Article 115

Edited by:

James H. Cole,

King’s College London,

United Kingdom

Reviewed by:

Yi Li,

Weill Cornell Medicine, Cornell

University, United States

Alessia Sarica,

Universitá degli Studi Magna Graecia,

Italy

*Correspondence:

Nicola Amoroso

nicola.amoroso@uniba.it

Received: 31 January 2019

Accepted: 01 May 2019

Published: 22 May 2019

Citation:

Amoroso N, La Rocca M,

Bellantuono L, Diacono D, Fanizzi A,

Lella E, Lombardi A, Maggipinto T,

Monaco A, Tangaro S and Bellotti R

(2019) Deep Learning and Multiplex

Networks for Accurate Modeling of

Brain Age.

Front. Aging Neurosci. 11:115.

doi: 10.3389/fnagi.2019.00115

Deep Learning and Multiplex
Networks for Accurate Modeling of
Brain Age

Nicola Amoroso 1,2*, Marianna La Rocca 3, Loredana Bellantuono 1, Domenico Diacono 2,

Annarita Fanizzi 4, Eufemia Lella 1,2, Angela Lombardi 2, Tommaso Maggipinto 1,2,

Alfonso Monaco 2, Sabina Tangaro 2 and Roberto Bellotti 1,2

1Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy, 2 Istituto Nazionale di Fisica

Nucleare, Bari, Italy, 3 Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of

Medicine of USC, University of Southern California, Los Angeles, CA, United States, 4 Istituto Tumori “Giovanni Paolo II” -

I.R.C.C.S., Bari, Italy

Recent works have extensively investigated the possibility to predict brain aging from

T1-weighted MRI brain scans. The main purposes of these studies are the investigation

of subject-specific aging mechanisms and the development of accurate models for age

prediction. Deviations between predicted and chronological age are known to occur in

several neurodegenerative diseases; as a consequence, reaching higher levels of age

prediction accuracy is of paramount importance to develop diagnostic tools. In this work,

we propose a novel complex network model for brain based on segmenting T1-weighted

MRI scans in rectangular boxes, called patches, andmeasuring pairwise similarities using

Pearson’s correlation to define a subject-specific network. We fed a deep neural network

with nodal metrics, evaluating both the intensity and the uniformity of connections, to

predict subjects’ ages. Our model reaches high accuracies which compare favorably

with state-of-the-art approaches. We observe that the complex relationships involved

in this brain description cannot be accurately modeled with standard machine learning

approaches, such as Ridge and Lasso regression, Random Forest, and Support Vector

Machines, instead a deep neural network has to be used.

Keywords: age prediction, brain, deep learning, lifespan, aging, structural MRI, machine learning, multiplex

networks

INTRODUCTION

Recently, neuroimaging approaches predicting brain aging have received an increasing attention,
especially thanks to the design and development of extremely accurate strategies (Franke et al.,
2010; Cole et al., 2017a,b). In fact, the possibility of relying on accurate age predictions allows,
as a consequence, the definition of age-related biomarkers for the early detection of anomalous or
pathological conditions (Dosenbach et al., 2010; Franke et al., 2012). In particular, machine learning
models have been used to learn the aging trajectories of healthy brains thus yielding two main
results (Cole and Franke, 2017): (i) predicted age can differ from the actual one and this difference
and its entity can suitable define a marker for anomalous/pathological aging (Dukart et al.,
2011; Koutsouleris et al., 2013); (ii) subject-specific aging processes can be learned, thus driving
personalized monitoring or treatment (when needed) (Baker and Martin, 1997; Cole et al., 2018).

The effectiveness of machine learning methods has resulted to be almost ubiquitous (Hung
et al., 2006; Zacharaki et al., 2009; Abraham et al., 2014; Khedher et al., 2015; Al Zoubi et al.,
2018). Computer aided detection systems for accurate detection of brain diseases have been
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thoroughly investigated, nevertheless there are several studies, for
example about Alzheimer’s disease, suggesting there is still room
for significant improvement (Bron et al., 2015; Amoroso et al.,
2018a; Ramírez et al., 2018). More recently, promising results
toward these desirable improvements have been found in two
distinct directions. On one hand, brain connectivity: describing
the brain as a complex network and investigating its properties
would enhance the possibility of detection for anomalies and
pathological conditions affecting the normal functioning of the
brain (Dyrba et al., 2015; Amoroso et al., 2018c); on the other
hand, deep learning: the adoption of deep learning techniques,
prompted by an increment of both computational resources and
observations available to run the learning processes, has become
a prominent choice for analyzing medical images for disparate
uses, such as segmentation, registration, and classification (Ortiz
et al., 2016; Litjens et al., 2017; Shen et al., 2017).

In this work, we present an attempt to combine complex
network framework and deep learning strategies to provide a
novel accurate modeling of brain age. In particular, we use a
multiplex network, which is a multi-layer network. A multiplex
is a network with many layers, each of one representing a
single subject; the nodes are brain anatomical districts and the
connections are their pairwise similarities (Kivelä et al., 2014).
Recent studies have demonstrated the advantage of considering
multiplex networks instead of single networks in terms of
intrinsic information: actually, the information content of the
multiplex is not just the sum of the information content of its
layers (Battiston et al., 2014; Menichetti et al., 2014).

As for standard networks, multiplex networks can be
characterized by suitable metrics (Nicosia and Latora, 2015;
Estrada, 2018); in particular, we use nodal properties to obtain a
feature representation of a brain and then use this framework to
feed a deep learning model to predict the brain age. We compare
the performance of deep learning with state-of-the-art regression
strategies, such as Lasso regression, Ridge regression, Support
Vector Machine, and Random Forest regressions. Besides, we
identify the brain regions which seem to majorally affect the age
prediction.

MATERIALS AND METHODS

Image Processing
In this work we use data from 5 publicly available sources:
ABIDE1 (Autism Brain Imaging Data Exchange), ADNI2

(Alzheimer’s Disease Neuroimaging Initiative), Beijing Normal
University3, ICBM4 (International Consortium for Brain
Mapping), and IXI5 (Information eXtraction from Images).

We selected a dataset including 484 subjects in order to obtain
a roughly uniform distribution in the age range 7 − 80 years; in
particular 133 subjects ranged from 7 to 20 years, 120 from 20
to 40 years, 127 from 40 to 60 years, and 104 above 60 years, see

1http://fcon_1000.projects.nitrc.org/indi/abide/
2http://adni.loni.usc.edu
3http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.html
4https://ida.loni.usc.edu/
5https://brain-development.org/ixi-dataset/

Supplementary Materials for further details. Subjects whitin the
0 − 7 age range are not included in this study because, as better
explained in the Discussion section, they require specific image
processing techniques which are not require for the age ranges
considered here, instead.

Mean age was 37.3 ± 20.4 years. All neuroimaging data used
in this study were T1-weighted MPRAGE brain scans (1.5 T
or 3.0 T); 1.5 T and 3.0 T scans do not significantly differ in
their power to detect gray matter changes (Ho et al., 2010). The
participants were healthy controls, thus excluding the presence of
neurodegenerative or psychiatric diseases.

Brain scans were normalized in intensity and skull-stripped
using the Brain Extraction Tool from the FSL library (Jenkinson
et al., 2005); then, non-linear registration was performed using
the Advanced Normalization Tools pipeline (Avants et al., 2009)
to theMNI152 template; accordingly, all registered scans resulted
in 1×1×1mm3 resolution so that, from now onward, voxels and
mm3 will be interchangeably used.

After spatial normalization we separated the left and the
right brain hemispheres and segmented each part in rectangular
boxes, called patches, of l1 × l2 × l3 dimensions. A schematic
representation is provided by Figure 1.

According to a previous study about neurodegenerative
processes in Alzheimer’s disease (Amoroso et al., 2018b), we used
l1 = 10, l2 = 15, and l3 = 20 with l1, l2, and l3 lengths, in
voxels, along the coronal, the axial, and the sagittal orientations,
respectively. Thus, each subject’s brain was represented by a
collection of 600 patches.

The Network Model
By definition, a complex network G = G(N, L) is a couple of two
distinct sets (Boccaletti et al., 2006): N, the set of nodes, and L,
the set of links. The nodes are the elements of the system one
wants to model while the links represent the interactions among
them. This basic framework does not take into account the entity
of the interactions; to consider this aspect weighted networks are
introduced (Newman, 2004). Weighted networks are assigned
a third set of elements W whose elements wij, called weights,
represent the strengths of each interaction between the nodes i
and j; the weights are usually real or integer numbers, so that a
weighted network is denoted G = G(N, L,W).

In this work, the brain networks are defined using each
patch as a node. Patches consist of 3, 000 voxels whose intensity
gray levels ranges from 0 to 1. Accordingly, the whole brain
is segmented in 600 patches. We considered each patch as
a vector with 3, 000 components and measured the Pearson’s
correlation between each pair of vectors thus obtaining the
pairwise similarities, thus we built a weighted network whose
nodes were the patches and whose weights were given by the
measured correlations. Pearson’s correlations range from −1
to 1, however to take into account the left/right symmetry
of the brain we kept the absolute value of correlations.
Accordingly, our networks consist of 600 × 600 symmetric
adjacency matrices whose rows and columns represent the
brain patches and whose elements, ranging from 0 to 1, their
absolute Pearson’s correlations. It is worth noting that the brain
network used in this work is mathematical, in fact nodes have
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FIGURE 1 | After dividing the brain into left and right hemispheres, each hemisphere is divided in 300 patches. This operation is performed for each subject in the

cohort, after registration, thus each patch is expected to roughly contain the same anatomical district and analogous distributions of white matter, gray matter, and

cerebrospinal fluid.

no direct anatomical counterparts and edges are correlations, a
mathematical similarity metric.

Once the single network representation was obtained for each
subject, we built a multiplex model, i.e., a network composed
by several layers, in which the same number of nodes can be
connected in different ways (Nicosia et al., 2013). Usually, when
building a multiplex model, nodes remain unchanged, what
changes is the nature of links: for example, in transport networks,
the nodes could be the neighbors of a city and the layers the
types of transport considered (routes, trains, ...). Age shapes brain
networks by modifying the spatial distribution of white matter,
gray matter, and cerebrospinal fluid and, therefore, the way brain
regions are connected, i.e., their pairwise similarity. Accordingly,
it is natural to define a different layer α for each age and, thus, for
each subject.

Finally, we measured some specific nodal metrics to
characterize the multiplex model. Specifically, we considered the
following features:

• Strength s. The sum of the weights associated to the
connections of a node is a common centrality metrics used to
characterize important nodes within a network. The strength
of the node i in a layer α is:

sαi =

N
∑

j=1

wij

• Inverse Participation Y . It is also important to characterize
how strengths are distributed within a network in order to
understand the relative importance of a node. The inverse
participation of the node i in a layer α is:

Yα
i =

N
∑

j=1

(

wα
ij

sαi

)2

• Multistrength. The analogous of the strength in a
multiplex model.

• Multi-Inverse Participation. The Inverse Participation
computed with respect of the multiplex.

Further details, especially about multiplex metrics, are provided
for example in Amoroso et al. (2018b). Besides, we computed the
conditional probabilities of strength and multistrength against
the nodes with degree k; conditional strength for degree k in the
layer α is:

s(k)α =
1

Nk

N
∑

i=1

sαi δ(kα
i , k)

with Nk the number of nodes with degree k and δ being the
Kronecker function, which is equal to one only when the nodal
degree kα

i is k and zero otherwise.
Analogously, the conditional mean of inverse participation for

degree k in the layer α is:

Y(k)α =
1

Nk

N
∑

i=1

Yα
i δ(kα

i , k)

In the end our multiplex representation yieldedM = 8× |N|

features for each subject, with |N| being the cardinality of N,
|N| = 600, and, therefore,M = 4, 800. The conceptual workflow
is presented in Figure 2.

The basic idea behind our approach is that one of the main
effects involved by aging is brain atrophy; our framework allows
the detection of age related changes in brain using a complex
network model and therefore the possibility to yield accurate
brain age prediction. Pearson’s correlation is a suitable metric
to characterize the spatial distribution of white matter, gray
matter, and cerebrospinal fluid and the multiplex framework
takes into account how this distribution changes over time;
besides, the previously mentioned nodal properties measure
how these changes affect the networks and the different brain
regions, therefore, they allow a direct easy-to-interpret overview
of aging effects.
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FIGURE 2 | Age shapes brain networks by modifying the spatial distribution of white matter, gray matter, and cerebrospinal fluid. Accordingly, nodal metrics, such as

strength and inverse participation, allow the detection and quantification of these age-related changes.

Regression
Once we obtained a feature representation for all subjects,
we trained our deep learning regression model. To assess the
robustness of our brain model and to confirm the effectiveness
of deep learning we also evaluated four other different regression
models that are widely adopted for their accuracy: Lasso
regression, Ridge regression, Support Vector Machine, and
RandomForest. The presented results were cross-validated with a
10-fold procedure repeated 100 times. To evaluate the regression
performance we adopted three different metrics:

• Mean Absolute Error (MAE).

MAE =
1

S

S
∑

i=1

|yi − ŷi|;

• Root Mean Squared Error (RMSE).

RMSE =

√

√

√

√

1

S

S
∑

i=1

(yi − ŷi)2;

• Pearson’s correlation (ρ).

ρ =

∑S
i=1(yi − y)(ŷi − ŷ)

√

∑S
i=1(yi − y)2

√

∑S
i=1(ŷi − ŷ)2

.

with S being the sample size, yi the chronological age, ŷi the

predicted brain age, y the sample average age, and ŷ the average
brain predicted age. All our models were implemented with the
open source R language.

Deep Learning
Adeep neural network is, by definition, a network withmore than
two hidden layers (Hinton et al., 2006). Deep learning strategies
are designed to learn, thanks to the complex interactions
instanced between neural networks’ hidden layers, accurate
representations of the provided observations; in recent years,
deep learning has significantly improved the state-of-the-art in
several fields, such as speech recognition, object detection, and
diagnosis support systems (LeCun et al., 2015).

Artificial neural networks with few learning layers, also
called shallow networks, have been known for decades; since the
introduction of backpropagation algorithms, their training has
shown very promising perspectives but raised several feasibility
issues, especially for the exponential growth of computational
requirements. Besides, a theorem stating that multilayer feed
forward networks with a sufficient number of neurons and as
few as one hidden layers are universal approximators, strongly
suggested to invest more effort on simpler architectures
than deeper ones (Hornik et al., 1989). Finally, there
was a common belief that deep neural network learning
algorithms (especially the gradient descent) could be trapped
in local minima preventing the possibility to yield stable and
accurate results.

Recent results, both theoretical and empirical, showed that
these issues can be overcome and deep learning algorithms can

achieve unmatched performances in several domains. Moreover,

the possibility to easily access huge computational resources has
removed the practical limitations preventing the wide-spread

adoption of deep learning strategies.
In this paper, we use a feedforward deep neural networks with

four hidden layers respectively including 200, 100, 50, and 20
neurons, see Figure 3.
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FIGURE 3 | A schematic representation of our deep neural network. It

consisted of four hidden layers composed of 200, 100, 50, and 20 neurons.

This architecture was implemented with the “h2o” R package.
Among the possible tuning parameters, besides the number of
hidden layers with the corresponding neurons, this package offers
the possibility to define:

• activation functions including: hyperbolic tangent, linear
rectifier, and maxout;

• learning rate;
• training epochs;
• regularization (L1 or L2);
• tolerance;
• rate decay.

The flexibility offered by deep learning architectures is also their
major drawback, as tuning these models can be challenging.
This is why another important option provided by the “h2o”
package (and many others) is the so called grid search,
allowing the systematic exploration of the configurations’ space,
thus automatically determining the most effective design. We
explored different numbers of layers and neurons, as well as
different activation functions, while we adopted default values
for all the remaining parameters. To increase the network
robustness, the weights were randomly initialized at every
execution of the algorithm.

We have already mentioned the optimal architecture, for
what concerns activation function, hyperbolic tangent was used.
We performed extensive search for optimal values thanks to
the ReCaS data center6; further details about the computational
infrastructure are provided in Supplementary Materials. Thanks
to cross-validation analysis we reached an optimal (and stable)
configuration. In order to get a fair comparison with other
regression models, we tried to use default configurations
whenever possible; parameters whose values were tuned in cross-
validation, as for example the number of trees in Random
Forests, are explicitly mentioned, otherwise default values must
be assumed.

6https://www.recas-bari.it/index.php/en/

Ridge Regression
Ridge regression (Hoerl and Kennard, 1970) is a substantial
improvement of standard least square regression in those
case where independent variables suffer or may suffer from
multicollinearity. By definition, multicollinearity consists in
the presence of high intercorrelations among the independent
variables of the model; when present, multicollinearity can
strongly affect the reliability of statistical inferences. Even if brain
patches are sufficiently large to mitigate spatial correlations, it is
not safe to assume, a priori, that neighbor patches are completely
independent.

Ridge regression is basically a least square methods. Using the
standard notation a regression equation is written in matrix form
as Y = Xβ + e with Y the dependent variable, X the independent
variables, β the regression coefficients, and e the residuals.
Ridge regression prescribes, as standard linear regression, the
minimization of the residual sum of squares (RSS):

RSS =

S
∑

i=1



yi − β0 −

p
∑

j=1

βjxij





2

where S is the sample size and p the number of independent
variables. The difference with standard linear regression is that
Ridge regression introduces a penalty or regularization term on
the sum of squared coefficients:

RSSRidge =

S
∑

i=1



yi − β0 −

p
∑

j=1

βjxij





2

+ λ

p
∑

j=1

β2
j

It is evident that when λ → 0 Ridge regression coincides
with ordinary least square regression. When λ → ∞ the high
regularization penalty makes some coefficients small, but yet
not negligible, thus their effect is limited but still included in
the model. Accordingly, the effectiveness of Ridge regression
depends on the tuning of λ penalty: models with small λ values
tend to have high variance and small bias, on the contrary high λ

values involve small variance and high bias. For the present work,
we explored several λ values in cross-validation.

Lasso Regression
Ridge regression considers any independent variable from the
model whereas Lasso (Least absolute shrinkage and selection
operator) regression (Tibshirani, 1996) tackles this issue allowing
the exclusions of some coefficients. Accordingly, Lasso regression
tries to retain the important features and discard those yielding a
negligible contribution to the model.

Lasso residual sum of squares is similar to Ridge regression
except for introducing as a penalty contribution the sum of the
absolute values of the regression coefficients:

RSSLasso =

S
∑

i=1



yi − β0 −

p
∑

j=1

βjxij





2

+ λ

p
∑

j=1

|βj|
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FIGURE 4 | Random Forest algorithm consists of two main phases: (1) data

sample is bootstrapped N times, N is the number of trees and the first

parameter this algorithm needs to be set; (2) when growing a tree j, at each

node splitting i a random set of features fij is sampled; the features selected

change at every split, but the number of sampled features, the second

parameter to be set, remains constant.

Here, again, S is the sample size and p the number of independent
variables. When λ → 0 Lasso regression coincides with the
ordinary least square regression; when λ → ∞ Lasso tends
to the null model with all coefficients βj being 0 and the only
non-vanishing value being the intercept. It is worth noting
that, as for Ridge regression, Lasso regression needs the tuning
of λ parameter in order to balance variance and bias of the
model. As for Ridge regression, we explored several λ values in
cross-validation.

Random Forest
Another option for regression, extremely popular in recent
years, consists in using ensemble learning. Among the possible
choices, the most adopted and widely used algorithm is
Random Forest (Liaw et al., 2002). Random Forests are
constructed bootstrapping the data sample and growing a
number of different regression trees, each of them using
a different bootstrap, statistically with the original dataset.
Besides, as a difference with bagging strategies, Random
Forests add a further layer of randomness by growing
each tree with a different set of predictors randomly
selected every time a node is split, see Figure 4 for a
schematic representation.

The main advantage of Random Forest over classical
regression strategies is its robustness on overfitting; moreover,
it is a good approach for preliminary investigations in the sense
that, depending only two parameters, the number of trees to be
grown and the number of features to pick at each node split,
Random Forests is easy to tune and control.

A relevant aspect to consider is that Random Forest yields
useful information about feature importance, thus resulting in
interpretable models and a ranking about the association between
each independent variable and the dependent variable, a crucial
property in clinical applications. The Random Forest regression

was tuned in cross-validation to search optimal values for the
number of trees and the number of features to select.

Support Vector Machine
Finally, we evaluated the regression performance using Support
Vector Machine (Smola and Schölkopf, 2004). Support Vector
Machine regression is based on a well grounded statistical
framework whose basic idea consists in using the available
observations to learn a function f (x) that has deviations ǫi < ǫ

from targets yi. As a consequence, the model learns to be accurate
at least as the prescribed ǫ precision or, in other words, it does
not accept deviations larger than ǫ. For clinical purposes this
approach is of fundamental importance, as it guarantees the
existence of a limit value which should not be exceeded for the
validity of the model.

The main advantages of Support Vector Machine are 2-fold:
(i) it is a versatile algorithm which can give accurate results in
very different applications, comprising medical ones; (ii) it yields
a compact representation even for huge datasets, thus it is a
suitable choice for big data applications. The main drawback is
probably the need to tune several parameters in order to achieve
the perfect balance between variance and bias of the model. A not
exhaustive list of parameters to tune include:

• the precision of the model ǫ;
• the kernel used for training and prediction, possible choices

are: linear, polynomial (in this case one has to set the degree of
the polynomial too), radial basis and sigmoid;

• the cost value for regularization;

Accordingly, for Support Vector Machines to be consistently
effective it is fundamental to perform a wide search of the
parameter space with a subsequent significant increase of the
computational effort. Nevertheless, the use of modern data-
centers can easily manage the needed requirements in terms of
memory and processing time, thus the computational issues do
not discourage the use of this learning framework. We explicitly
explore the precision and the cost value for regularization.

RESULTS

Deep Learning Prediction Accuracy
We assessed the performance accuracy of our deep learning
model by evaluating three distinct metrics: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and Pearson’s
correlation ρ. The results presented in Figure 5 show the
estimates of these metrics obtained with 100 rounds of 10-fold
cross-validation.

Average MAE is 4.7 years, the MAE standard error is 0.1.
For what concerns RMSE and correlation, our cross-validated
estimates are: RMSE = 6.2± 1.1 and ρ = 0.95± 0.02.

A not secondary aspect to consider about the reliability
of age-predicting models is their homoscedasticity either their
heteroscedasticity. We performed the Breush-Pagan test to
evaluate the presence or absence of heteroscedasticity and
found p = 0.008, thus rejecting the null hypothesis, with 5%
significance, for the variance of the residuals to be constant over
the whole age range.
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FIGURE 5 | From left to right, histogram of cross-validation results: MAE, RMSE, and Pearson’s correlation ρ.

FIGURE 6 | Overall scatter plot of chronological age (x-axis) and predicted age (y-axis) and the specific four age ranges (right panel): 7 ≤ Age < 20 (A),

20 ≤ Age < 40 (B), 40 ≤ Age < 60 (C), 60 ≤ Age < 80 (D).

Age Ranges Affecting the Model Accuracy
To further investigate the effectiveness of our deep learning
model, we evaluated if the regression accuracy was subject to
significant changes when considering specific age ranges. In
particular, see Figure 6 for the overall scatter plot (left panel) and
four age ranges (right panel): 7 ≤ Age < 20 (a), 20 ≤ Age < 40
(b), 40 ≤ Age < 60 (c), 60 ≤ Age < 80 (d).

These distributions are significantly different according to a
Kruskal-Wallis rank sum test (p < 2.2e−16); in particular, the best
results are obtained for younger subjects while the performance
has a significant drop when considering the groups including
older subjects, see Table 1 for a comprehensive overview.

Correlation is the metric suffering the highest drop in
performance over all the considered age ranges. MAE and RMSE
share a common behavior, their best values are found when
age ranges from 7 to 20; the best correlation is found when
40 ≤ Age < 60.

Sample Size Effect
Previous studies about age prediction usingMRI have established
the pivotal importance of sample size to obtain accurate age-
prediction models. Accordingly, we present in Figure 7 the
assessment of the sample size effect on the accuracy of our model.

TABLE 1 | Performance metrics obtained in different age ranges.

Age range MAE RMSE ρ

7− 20 3.7± 0.2 3.9± 0.1 0.43± 0.02

20− 40 5.1± 0.2 6.6± 0.1 0.57± 0.01

40− 60 6.5± 0.2 8.2± 0.2 0.60± 0.01

60− 80 4.4± 0.2 6.6± 0.3 0.41± 0.03

In particular, correlation, due to a drastic reduction of the sample size and range, suffers

the highest reduction. Best values are in bold.

The results are 2-fold: performance is affected by sample size,
the more the available data, the more accurate age prediction;
when using 80% of data, the deep model reaches a robust plateau.
Whatever we considered, MAE, RMSE, or ρ correlation, the
performance increased with the sample size, besides the variance
of the model decreased.

Other Regression Strategies
To demonstrate the pivotal role of deep learning, we used
the multiplex features to feed other state-of-the-art regression
approaches. In particular, we compared deep learning with
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FIGURE 7 | We evaluated the regression metrics MAE, RMSE, and correlation by randomly sampling a varying percentage of subjects from the whole cohort, from 10

to 100%, and reported the results of 100 ten-fold cross-validations.

TABLE 2 | Comparison of cross-validation regression performances for deep

learning, Ridge and Lasso regression, Random Forest, and Support Vector

Machine.

Model MAE RMSE ρ

Deep learning 4.7± 0.1 6.2± 1.1 0.95± 0.02

Ridge regression 6.0± 0.7 7.8± 1.3 0.92± 0.03

Lasso regression 6.4± 0.7 8.2± 1.3 0.92± 0.03

Random forest 5.9± 0.7 7.6± 0.9 0.94± 0.02

Support vector machine 5.6± 0.7 7.2± 0.9 0.94± 0.01

The reported values are those obtained after grid search for optimal configurations. Best

results are presented in bold.

Ridge and Lasso regressions, Random Forest, and Support
Vector Machine. Table 2 shows the comparison among best
configurations, further details about parameter tuning and
optimal values are reported in Supplementary Materials.

Deep learning provides the most accurate model with respect
of all the considered metrics. After deep learning, Support Vector
Machine gets the best results, nonetheless, deep learning yields
a significant increment of about 16% in terms of MAE and
14% in terms of RMSE. For what concerns correlations, even
if providing the best performance, deep learning does not seem
to significantly improve this metric, another clue suggesting the
need for using correlations cum grano salis.

Feature Importance and Clinical Validation
To investigate which features had a strategic role in the age
prediction, we calculated variable importances by using the
Gedeon method (Gedeon, 1997) implemented in the “h2o” R
package. This implementation considers the weights connecting
the input features to the first two hidden layers and provides,
for each features, the relative importance normalized between
0 and 1. We computed the importance ranking over different
subject samples in order to select the most strategical features
in terms of relative importance and occurrence. We obtained
113 features whose occurrence had not happened by chance
(with a 5% comparison threshold with Bonferroni adjustment).
In Table 3, the first 10 features, directly connected to a patch,
are reported in order of mean relative importance along with the
corresponding anatomical regions pinpointed by that patch.

The different cortical and sub-cortical anatomical regions,
which are proved to be connected with aging, were found

by mapping the related patches on the Harvard-Oxford atlas
(Desikan et al., 2006). In Figure 8, the patches related to these
anatomical regions are underlined in red on the MNI 152
template. It is worth to specify that these clinical findings
are totally in agreement with the literature as argued in the
Discussion section.

DISCUSSION

The method presented in this work, based on the multiplex
model combined with a deep learning regression network allows
the most accurate age prediction, in comparison with other
standard machine learning approaches. Performances presented
here compare well with results recently published (Franke et al.,
2012; Cole et al., 2017a), including voxel-based approaches,
provided the following considerations. First of all, the dataset
used in this work is smaller than those investigated in the
mentioned works; we have confirmed here that as the sample
size increases predicting models tend to be more accurate and
with less variance. Nevertheless, as the fraction of data employed
exceeds 80%, improvements become significantly smaller; the
deep learning model is robust and stable. A not secondary aspect
to consider is age distribution: in this work we have analyzed
a roughly uniform cohort, which is not the case, e.g., in Cole
et al. (2017a). However, the dependence of performance
on dataset composition/homogeneity certainly requires
further investigation.

Another important aspect to consider about the general
validity of the presented results concerns the image processing
pipeline. In this study, we used the FSL library; FSL provides
a consolidated and widespread tool for brain extraction.
Nevertheless, other spatial normalization tools could be used,
as for example SPM DARTEL a particularly suitable tool for
normalization of elder subjects (Pereira et al., 2010). Actually,
there is no general consensus indicating which tool should be
preferred, on the contrary it is common for neuroimaging studies
to define dedicated pipeline exploiting a wide range of existing
tools, such as those previously mentioned, but also including
FreeSurfer, ANTs and novel ones (Shen et al., 2013; Im et al., 2015;
Hazlett et al., 2017).

In fact, we demonstrated here that age predictions are
affected by heteroscedasticity; accordingly, a large data sample
uniformly covering the lifespan range could mitigate this
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TABLE 3 | First 10 features in order of relative importance for aging prediction along with the related cortical and subcortical brain regions.

Features Patch Mean relative importance

Inverse participation (L) Heschl’s Gyrus (includes H1 and H2),

Insular Cortex (GM, WM)

0.95

Multistrength (L) Cingulate Gyrus, anterior division,

Cingulate Gyrus, posterior division, Precentral Gyrus (GM)

0.89

Inverse participation (L) Planum Polare, Heschl’s Gyrus (includes H1 and H2),

Central Opercular Cortex (GM)

0.89

Multistrength (L) Frontal Pole, Frontal Orbital Cortex (GM) 0.89

Inverse participation (R) Paracingulate Gyrus, Cingulate Gyrus,

anterior division (GM, WM)

0.89

Strength (L) Brain Stem, Parahippocampal Gyrus, posterior division (GM) 0.89

Inverse participation (R) Precentral Gyrus, Post-central Gyrus (GM,WM) 0.88

Inverse participation (L) Lateral Occipital Cortex, inferior division,

Middle Temporal Gyrus, temporo-occipital part (GM, WM)

0.88

Inverse participation (L) Lateral Occipital Cortex, superior division (GM) 0.88

Inverse participation (L) Inferior Frontal Gyrus, pars opercularis,

Precentral Gyrus, Middle Frontal Gyrus (GM, WM)

0.88

(L) and (R) indicate left and right hemispheres; (GM) and (WM) indicate that gray and white matter are respectively included in the patch corresponding to a certain feature.

issue. Heteroscedasticity also affects performance accuracy: best
performances in terms of MAE and RMSE are found for
younger subjects (in the [7 − 20) range). This would confirm
the necessity to compare age prediction accuracy declared
in different studies with the caveat that age distribution of
examined cohort should be consistent. This behavior suggests
that morphological differences in healthy brains are accentuated
in later years, younger brains tend to be less heterogeneous and,
therefore, more adherent to a common pattern. However, it is
worth noting that the extent of the age-range influences theMAE,
with wider age-ranges yielding harder prediction problems;
accordingly, we cannot conclude that the model performs better.
This consideration about the influence of the age-range on the
MAE is also important when comparing the current results
between other studies.

Pediatric images usually require specific processing. Actually,
children’s brains significantly differ from the adult ones, because
their growth is characterized by a series of non-linear changes
occurring throughout the development ages; this is particularly
true between 0 and 7 years. However, we do not expect this effect
to significantly affect our analysis, because this specific range was
not included in the analysis. Nonetheless, the standard pipeline
adopted here is based on a template developed from adult brain
data, which are not optimized for pediatric scans and, therefore,
this could limit the accuracy of our model. In future work, we
plan to focus on age prediction in younger cohorts, limiting the
considered age range, and consider dedicated image processing
strategies specifically tailored for younger subjects as suggested
in recent works (Vân Phan et al., 2018).

A different consideration holds for correlation. Correlations
are heavily affected by the overall range of the independent
variable, when considering age sub-samples this range decreases,
the number of observations decreases too; as a consequence, the
resulting correlations do not match with the values computed
using the whole dataset. On the other hand, the other metrics

take into account only the relative difference between observed
and predicted values. In other words, MAE and RMSE on
average tend to reproduce in the age subsamples the same
behavior they have on the entire dataset. This is not true for
correlation. An interesting aspect to investigate in the future
could be the assessment of which factors (sample size within each
age range, multi-site effect on data heterogeneity, ...) are mostly
responsible for this issue. However, deep learning is by far the
most accurate method to predict brain age, followed by Support
Vector Machine. The intrinsic possibility to manage and model
non-linear complex relationships offered by deep models seems
to provide a significant advantage when attempting to predict
brain age.

Another aspect investigated in this study was the feature
importance aimed at finding out which features and which
related anatomical regions were more accountable for the age
prediction.We chose to not perform a dedicated feature selection
in order to outline the role played by the different regression
strategies. Of course, feature selection can play an important role
in enhancing the performance of machine learning, nevertheless,
the focus of this work was to establish the most effective strategy
to exploit the informative content provided by our complex
network model, independently from other processing steps.

It is interesting to notice as the most important features
are often related to patches which identify several times the
same anatomical regions demonstrating their prominent role in
the aging process. Many studies report that these regions are
widely involved in morphometric changes connected with age
(Koini et al., 2018). Indeed, significant age-related reduction in
cortical thickness, surface area, and volume have been found
in areas like Heschl’s gyrus, cingulate and paracingulate gyrus,
parahippocampal gyrus, and temporal lobe which includes
also the planum polare and Heschl’s gyrus (Mann et al.,
2011; Torii et al., 2012). These two latter regions play an
important role in auditory processing which is notoriously
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FIGURE 8 | This figure shows the patches related to the first most important features along 5 axial planes of the MNI 152 template. On the bottom right, a 3D

representation of the patches on the reference space is reported, as well.

affected by age advancement (Warrier et al., 2009). Cingulate and
paracingulate gyrus are implicated in attention and emotional
regulation, and parahippocampal gyrus and medial temporal
lobe are involved in memory. Therefore, these regions also
influence cognitive processes which are still connected with
normal aging. A particular vulnerability to cortical thickness
changes with age was seen in middle frontal gyrus, pre-
central gyrus, post-central gyrus, and in the pars opercularis
of the inferior frontal gyrus. The importance of frontal lobe
regions is supported by evidence of age-related decline in
several cognitive processes such as speed of processing, working
memory, cognitive control, and motor control (Thambisetty
et al., 2010; Lemaitre et al., 2012). Age-related changes have
been also underlined in insula cortical thickness and in brain
stem volume (Churchwell and Yurgelun-Todd, 2013; Lambert
et al., 2013). However, the reader should take into account
that the proposed approach defines a mathematical framework
rather than a real biomedical brain network and it should
not be overinterpreted

In our results, most of the regions related to the first 10
important features are located in the left hemisphere. This
may suggest an age-related decrease or increase of correlation
between the patches related to the important features in the left
hemisphere and the others. Many studies report that structural
and functional hemispheric asymmetry is related to age. Besides,
changes in structural brain asymmetry with age have been found
right in inferior frontal gyrus, anterior insula, anterior cingulate
parahippocampal gyrus, and precentral gyrus (Kovalev et al.,
2003), thus, in agreement with our results. Further investigations
in this sense could be interesting also to examine a still open issue:

whether and which hemisphere ages faster that currently is still
an open issue (Esteves et al., 2018). However, the reader should
take into account the proposed approach defines a mathematical
framework rather than a real biomedical brain network and it
should not be overinterpreted.

Finally, it is worth to mention an aspect that is gaining
more and more interest, which is the increasingly widespread of
“artificial intelligence” and machine learning for health purposes,
especially for the development of diagnosis support systems.
On one hand, thanks to deep learning there is the possibility
to use raw data to directly predict age, height, or subject-
specific clinical scores, the presence of pathological conditions
and eventually their severity. On the other hand, thanks to
particular inversion strategies, recent works have demonstrated
the possibility to retrieve sensible information on patients even
when using pre-trained models (Fredrikson et al., 2015). With
this perspective, using our multiplex model, mediating between
raw data and clinical score, in this case age prediction, could be
also considered a safe way to use sensible data and protect the
users’ privacy, not to mention the computational advantage in
terms of processing time.

CONCLUSIONS

In this work, we demonstrated that: (i) the features retrieved
with our novel brain network model can accurately characterize
the normal aging, besides their informative content compares
well with state-of-the-art; (ii) the informative power of multiplex
features is effectively exploited and significantly maximized when
using a deep learning regression. The proposed methodology
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localizes the brain regions most affecting aging in the left
hemisphere. For what concerns the model accuracy, further
investigations should be performed by increasing the sample size;
the presented results are promising, nevertheless the statistical
robustness of this study would greatly benefit from a larger
dataset, besides this would be of paramount importance for a
fair comparison with other studies. Finally, we observed here
that brain aging is strongly affected by heteroscedasticity, this
effect should properly taken into account by studies investigating
lifespan processes; in particular, worst prediction accuracy was
obtained in the age range 40 − 60, this would reflect the
high specificity and variability characterizing brain atrophy
in these years. Nevertheless, further investigations, exceeding
the aims of the present work will be needed to corroborate
such hypothesis.
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