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Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high perfor-
mance in the literature, but are difficult to compare as different data sets and methodology were used for evalu-
ation. In addition, it is unclear how the algorithmswould perform on previously unseen data, and thus, how they
wouldperform in clinical practicewhen there is no real opportunity to adapt the algorithm to the data at hand. To
address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that
aimed to objectively compare algorithms based on a clinically representativemulti-center data set. Using clinical
practice as the starting point, the goalwas to reproduce the clinical diagnosis. Therefore,we evaluated algorithms
formulti-class classification of three diagnostic groups: patientswith probable Alzheimer's disease, patientswith
mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference
standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen
test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams
participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and op-
tionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging
Biomarkers and Lifestyleflagship study of aging). The best performing algorithmyielded an accuracy of 63.0% and
an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performanceswere
achieved using feature extraction based on voxel-basedmorphometry or a combination of features that included
volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based
framework: http://caddementia.grand-challenge.org.

© 2015 Elsevier Inc. All rights reserved.
Introduction

In 2010, the number of people over 60 years of age living with de-
mentia was estimated at 35.6 million worldwide. This number is ex-
pected to almost double every twenty years (Prince et al., 2013).
Accordingly, the cost of care for patients with Alzheimer's disease
(AD) and other dementias is expected to increase dramatically, making
AD one of the costliest chronic diseases to society (Alzheimer's
Association, 2014). Early and accurate diagnosis has great potential to
reduce the costs related to care and living arrangements as it gives
patients access to supportive therapies that can help them
maintain their independence for longer and delay institutionalization
(Paquerault, 2012; Prince et al., 2011). In addition, early diagnosis sup-
ports new research into understanding the disease process and devel-
oping new treatments (Paquerault, 2012; Prince et al., 2011).

While early and accurate diagnosis of dementia is challenging, it can
be aided by assessment of quantitative biomarkers. The five most com-
monly investigated biomarkerswere recently included in the reviseddi-
agnostic criteria for AD (McKhann et al., 2011; Jack et al., 2011) and in
the revised diagnostic criteria for mild cognitive impairment (MCI)
due to AD (Albert et al., 2011). These five biomarkers can be divided
into two categories: 1) measures of brain amyloid, which include cere-
brospinal fluid (CSF) measures of Aβ42 and amyloid positron emission
tomography (PET) imaging, and 2)measures of neuronal injury and de-
generation, which include CSF tau measurement, fluoro deoxyglucose
(FDG) PET and structural MRI (Jack et al., 2012). Of these biomarkers,
structural MRI is very important as it is widely available and non-
invasive. Also, it is a good indicator of progression to AD in an individual
subject, because it becomes abnormal in close temporal proximity to the
onset of the cognitive impairment (Jack et al., 2010, 2013).

Structural MRI data can be used to train computer-aided diagnosis
methods. Thesemethodsmake use of machine-learning and other mul-
tivariate data-analysis techniques that train a model (classifier) to cate-
gorize groups (e.g., patients and controls). Computer-aided diagnosis
techniques use features derived from neuroimaging or related data,
and may therefore benefit from the large amounts of neuroimaging
data that have become available over the last years. The techniques
may improve diagnosis as they can potentiallymake use of group differ-
ences that are not noted during qualitative visual inspection of brain im-
aging data, potentially leading towards an earlier and more objective
diagnosis than when using clinical criteria (Klöppel et al., 2012). In ad-
dition, computer-aided diagnosis algorithms can be used to 1) improve
diagnosis in hospitals with limited neurological and neuroradiological
expertise, 2) increase the speed of diagnosis, and 3) aid the recruitment
of specific, homogeneous patient populations for clinical trials in phar-
macological research (Klöppel et al., 2012).

Structural-MRI-based computer-aided diagnosis methods for de-
mentia, mainly for AD and MCI, have previously shown promising re-
sults in the literature. A few years ago, Cuingnet et al. (2011)
compared the performance of various feature extraction methods
(e.g., voxel-based features, cortical thickness, hippocampal shape and
volume) for dementia classification using a support vector machine
(SVM) based on structural MRI. Using data from 509 subjects from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, three clas-
sification experiments were performed: 1) AD versus healthy controls
(CN), 2) patients with MCI versus CN, and 3) MCI who had converted
to AD within 18 months (MCI converters, MCIc) versus MCI who had
not converted to AD within 18 months (MCI non-converters, MCInc).
For the AD/CN classification, the best results were obtained with
whole-brain methods (voxel-based and cortical thickness) achieving
81% sensitivity and 95% specificity for the best method. The perfor-
mances of the MCI/CN classifications were much lower than those of
AD/CN, and the MCIc/MCInc classifications yielded no performances
better than chance. A recent review paper by Falahati et al. (2014)
discussed the literature on AD classification andMCI prediction. The re-
search field of computer-aided diagnosis of dementia based on structur-
al MRI is rather extensive, as evidenced by this paper reviewing 50
papers with at least 50 subjects per diagnostic group. The reviewed pa-
pers mainly trained a classification model on the AD/CN groups and
subsequently tested this model on both AD/CN and MCIc/MCInc classi-
fications. The paper concluded that classification methods are difficult
to compare, because the outcome is influenced by many factors, such
as feature extraction, feature selection, robustness of the validation ap-
proach, image quality, number of training subjects, demographics, and
clinical diagnosis criteria. In general, the accuracy obtained for AD/CN
classification was 80–90%, and the accuracy for prediction of MCI con-
version is somewhat lower. To promote comparison of algorithms,
Sabuncu and Konukoglu (2015) published results based on six
large publicly available data sets for AD and other diseases
(e.g., schizophrenia, autism). A comparison was performed using four
feature extraction strategies, including volumetric and cortical thick-
ness features computed with FreeSurfer (Fischl, 2012), and three
types of machine learning techniques (SVM, neighborhood approxima-
tion forest (Konukoglu et al., 2013), and relevance voxel machine
(Sabuncu and Van Leemput, 2012)). Using the ADNI database, the accu-
racies ranged from80–87% for AD/CN classification and 58–66% forMCI/
CN classification. The authors made all processed data and computa-
tional tools available to promote extension of their benchmark results.

http://caddementia.grand-challenge.org


564 E.E. Bron et al. / NeuroImage 111 (2015) 562–579
Taken together, these publications show very promising results of
algorithms for computer-aided diagnosis of AD and MCI. However,
they are difficult to compare as different data sets and methodology
were used for evaluation. In addition, it is unclear how the algorithms
would perform on previously unseen data, and thus, how they would
perform in clinical practicewhen there is noopportunity to adapt the al-
gorithm to the data at hand. Adaptation of an algorithm would be nec-
essary if the algorithm had been trained or optimized on data that are
not representative for the data used in a clinical setting. This seriously
hampers clinical implementation of algorithms for computer-aided di-
agnosis. In medical image analysis research, issues related to compara-
bility and clinical applicability have been addressed in grand
challenges2. Such grand challenges have the goal of comparing algo-
rithms for a specific task on the same clinically representative data
using the same evaluation protocol. In such challenges, the organizers
supply reference data and evaluation measures on which researchers
can evaluate their algorithms. For this work, we initiated a grand chal-
lenge on computer-aided diagnosis of dementia (CADDementia). The
CADDementia challenge aims to objectively compare algorithms for
classification of AD and MCI based on a clinically representative multi-
center data set. We recently organized a workshop at the 17th Interna-
tional Conference onMedical Image Computing and Computer-Assisted
Interventions (MICCAI). At this workshop, the methods and results of
the algorithms were presented by the 15 teams that originally partici-
pated in the challenge.

In the CADDementia challenge,we evaluated algorithms thatmade a
multi-class classification of three diagnostic groups: patients with AD,
patients with MCI and CN. The algorithms covered the complete
image-processing and classification pipeline starting from structural
MRI images. The current clinical diagnosis criteria for AD and MCI
(McKhann et al., 2011; Petersen, 2004)were used as the reference stan-
dard. Although MCI is known to be heterogeneous, as some of the pa-
tients will convert to AD and others will not, it is considered to be one
diagnostic entity according to these clinical diagnosis criteria. Hence,
in this challenge we did not address prediction of MCI progression,
but focused on diagnosis as a crucial first step. Regarding diagnostic
classification, binary AD/CN classification overestimates true clinical
performance as the most difficult to diagnose patients are left out.
Therefore we chose to stay close to the clinical problem and address
the three-class classification problem.

An evaluation framework was developed consisting of evaluation
measures and a reference data set. All methodological choices for the
evaluation framework are based on considerations related to our aim
to take a step towards clinical implementation of algorithms for
computer-aided diagnosis of dementia. This can be summarized in
three key points: comparability, generalizability, and clinical applicabil-
ity. First, by evaluating all algorithms using the same data set and eval-
uation methods, the results of the algorithms were better comparable.
Second, by providing a previously unseen multi-center data set with
blinded ground truth diagnoses, overtraining was avoided and general-
izability of the algorithms is promoted. Third, according to the current
clinical standards, a multi-class diagnosis of AD, MCI and CNwas evalu-
ated. The data for the evaluation framework consisted of clinically-
representative T1-weighted MRI scans acquired at three centers. For
testing the algorithms,we used scans of 354 subjectswith the diagnoses
blinded to the participants. Because the aim of this challenge was to
evaluate the performance in a clinical situation, when not much data
are available, we decided to make only a small training set available.
This training set consisted of 30 scans equally representing the three
data-supplying centers and the diagnostic groups. The diagnostic labels
for the training set weremade available. For both training and test data,
age and sex were provided. In addition to the provided training data,
teams were encouraged to use training data from other sources. For
2 http://www.grand-challenge.org.
this purpose, most algorithms used data from the Alzheimer's Disease
Neuroimaging Initiative (ADNI)3 or from the Australian Imaging Bio-
marker and Lifestyle flagship study of aging (AIBL)4.

In this article, we present the CADDementia challenge for objective
comparison of computer-aided diagnosis algorithms for AD and MCI
based on structural MRI. The article describes the standardized evalua-
tion framework consisting of evaluation measures and a multi-center
structural MRI data set with clinical diagnoses as reference standard.
In addition, this paper presents the results of 29 algorithms for the clas-
sification of dementia developed by 15 international research teams
that participated in the challenge.

Evaluation framework

In this section, we describe our evaluation framework including the
data set, the reference standard, the evaluation measures and the algo-
rithm ranking methods.

Web-based evaluation framework

The evaluation framework as proposed in this work is made publicly
available through a web-based interface5. From this protected web site,
the data and the evaluation software are available for download. The
data available for download are, for the training set: a total of 30 struc-
tural MRI scans from the probable AD, MCI and CN groups including di-
agnostic label, age, sex and scanner information; and for the test set:
354 structural MRI scans from the probable AD, MCI and CN groups in-
cluding age, sex and scanner information. The data set and the evalua-
tion measures are detailed in the following sections. Everyone who
wishes to validate their algorithm for classification of AD, MCI and CN
can use the data set for validation. To be allowed to download the
data, participants are required to sign a data usage agreement and to
send a brief description of their proposed algorithm. The predictions
and a short article describing the algorithm are submitted via the web
site4. The algorithms are validated with the software described in the
following sections. The web site remains open for new submissions to
be included in the ranking.

Data

A multi-center data set was composed consisting of imaging data of
384 subjects from three medical centers: VU University Medical Center
(VUMC), Amsterdam, TheNetherlands; ErasmusMC (EMC), Rotterdam,
The Netherlands; University of Porto/Hospital de São João (UP), Porto,
Portugal. The data set contained structural T1-weighted MRI (T1w)
scans of patientswith the diagnosis of probable AD, patientswith the di-
agnosis ofMCI, and CNwithout a dementia syndrome. In addition to the
MR scans, the data set included demographic information (age, sex) and
information on which institute the data came from. Within the three
centers, the data sets of the three classes had a similar age and sex
distribution.

The data characteristics are listed in Table 1 and the sizes of the com-
plete data set, training set and test set are listed in Table 2. Most of the
data were used for evaluation of performance: the test set. Only after
the workshop, we released the class sizes of the test set, marked with
an * in Table 2. Therefore only the prior for each class (~1/3) was
known to the authors of the algorithms in this paper. A small training
data set with diagnostic labels was made available, which consisted of
30 randomly chosen scans distributed over the diagnostic groups. Suit-
able data from other sources could be used for training (see Training
data from other sources section).
3 http://adni.loni.usc.edu.
4 http://aibl.csiro.au.
5 http://caddementia.grand-challenge.org.
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Table 1
Data characteristics. ASSET: array spatial sensitivity encoding technique, FSPGR: fast spoiled gradient-recalled echo, IR: inversion recovery, MPRAGE:magnetization prepared rapid acqui-
sition gradient echo, TE: echo time, TI: inversion time, TR: repetition time.

VUMC EMC UP

Scanner 3T, GE Healthcare
Signa HDxt

3T, GE Healthcare
Protocol 1: Discovery MR750
Protocol 2: Discovery MR750
Protocol 3: HD platform

3T, Siemens
Trio A Tim

Sequence 3D IR FSPGR 3D IR FSPGR 3D MPRAGE
Scan parameters (TI/TR/TE) 450 ms/7.8 ms/3.0 ms Protocol 1: 450 ms/7.9 ms/3.1 ms

Protocol 2: 450 ms/6.1 ms/2.1 ms
Protocol 3: 300 ms/10.4 ms/2.1 ms

900 ms/2300 ms/3.0 ms

Parallel imaging Yes (ASSET factor = 2) PROTOCOL 1: YES (ASSET FACTOR = 2)
PROTOCOL 2: PARALLEL IMAGING: NO
PROTOCOL 3: PARALLEL IMAGING: NO

No

Resolution 0.9 × 0.9 × 1 mm (sagittal) Protocol 1: 0.9 × 0.9 × 1.0 mm (sagittal)
Protocol 2: 0.9 × 0.9 × 0.8 mm (axial)
Protocol 3: 0.5 × 0.5 × 0.8 mm (axial)

1 × 1 × 1.2 mm (sagittal)

Number of scans 180 174 30

Age mean (Std)
Overall 62.2 (5.9) years 68.6 (7.8) years 67.8 (9.1) years
CN 62.1 (6.0) years 65.5 (7.3) years 64.1 (8.8) years
MCI 62.5 (5.5) years 73.1 (5.5) years 70.0 (8.5) years
AD 62.0 (6.0) years 67.2 (8.4) years 64.6 (7.8) years

Percentage of males
Overall 59% 63% 50%
CN 62% 61% 40%
MCI 68% 69% 60%
AD 47% 57% 50%
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Reference standard

The clinical diagnosiswasused as the reference standard in this eval-
uation framework. The data were acquired either as part of clinical rou-
tine or as part of a research study at the three centers. All patients
underwent neurological and neuropsychological examination as part
of their routine diagnostic work up. The clinical diagnosis was
established by consensus of a multidisciplinary team. Patients with AD
met the clinical criteria for probable AD (McKhann et al., 1984, 2011).
MCI patients fulfilled the criteria specified by Petersen (2004): i.e.,
memory complaints, cognitive impairment in one or multiple domains
confirmed by neuropsychological testing, not demented, intact global
cognitive function, clinical dementia rating score=0.5. No hard thresh-
old values were used, but all mentioned criteria were considered. Sub-
jects with psychiatric disorder or other underlying neurological
diseases were excluded. Center-specific procedures are specified in
the following sections.
VU University Medical Center (VUMC), Amsterdam, The Netherlands
Patients with AD, patients with MCI and controls with subjective

complaints were included from the memory-clinic based Amsterdam
Dementia Cohort (van der Flier et al., 2014). The protocol for selection
of patients and controls was the same as used by Binnewijzend et al.
(2013). Controls were selected based on subjective complaints and
had at least 1 year of follow-up with stable diagnosis. For the controls,
Table 2
Sizes of the complete data set, training set and test set, distributed over the three data-sup-
plying centers and the three classes. The numbers in the columnsmarked by an *were un-
known to the authors of the algorithms discussed in this paper.

Complete data set Training data Test data

nAD* nMCI* nCN* n nAD nMCI nCN n nAD* nMCI* nCN* n

VUMC 60 60 60 180 5 4 5 14 55 56 55 166
EMC 42 61 71 174 3 4 6 13 39 57 65 161
UP 10 10 10 30 1 1 1 3 9 9 9 27
Total 112 131 141 384 9 9 12 30 103 122 129 354
the findings from all investigations were normal; they did not meet
the criteria for MCI. The patients' T1w-scans showed no stroke or
other abnormalities. All patients gave permission for the use of the
data for research.
Erasmus MC (EMC), Rotterdam, The Netherlands
From the Erasmus MC, the data were acquired either as part of clin-

ical routine or as part of a research study. All patients were included
from the outpatient memory clinic. Diagnostic criteria for AD and MCI
(Papma et al., 2014) were as mentioned above. Healthy control subjects
were volunteers recruited in research studies and did not have any
memory complaints. All subjects signed informed consent and the
study was approved by the local medical ethical committee.
University of Porto/Hospital de São João (UP), Porto, Portugal
Themajority of the included patients were included from the outpa-

tient dementia clinic of Hospital de São João (Porto, Portugal). Two pa-
tients with AD were referred from external institutions for a second
opinion. In addition, healthy control subjects were volunteers recruited
in research studies. All subjects provided consent to be included in this
study.
Data preprocessing

The T1wMRI data was anonymized and facial featuresweremasked
(Leung et al., 2015). All anonymized scans were visually inspected to
check if no brain tissuewas accidentally removed by the facial masking.
Skull strippingwas performed by the participants themselves, if needed
for their algorithm. Next to the original anonymized T1w scans, we pro-
vided these scans after non-uniformity correction with N4ITK (Tustison
et al., 2010) using the following settings: shrink factor = 4, number of
iterations = 150, convergence threshold = 0.00001, and initial b-
spline mesh resolution = 50 mm. Images were stored in NIfTI-1 file
format.6
6 http://nifti.nimh.nih.gov.
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Table 3
Confusion matrix for a three-class classification problem.

True class

c0 c1 c2

Hypothesized class C0 n0,0 n0,1 n0,2
C1 n1,0 n1,1 n1,2
C2 n2,0 n2,1 n2,2

Column totals: n0 n1 n2
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Evaluation measures

The performance of the algorithms was quantified by the classifica-
tion accuracy, area under the receiver-operating-characteristic (ROC)
curve (AUC) and the true positive fraction for the three classes. The per-
formance was evaluated on all 354 test subjects (ALL) and in addition
per data-providing center (VUMC, EMC, UP).

Accuracy for multi-class classification
Classification accuracy is in case of a binary design defined as the

number of correctly classified samples divided by the total number of
samples. For extending the accuracy measure to three-class classifica-
tion, there are two main options (Hand and Till, 2001). The difference
between these is whether or not the difference between the two other
classes is taken into account when the performance for one class is
assessed.

To determine a simplemeasure of accuracy, all diagonal elements of
the confusion matrix (Table 3), the true positives (tp) and true nega-
tives (tn), are divided by the total number of samples (n):

accuracy ¼ tpþ tn
n

¼ n0;0 þ n1;1 þ n2;2

n0 þ n1 þ n2
: ð1Þ

The alternative, the average accuracy,

accuracyaverage ¼
1
L

XL−1

i¼0

tpi þ tni

n
¼ 1

L

XL−1

i¼0

ni;i þ ΣL−1
j¼0; j≠iΣ

L−1
k¼0;k≠in j;k

n
; ð2Þ

asseses the accuracy separately for each class without distinguishing
between the two other classes. For calculation of the accuracy for i=
0, the true positive samples (tpi) are n0,0. The true negative samples
in this case (tni) are n1,1, n1,2, n2,1 and n2,2. The separate per-class ac-
curacies are averaged to yield the final accuracy. L denotes the num-
ber of classes.

Eq. (2) ismainly applicable when the class sizes are very different. In
this evaluation framework, we use the accuracy in Eq. (1) as it provides
a better measure for the overall classification accuracy (Hand and Till,
2001).

AUC for multi-class classification
The performance of a binary classifier can be visualized as an ROC

curve by applying a range of thresholds on the probabilistic output of
the classifier and calculating the sensitivity and specificity. The AUC
is a performance measure which is equivalent to the probability
that a randomly chosen positive sample will have a higher probabil-
ity of being positively classified than a randomly chosen negative
sample (Fawcett, 2006). The advantage of ROC analysis – and accord-
ingly the AUC measure – is that the performance of a classifier is
measured independently of the chosen threshold. When more than
two dimensions are used the ROC-curve becomes more complex.
With L classes, the confusion matrix consists of L2 elements: L diago-
nal elements denoting the correct classifications, and L2 − L off-
diagonal elements denoting the incorrect classifications. For ROC
analysis, the trade-off between these off-diagonal elements is varied.
For three-class classification, there are 32 − 3 = 6 off-diagonal ele-
ments, resulting in a 6-dimensional ROC-curve. Therefore, for sim-
plicity, multi-class ROC analysis is often generalized to multiple
per-class or pairwise ROC curves (Fawcett, 2006).

Similarly to accuracy in the previous section, the multi-class AUC
measure can be defined in two ways. The difference between the two
definitions is whether or not the third class is taken into account
when the difference between a pair of classes is assessed.

First, Provost and Domingos (2001) calculate the multi-class AUC
by generating an ROC curve for every class and measuring the AUCs.
These per-class AUCs are averaged using the class priors p(ci) as
weights:

AUC1 ¼
XL−1

i¼0

AUC cið Þ � p cið Þ: ð3Þ

This method has the advantage that the separate ROC curve can be
easily generated and visualized. The method calculates an AUC for
every class separately, which is sensitive for the class distributions.
Even though the class priors are used in averaging, the total AUC still de-
pends on the class sizes.

Second, Hand and Till (2001) proposed a differentmethod formulti-
class AUCwhich is based on calculating an AUC for every pair of classes,
without using information from the third class. The method is based on
the principle that the AUC is equivalent to the probability that a ran-
domly chosen member of class ci will have a larger estimated probabil-
ity of belonging to class Ci than a randomly chosen member of class cj.
Using this principle, the AUC can also be calculated directly from the
ranks of test samples instead of first calculating the ROC curves. To
achieve this, the class ci and cj test samples are ranked in increasing
order of the output probability for class Ci. Let Si be the sum of the
ranks of the class ci test samples. The AUC for a class ci given another
class, Â(ci|cj), is then given by

Â cijc j
� �

¼ Si−ni ni þ 1ð Þ=2
ninj

; ð4Þ

see Hand and Till (2001) for the complete derivation.
For situations with three or more classes, Â(ci|cj) ≠ Â(cj|ci). There-

fore, the average of both is used:

Â ci; c j
� �

¼
Â cijc j
� �

þ Â c jjci
� �

2
: ð5Þ

The overall AUC is obtained by averaging this over all pairs of
classes:

AUC2 ¼ 2
L L−1ð Þ

XL−1

i¼0

Xi

j¼0

Â ci; c j
� �

; ð6Þ

in which the number of pairs of classes is L L−1ð Þ
2 .

In contrast to the accuracy, AUC measurement does not require a
threshold on the classifier's output probabilities and therefore the
AUC generally does not rely on the class priors (Hand and Till,
2001). However, the first multi-class approach is dependent on the
class priors as these are used for averaging the per-class AUCs.
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Therefore for this challenge, the second approach for AUC was
adopted (Fawcett, 2006).

True positive fraction
For binary classifications in computer-aided diagnosis, often the sen-

sitivity and the specificity are reported in addition to the accuracy. For
this multi-class application, the true positive fractions (TPF) for the
three classes provide the same information:

TPFi ¼
ni;i

ni
; i ∈ 0;1;2: ð7Þ

The TPF for the diseased class (TPFAD; TPFMCI) can be interpreted as
the two-class sensitivity, and the TPF for the control group equals the
two-class specificity.

Submission guidelines

In this challenge, the participating teams were allowed to submit up
to five algorithms. Submitting the diagnostic label for each sample of the
test set was obligatory. Additionally, the output probabilities for each
label were requested but this was optional to not rule out approaches
that do not produce probabilistic outcomes. Every team had to write
one full workshop paper describing their algorithms in the style of Lec-
ture Notes in Computer Science.

Final results and ranking

For every algorithm, a confusion matrix was made based on the test
data. Accuracy (Eq. (1)) and the TPFi (Eq. (7)) for the three classes were
calculated from the diagnostic labels. For every class, an ROC curve and
per-class AUCswere calculated from the output probabilities reduced to
a binary solution, e.g., AD versus non-AD, showing the ability of the clas-
sifier to separate that class from the other two classes. An overall AUC
was calculated using Eqs. (4)–(6). Confidence intervals on the accuracy,
AUC and TPFwere determinedwith bootstrapping on the test set (1000
resamples). To assess whether the difference in performance between
two algorithms was significant, the McNemar test (Dietterich, 1996)
was used. Evaluation measures were implemented in Python scripting
language (version 2.7.6) using the libraries Scikit-learn7 (version 14.1)
and Scipy8 (version 14.0).

If an algorithm failed to produce an output for certain subjects, these
subjectswere consideredmisclassified as a fourth class. This fourth class
was considered in the calculation of all performance measures. For cal-
culation of the per-class ROC curves, sensitivity and specificity were de-
termined on the subjects that were classified by the algorithm and
subsequently scaled to the total data set to take missing samples into
account.

The participating algorithmswere ranked based on accuracy of diag-
nosing the cases in the test set. Algorithms for which output probabili-
ties were available were also ranked based on the AUC of diagnosing
the cases in the test set. The algorithm with the best accuracy
(rank = 1) on the test set, was considered the winning algorithm. In
case two or more algorithms had equal accuracies, the average rank
was assigned to these algorithms.

MICCAI 2014 workshop

The evaluation framework was launched in March 2014 and the
deadline for the first submissions was in June 2014. The evaluation
framework and the results of the first participating algorithms were
presented at the Challenge on Computer-Aided Diagnosis of Dementia
Based on Structural MRI Data workshop that was organized on
7 http://scikit-learn.org.
8 http://www.scipy.org.
September 18th 2014 in conjunction with the 17th International Con-
ference on Medical Image Computing and Computer Assisted Interven-
tion (MICCAI) conference in Boston (USA).

We invited around 100 groups from academia and industry by email
to participate in the challenge. The challenges were advertised by the
MICCAI organizers as well. Eighty-one teams made an account on the
web site, of which 47 sent a data usage agreement and a brief descrip-
tion of the proposed algorithm, which was required for downloading
the data. Finally, 16 teams submitted results, of which 15were accepted
for participation in the workshop. One team was excluded from
participation because their workshop submission did not meet the
requirements and because they only submitted results for AD/CN classi-
fication. The 15 participating teams submitted a total of 29 algorithms.
These algorithms are described in the Algorithms section. More details
can be found in the short articles that all authors submitted for the
workshop (Bron et al., 2014).

Training data from other sources

In addition to the provided training data set of 30 scans, other
sources of training data could be used by the participants. All algorithms
except for two were trained on data from the Alzheimer's Disease Neu-
roimaging Initiative (ADNI) database9. The ADNI was launched in 2003
by the National Institute on Aging (NIA), the National Institute of Bio-
medical Imaging and Bioengineering (NIBIB), the Food and Drug Ad-
ministration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private partnership. The
primary goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological assessments can
be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer's disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended to aid re-
searchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials. For
up-to-date information, see www.adni-info.org. Acquisition of these
data had been performed according to the ADNI acquisition protocol
(Jack et al., 2008).

Two teams additionally trained on data from the Australian Imaging
Biomarkers and Lifestyle (AIBL) flagship study of aging10 funded by the
Commonwealth Scientific and Industrial Research Organisation
(CSIRO). These data were collected by the AIBL study group. AIBL
study methodology has been reported previously (Ellis et al., 2009).

Algorithms

In this section, the 29 algorithms submitted by 15 teams are summa-
rized. In Table 4, an overview of the algorithms is presented including a
listing of the size of the used training set and the performance on the
provided 30 training scans.

Abdulkadir et al.
Algorithm: Abdulkadir (Abdulkadir et al., 2014).
Features: Voxel-based morphometry (VBM) of gray matter (GM).
Classifier: Radial-basis kernel SVM.
Training data: 1289 ADNI subjects and 140 AIBL subjects. The 30

training subjects provided by the challenge were used for parameter
selection.

Feature selection: SVM significancemaps (Gaonkar andDavatzikos,
2013).

Confounder correction: Yes, for age, sex and intracranial volume
(ICV) using kernel regression.
9 http://adni.loni.usc.edu.
10 http://aibl.csiro.au.

http://www.adni-info.org
http://scikit-learn.org
http://www.scipy.org
http://adni.loni.usc.edu
http://aibl.csiro.au


Table 4
Overview of the participating algorithms. The training accuracy was computed on the 30 training subjects by training on the data from different sources only. As indicated below, three
algorithms instead trained on all data using 5-fold or 10-fold cross-validation.

2*Algorithm 2*Features 2*Classifier Size training data Training accuracy [%]

1 Abdulkadir VBM SVM 1492 60
2 Amoroso Volume and intensity relations Neural network 288 675-fold

3 Cárdenas-Peña Raw intensities SVM 451 83
4 Dolph Volumes SVM 30 8010-fold

5 Eskildsen-ADNI1 Volume and intensity relations Regression 794 77
6 Eskildsen-ADNI2 Volume and intensity relations Regression 304 70
7 Eskildsen-Combined Volume, thickness and intensity relations Regression 1098 73
8 Eskildsen-FACEADNI1 Volume, thickness and intensity relations Regression 794 70
9 Eskildsen-FACEADNI2 Volume, thickness and intensity relations Regression 304 67
10 Franke VBM Regression 591 90
11 Ledig-ALL Volume, thickness and intensity relations Random forest 734 68
12 Ledig-CORT Cortical thickness Random forest 734 58
13 Ledig-GRAD Intensity relations Random forest 734 67
14 Ledig-MBL Intensity relations Random forest 734 66
15 Ledig-VOL Volumes Random forest 734 56
16 Moradi VBM SVM 835 77
17 Routier-adni Shapes Regression 539 50
18 Routier-train Shapes Regression 539 73
19 Sarica Volume and thickness SVM 210 70
20 Sensi Intensity relations Random forest, SVM 581 73
21 Smith Volume and raw intensities Regression 189 80
22 Sørensen-equal Volume, thickness, shape, intensity relations LDA 679 73
23 Sørensen-optimized Volume, thickness, shape, intensity relations LDA 679 80
24 Tangaro Volume and thickness SVM 190 735-fold

25 Wachinger-enetNorm Volume, thickness and shape Regression 781 73
26 Wachinger-man Volume, thickness and shape Regression 781 67
27 Wachinger-step1 Volume, thickness and shape Regression 781 77
28 Wachinger-step1Norm Volume, thickness and shape Regression 781 77
29 Wachinger-step2 Volume, thickness and shape Regression 781 80
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Automatic:Yes. Registration requiredmanual intervention for some
subjects.

Computation time: 1 h per subject.

Amoroso et al.
Algorithm: Amoroso (Amoroso et al., 2014).
Features: Volume features (FreeSurfer) and intensity features of the

peri-hippocampal region (mean, standard deviation, kurtosis, and
skewness).

Classifier: Back propagation neural network (1hidden layer, 10 neu-
rons). For every pairwise classification, 100 networks were trained on
50 randomly selected features. For final classification, the output scores
were averaged.

Training data: 258 ADNI subjects + the 30 training subjects.
Feature selection: Unsupervised filter based on correlation and lin-

ear dependencies.
Confounder correction: –.
Automatic: Yes.
Computation time: 13 h per subject, of which 12 h were due to

FreeSurfer processing time.

Cárdenas-Peña et al.
Algorithm: Cárdenas-Peña (Cárdenas-Peña et al., 2014)
Features: Features were based on similarities in MRI intensities be-

tween subjects. As a first step, similarities between slices of a subject's
scan were calculated along each axis resulting in an interslice kernel
(ISK) matrix. Second, pairwise similarities between the subjects' ISK
matrices were computed using theMahalanobis distance. Third, the de-
pendence between the resulting matrix of the previous step and the
class labels was optimized using a kernel centered alignment function.
The eigenvalues of the resulting matrix were used as features.

Classifier: Radial-basis kernel SVM.
Training data: 451 ADNI subjects.
Feature selection: –.
Confounder correction: –.
Automatic: Yes.
Computation time: 22.3 s per subject.

Dolph et al.
Algorithm: Dolph (Dolph et al., 2014).
Features: Volume ratio of white matter (WM) and CSF for axial

slices.
Classifier: Radial-basis kernel SVM.
Training data: The 30 training subjects.
Feature selection: SVM wrapper.
Confounder correction: –.
Automatic: Yes, but parameters for skull stripping and tissue seg-

mentation were set manually.
Computation time: 30 min per subject.

Eskildsen et al.
Algorithm: Eskildsen (Eskildsen et al., 2014, 2015):
Features: Volume and intensity features of the hippocampus (HC)

and entorhinal cortex (ERC) were calculated with Scoring by Non-
local Image Patch Estimator (SNIPE). By comparing small image patches
to a training library, this method segmented these brain regions and
computed a grading value per voxel reflecting the proximity between
a patch and the classes. As features, the volumes and average grading
values for HC and ERC were used.

Cortical thickness was computed with Fast Accurate Cortex Extrac-
tion (FACE). As features, themean cortical thicknesswas used in regions
with large differences in cortical thickness between the classes.

These features were combined:

1. Eskildsen-FACEADNI1: Volume, intensity and cortical thickness fea-
tures

2. Eskildsen-ADNI1: Volume and intensity features
3. Eskildsen-FACEADNI2: Volume, intensity and cortical thickness fea-

tures
4. Eskildsen-ADNI2: Volume and intensity features
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5. Eskildsen-Combined: A combination of the other four methods by av-
eraging the posterior probabilities

Classifier: Sparse logistic regression. Ensemble learning was used to
combine twenty-five models that were trained using different parame-
ters and different samplings of the data.

Training data:

1. Eskildsen-FACEADNI1: 794 ADNI1 subjects
2. Eskildsen-ADNI1: 794 ADNI1 subjects
3. Eskildsen-FACEADNI2: 304 ADNI2 subjects
4. Eskildsen-ADNI2: 304 ADNI2 subjects
5. Eskildsen-Combined: 794 ADNI1 and 304 ADNI2

Regression parameters were optimized on the 30 training subjects.

Feature selection: –.
Confounder correction: Yes, for age, sex and differences in class

priors.
Automatic: Yes.
Computation time: 55 min per subject.

Franke et al.
Algorithm: Franke (Franke and Gaser, 2014)
Features: VBM of GM and WM.
Classifier:Relevance vector regression. An age predictionmodelwas

trained on healthy controls. Classification of AD, MCI and CN was per-
formed by thresholding the age difference between the predicted age
and the real age.

Training data: 561 healthy subjects (IXI cohort11). The age differ-
ence threshold was optimized on the 30 training subjects.

Feature selection: Principal component analysis (PCA).
Confounder correction: Yes. Age was used in the modeling. Sepa-

rate models were trained for males and females.
Automatic: Yes, except for the optimization of the age difference

threshold.
Computation time: 10 min per subject.

Ledig et al.
Algorithm: Ledig (Ledig et al., 2014).
Features: Five feature sets were used:

1. Ledig-VOL: Volumes of regions-of-interest (ROIs) obtained with
multi-atlas label propagation and expectation-maximization-based
refinement (MALP-EM).

2. Ledig-CORT: Cortical thickness features (mean and standard devia-
tion) and surface features (surface area, relative surface area, mean
curvature, Gaussian curvature) for the whole cortex and cortex re-
gions.

3. Ledig-MBL: Features describing the manifold-based learning (MBL)
space. The manifold was trained on intensity texture descriptors for
1701 ADNI subjects.

4. Ledig-GRAD: Intensity patterns in patches. Grading features were
learned using data of 629 ADNI and the 30 training subjects. The
method was based on SNIPE (Eskildsen et al., 2014).

5. Ledig-ALL: A combination of all features above.

Classifier: Random forest classifier.
Training data: 734 ADNI subjects.
Feature selection: Only for Ledig-MBL and Ledig-Grad. Ledig-MBL:

PCA and sparse regression using local binary intensity patterns and
mini mental-state examination (MMSE) scores of 292 ADNI subjects.
Ledig-Grad: elastic net sparse regression.

Confounder correction: –.
Automatic: Yes.
Computation time: 4 h per subject.
11 http://www.brain-development.org.
Moradi et al.
Algorithm: Moradi (Moradi et al., 2014).
Features: VBM of GM.
Classifier: Transductive SVM. Unsupervised domain adaptation was

used to adapt the ADNI data to the 30 training sets. To increase both
class separability and within-class clustering, low density separation
was applied to both labeled and unlabeled data. The SVM used a
graph-distance derived kernel. The classifications were repeated 101
times and combined with majority vote. Classification was performed
in two stages: 1) AD/CN classification, 2) a further division of AD/MCI
and CN/MCI.

Training data: 835 ADNI subjects.
Feature selection: Elastic net logistic regression.
Confounder correction: Yes. Age effects were removed with linear

regression.
Automatic: Yes.
Computation time: 10 min per subject.

Routier et al.
Algorithm: Routier (Routier et al., 2014).
Features: Features derived from shape models of 12 brain struc-

tures: caudate nucleus, putamen, pallidum, thalamus, hippocampus
and amygdala of each hemisphere. The segmentations were obtained
with FreeSurfer. 3D triangular meshes of the shapes were obtained
with a marching-cubes algorithm. Anatomical models of the shapes
were built for AD, MCI and CN using Deformetrica12 (Durrleman et al.,
2014). The shapemodels were registered to the test subjects, thus com-
puting the likelihood of the data for each model.

Classifier: Maximum-likelihood regression.
Training data: 509 ADNI subjects.
Thresholds were optimized on:

1. Routier-adni: the ADNI data
2. Routier-train: the 30 training sets

Feature selection: –.
Confounder correction: –.
Automatic: Yes.
Computation time: 4 days for training the anatomical models and

additionally 11 h per subject.

Sarica et al.
Algorithm: Sarica (Sarica et al., 2014).
Features: Volume and cortical thickness features (FreeSurfer).
Classifier: Radial-basis kernel SVM. Pairwise classifications were

combined with voting.
Training data: 210 ADNI subjects. The 30 training sets were used for

model selection.
Feature selection: Three methods (correlation filter, random forest

filter, and SVM wrapper) and their combination were evaluated. The
models with best performance on the 30 training subjects were
selected: the methods without ICV correction using the random forest
filter (AD/CN, AD/MCI) and the correlation filter (CN/MCI).

Confounder correction: Yes. Age and sexwere included as features.
Experiments were performed with and without ICV correction.

Automatic: Yes, except for the model selection.
Computation time: 5 h per subject.
Note: Three test subjects were excluded as FreeSurfer failed.

Sensi et al.
Algorithm: Sensi (Sensi et al., 2014).
Features: Intensity and textural features of cuboid regions in the

medial temporal lobe. The cuboid regionswere placed around the ento-
rhinal cortex, perirhinal cortex, hippocampus, and parahippocampal
12 http://www.deformetrica.org.

http://www.brain-development.org
http://www.deformetrica.org
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gyrus. In addition, two control regions that are relatively spared by AD
(rolandic areas) were placed. In each region, voxel intensities were nor-
malized for each tissue by the tissue mean calculated in an additional
cuboid region positioned around the corpus callosum in a reference
template. To obtain the features, the voxels in the cuboid volumes
were processedwith 18 filters (e.g., Gaussianmean, standard deviation,
range, entropy, Mexican hat) with different voxel radii.

Classifier: Radial-basis kernel SVM and random forest classifier,
combined by the weighted mean. Using probability density functions
estimated on the 30 training subjects, the output probabilities were
mapped to the classes.

Training data: 551 ADNI subjects + the 30 training subjects. For the
ADNI data, MCIc patients were included in the AD group.

Feature selection: Random forest classifier.
Confounder correction: –.
Automatic: Yes.
Computation time: 45 min per subject.

Smith et al.
Algorithm: Smith (Smith et al., 2014).
Features: Surface area, volume and fragility of a thresholded ROI

containingmainly theWM. The fragility originates fromnetwork theory
andmeasures how close the structure is from breaking apart into small-
er components.

Classifier: Multinomial logistic regression.
Training data: 189 ADNI subjects + the 30 training subjects.
Feature selection: –.
Confounder correction: Yes. Age was used as a feature. Separate

thresholds for males and females were used for the WM ROI.
Automatic: Yes, except for the optimization of the threshold for the

WM ROI.
Computation time: 7–24 min per subject.

Sørensen et al.
Algorithm: Sørensen (Sørensen et al., 2014).
Features: Five types of featureswere combined: 1) volumes of seven

bilaterally joined regions (amygdala, caudate nucleus, hippocampus,
pallidum, putamen, ventricles, whole brain; FreeSurfer), 2) cortical
thickness of four lobes and the cingulate gyrus (FreeSurfer), 3) the vol-
umeof both hippocampi segmentedwith amulti-atlas, non-local patch-
based segmentation technique (using 40 manual segmentations from
the Harmonized Hippocampal Protocol as atlases (Frisoni and Jack,
2011)), 4) two hippocampal shape scores (left and right) computed
by a Naive Bayes classifier on the principal components of surface land-
marks trained on ADNI and AIBL AD/CN data, 5) a hippocampal texture
score computed by a radial-basis kernel SVM on a Gaussian-filter-bank-
based texture descriptor trained on ADNI and AIBL AD/CN data.

Classifier: Regularized linear discriminant analysis (LDA).
Different priors were used:

1. Sørensen-equal: equal class priors
2. Sørensen-optimized: class priors optimized on the 30 training sub-

jects (pCN ¼ 1
8, pMCI ¼ 3

8, pAD ¼ 1
2).

Training data: 504 ADNI and 145 AIBL subjects.
Feature selection: –.
Confounder correction:Yes. Featureswere z-score transformed de-

pendent on the age. Volume features were explicitly normalized by di-
viding by ICV.

Automatic: Yes.
Computation time: 19 h per subject, of which 18 h were due to

FreeSurfer processing time.

Tangaro et al.
Algorithm: Tangaro (Tangaro et al., 2014).
Features: Volume and cortical thickness features (FreeSurfer). Hip-
pocampus segmentations were obtained with random forest classifica-
tion based on Haar-like features.

Classifier: Linear SVM. Pairwise classifications were combined by
multiplication and normalization of the output probabilities.

Training data: 160 ADNI subjects + the 30 training subjects
Feature selection: –.
Confounder correction: –.
Automatic: Yes.
Computation time: 13 h per subject, of which 12 h were due to

FreeSurfer processing time.

Wachinger et al.
Algorithm: Wachinger (Wachinger et al., 2014a).
Features: Volume, cortical thickness and shape features

(FreeSurfer). For computation of shape features, a spectral shape de-
scriptor (‘ShapeDNA’) was derived from volume (tetrahedral) and sur-
face (triangular) meshes obtained from FreeSurfer labels with the
marching cubes algorithm. This shape descriptor computes the intrinsic
geometry with a method that does not require alignment between
shapes (Reuter et al., 2006). Using 50 eigenvalues of the shape descrip-
tor, two types of shape features were computed (Wachinger et al.,
2014b): 1) the principal component for 44 brain structures
(‘BrainPrint’), and 2) the shape differences between left and right for
white matter, gray matter, cerebellum white matter and gray matter,
striatum, lateral ventricles, hippocampus and amygdala.

Classifier: Generalized linear model.
Training data: 751 ADNI subjects + the 30 training subjects.
Feature selection: Five methods were used:

1. Wachinger-man: manual selection of ROIs.
2. Wachinger-step1: stepwise selection using the Akaike information

criterion on ADNI.
3. Wachinger-step2: stepwise selection using the Akaike information

criterion on ADNI and the provided training data.
4. Wachinger-step1Norm: stepwise selection using the Akaike informa-

tion criterion on ADNI with normalization by the Riemannian vol-
ume of the structure.

5. Wachinger-enetNorm: elastic net regularization with normalization
by the Riemannian volume of the structure.

Confounder correction: Yes. Agewas corrected for by linear regres-
sion, volume measures were normalized by the ICV.

Automatic: Yes.
Computation time: 17.4 h per subject, of which 16.8 h were due to

FreeSurfer processing.

Results

The results presented in this section are based on the 29 algorithms
presented at the CADDementia workshop (MICCAI 2014 workshop
section).

Classification performance

Table 5 and Fig. 1 show the accuracies and TPFs for the algorithms.
The algorithms are ranked by accuracy. The accuracies ranged from
32.2% to 63.0%. As a three-class classification problem was analyzed,
the accuracy for random guessing would be ~33.3%. If all subjects
were estimated to be in the largest class (CN), the accuracy would be
n
CN
�n ¼ 129

�
354 ¼ 36:4%. It can thus be observed that 27 out of the 29

algorithms performed significantly better than guessing. The algorithm
with the best accuracy was Sørensen-equal, with an accuracy of 63.0%.
According to the McNemar test, Sørensen-equalwas significantly better
than most other algorithms (p b 0.05) except for Sørensen-optimized
(p = 0.23), Wachinger-enetNorm (p = 0.21),Moradi (p = 0.14), Ledig-



Table 5
Accuracy and true positive fractions (TPFs) on the test data for the participating algorithms. CI = 95% confidence interval estimated with bootstrapping.

Rank Algorithm Accuracy [%] (CI) TPFCN [%] (CI) TPFMCI [%] (CI) TPFAD [%] (CI)

1 Sørensen-equal 63.0 (57.9–67.5) 96.9 (92.9–99.2) 28.7 (21.3–37.4) 61.2 (51.6–69.8)
2 Sørensen-optimized 59.9 (54.8–64.7) 70.5 (62.8–77.8) 41.0 (33.3–50.0) 68.9 (59.6–77.2)
3 Wachinger-enetNorm 59.0 (54.0–63.6) 72.1 (63.4–79.2) 51.6 (43.5–61.3) 51.5 (41.5–61.2)
4 Ledig-ALL 57.9 (52.5–62.7) 89.1 (83.7–93.8) 41.0 (32.4–49.6) 38.8 (30.7–50.0)
5 Moradi 57.6 (52.3–62.4) 57.4 (48.7–66.1) 59.8 (51.3–68.1) 55.3 (46.7–65.2)
6 Franke 56.2 (50.8–61.3) 58.9 (50.4–67.5) 43.4 (34.8–51.7) 68.0 (58.8–77.1)
7.5 Sensi 55.1 (50.0–60.2) 71.3 (63.6–78.8) 40.2 (31.2–49.6) 52.4 (42.7–62.0)
7.5 Ledig-CORT 55.1 (49.7–59.9) 68.2 (60.5–76.0) 45.1 (35.3–53.4) 50.5 (41.2–60.5)
9.5 Ledig-GRAD 54.0 (48.9–59.3) 87.6 (81.7–92.6) 37.7 (29.3–47.5) 31.1 (22.4–40.4)
9.5 Wachinger-step1 54.0 (48.9–59.0) 68.2 (60.2–75.4) 41.0 (31.9–50.9) 51.5 (42.2–61.1)
12.5 Wachinger-step1Norm 53.7 (48.6–58.8) 63.6 (54.9–71.9) 47.5 (38.4–56.6) 48.5 (39.6–59.1)
12.5 Sarica 53.7 (48.3–58.8) 65.9 (57.4–74.2) 39.3 (30.0–48.2) 55.3 (44.9–64.9)
12.5 Wachinger-step2 53.7 (47.5–58.8) 66.7 (58.1–74.1) 38.5 (30.1–48.1) 55.3 (45.5–65.0)
12.5 Abdulkadir 53.7 (48.3–58.2) 45.7 (37.0–53.6) 65.6 (56.1–73.0) 49.5 (39.4–58.8)
15 Ledig-MBL 53.4 (47.7–57.9) 82.9 (76.0–88.7) 43.4 (35.1–52.9) 28.2 (20.2–37.4)
16 Wachinger-man 53.1 (47.7–57.9) 61.2 (53.5–69.6) 60.7 (51.7–70.0) 34.0 (25.7–44.7)
17.5 Eskildsen-ADNI1 52.0 (46.6–56.8) 65.1 (56.9–73.2) 32.0 (24.1–40.9) 59.2 (49.5–68.3)
17.5 Eskildsen-FACEADNI1 52.0 (46.9–57.1) 65.1 (56.6–73.1) 36.1 (28.1–45.5) 54.4 (44.6–63.6)
19 Eskildsen-Combined 51.1 (45.5–56.2) 64.3 (56.2–72.3) 35.2 (27.1–44.3) 53.4 (43.0–62.9)
20 Dolph 49.7 (44.6–54.8) 84.5 (77.9–90.4) 23.0 (16.4–31.2) 37.9 (28.9–47.3)
21 Routier-adni 49.2 (43.5–54.2) 94.6 (89.8–97.7) 11.5 (6.2–17.7) 36.9 (27.4–46.5)
22.5 Eskildsen-FACEADNI2 48.3 (43.2–53.4) 48.8 (40.5–57.4) 42.6 (33.9–51.3) 54.4 (45.5–64.0)
22.5 Routier-train 48.3 (42.9–53.4) 48.1 (39.8–56.9) 21.3 (14.8–29.0) 80.6 (72.2–87.3)
24.5 Ledig-VOL 47.7 (42.1–52.8) 66.7 (57.1–74.1) 36.9 (28.9–45.9) 36.9 (28.6–47.2)
24.5 Eskildsen-ADNI2 47.7 (42.1–52.8) 59.7 (51.2–68.4) 38.5 (29.9–47.3) 43.7 (33.7–53.8)
26 Amoroso 46.9 (41.5–52.3) 67.4 (58.5–75.2) 42.6 (33.6–51.1) 26.2 (18.3–35.4)
27 Tangaro 46.6 (41.0–51.4) 68.2 (60.2–76.5) 37.7 (29.2–46.3) 30.1 (21.7–39.0)
28 Cárdenas-Peña 39.0 (33.9–43.8) 50.4 (41.5–59.1) 28.7 (21.6–38.5) 36.9 (27.4–46.8)
29 Smith 32.2 (27.4–36.7) 48.1 (39.6–57.1) 20.5 (13.9–28.3) 26.2 (18.3–35.0)
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ALL (p = 0.09), and Franke (p = 0.06). The TPFs had a large variability
between the algorithms, showing that the different algorithms chose
different priors for the classification. Appendix A lists the confusionma-
trices for all algorithms.

For 19 of the methods, output probabilities were submitted, en-
abling ROC-analysis. Table 6 and Fig. 2 show the overall AUC and the
per-class AUCs (AUC(ci)) for the algorithms ranked by AUC. The AUC
ranged from 50.4% to 78.8%. This was better than random guessing for
all algorithms except for one having an AUC of 50.4% (46.7%–54.6%).
The two algorithms by Sørensen et al. (Sørensen-equal, Sørensen-opti-
mized) had the highest AUC (78.8%), followed by the algorithm of
Abdulkadir (AUC = 77.7%). Fig. 3 shows the per-class ROC curves for
Sørensen-equal. For most algorithms, the per-class AUCs for CN (range:
54.1%–86.6%) and AD (range: 46.6%–89.2%) were higher than the
Fig. 1.Accuracy and TPFs on the test data for the participating algorithms. For the accuracy,
the 95% confidence interval is shown in gray.
overall AUC. Except for Smith, AUCMCI (range: 50.0%–63.1%) was always
smaller than the overall AUC.

For the AD and CN classes, the evaluated algorithms obtained rela-
tively high values for TPF and AUC. However, TPF and AUC for the MCI
class were lower than those for the other classes, indicating that classi-
fication of MCI based onMRI is a difficult problem. This might be due to
several factors including the heterogeneity of the MCI class and the use
of the clinical diagnosis as reference standard (see Clinical applicability
section in the Discussion).

The test data consisted of three subsets of data from three centers
(Table 2). Fig. 4 shows how the performances of the algorithms varied
between the subsets provided by different centers. The performances
on the UP data set were mostly higher than those using all data, but
the variation in performance across algorithms was rather high. Perfor-
mances on the VUMC data were slightly better than those for all data,
and performances on the EMC data were slightly worse than those for
all data.
Feature extraction and classifiers

As shown in Table 4, the algorithms used a wide range of ap-
proaches. Out of the 29 methods, most methods included features
based on volume (N = 19), 14 algorithms included features based on
cortical thickness, 14 algorithms included features based on intensity
(of which two algorithms used raw intensities and the rest more com-
plex intensity relations), 9 algorithms included features based on
shape, and 3 algorithms used voxel-based morphometry (VBM). Vol-
ume, cortical thickness, intensity and shape features were often com-
bined. The combination of volume, cortical thickness and intensity
was most often used (N = 8). We noted from Fig. 5 that the perfor-
mance differences between the different feature extraction strategies
were small, but in general we observed that the best performances
were achieved with VBM and the combination of volume and cortical
thickness with either shape, intensity or both. Also the classifiers

Image of Fig. 1


Table 6
Area under the ROC-curve (AUC) on the test data for the participating algorithms that computed probabilistic outputs. CI = 95% confidence interval estimated with bootstrapping.

Rank Algorithm AUC [%] (CI) AUCCN [%] (CI) AUCMCI [%] (CI) AUCAD [%] (CI)

1.5 Sørensen-equal 78.8 (75.6–82.0) 86.3 (81.8–89.3) 63.1 (56.6–68.3) 87.5 (83.4–91.1)
1.5 Sørensen-optimized 78.8 (75.5–82.1) 86.3 (81.9–89.3) 62.7 (56.8–68.4) 86.7 (82.3–90.4)
3 Abdulkadir 77.7 (74.2–81.0) 85.6 (81.4–89.0) 59.9 (54.1–66.4) 86.7 (82.3–90.3)
4 Wachinger-enetNorm 77.0 (73.6–80.3) 83.3 (78.5–87.0) 59.4 (52.9–65.5) 88.2 (83.8–91.4)
5 Ledig-ALL 76.7 (73.6–79.8) 86.6 (82.7–89.8) 59.7 (53.3–65.1) 84.9 (79.7–88.7)
6 Ledig-GRAD 75.4 (72.4–78.6) 85.6 (81.5–88.9) 60.3 (53.9–66.5) 81.7 (76.3–86.1)
7 Ledig-MBL 75.2 (72.0–78.1) 82.5 (77.8–86.0) 57.3 (50.9–63.6) 86.4 (81.4–89.9)
8 Wachinger-step1 74.6 (70.8–78.1) 79.1 (73.5–83.1) 55.0 (48.5–61.4) 89.2 (85.3–92.3)
9.5 Wachinger-step1Norm 74.3 (70.5–77.9) 79.3 (74.1–83.5) 55.5 (48.5–61.6) 87.7 (83.7–91.1)
9.5 Wachinger-man 74.3 (70.9–77.9) 80.6 (75.7–84.9) 56.3 (49.7–63.0) 86.1 (81.7–90.0)
11 Sensi 73.8 (70.2–77.5) 81.7 (77.1–85.8) 55.0 (48.8–61.0) 83.9 (78.8–87.7)
12 Ledig-CORT 73.7 (69.9–77.2) 79.6 (75.0–84.2) 58.9 (52.9–64.9) 82.4 (76.7–87.3)
13 Wachinger-step2 72.7 (68.9–76.4) 79.3 (74.0–83.5) 51.9 (45.3–58.7) 86.5 (81.9–90.3)
14 Ledig-VOL 68.4 (64.5–72.5) 75.7 (70.3–81.0) 50.1 (44.1–56.4) 79.0 (73.3–83.5)
15 Amoroso 67.2 (63.3–71.3) 73.4 (67.8–78.7) 56.0 (49.7–61.9) 72.3 (66.2–77.5)
16 Tangaro 67.1 (63.2–71.0) 73.1 (67.8–78.0) 52.6 (45.9–58.6) 75.8 (70.2–80.6)
17 Dolph 63.0 (59.6–67.2) 66.2 (61.3–70.3) 55.4 (50.0–60.0) 65.8 (60.6–71.3)
18 Cárdenas-Peña 55.9 (51.2–59.9) 57.8 (51.6–63.4) 50.0 (43.9–57.1) 59.8 (53.5–65.7)
19 Smith 50.4 (46.7–54.6) 54.1 (48.0–60.0) 50.6 (45.0–57.1) 46.6 (40.0–53.6)
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differed between the algorithms: 14 algorithms used regression, 7 algo-
rithms used an SVM classifier, 6 used a random forest classifier, 2 used
linear discriminant analysis (LDA) and 1 used a neural network for clas-
sification. Performance differences between the different classifiers
seemed to be small. It should be noted, however, that one should be
careful in drawing conclusions based on Table 4 or Fig. 5, as there are
multiple differences between the algorithms.

Eight teams incorporated age effects in their algorithms, either by
explicitly including age in the model (Franke and Gaser, 2014; Sarica
et al., 2014; Smith et al., 2014) or by eliminating age effects using age-
dependent normalization (Sørensen et al., 2014) or regression
(Abdulkadir et al., 2014; Eskildsen et al., 2014; Moradi et al., 2014;
Wachinger et al., 2014a). Three teams used the same strategy to correct
for sex (Abdulkadir et al., 2014; Eskildsen et al., 2014; Sarica et al.,
2014), two teams trained separate models for males and females
(Franke and Gaser, 2014; Smith et al., 2014).

Training data

Most algorithms, except for Dolph, were trained on more training
data than only the 30 provided data sets. Mainly data from ADNI and
AIBL were used. Fig. 6 shows the relationship between the number of
training data sets and the test set performance. Most algorithms used
600–800 data sets for training.
Fig. 2. Area under the ROC-curve (AUC) on the test data for the participating algorithms.
For total AUC, the 95% confidence interval is shown in gray.
Fig. 7 shows the relationship between the accuracy of the algorithms
on the test set and the accuracy on the 30 provided training data sets as
reported in the workshop papers. The figure shows that almost all algo-
rithms overestimated accuracy on the training set. However, some of
the methods explicitly trained on the 30 provided data sets to ensure
optimal performance on the test set. It should be noted that different
strategies were used to evaluate the training set accuracy, i.e., train-
test evaluation or cross-validation.

Discussion

Evaluation framework

Although the literature on computer-aided diagnosis of dementia
has shown promising results, thorough validation of these algorithms
for clinical use has rarely been performed. To enable proper validation
of the algorithms, we addressed the following factors in our evaluation
framework: comparability, generalizability and clinical applicability.

Comparability
Comparison of different state-of-the-art algorithms is difficult, as

most studies use different evaluation data sets, validation strategies
and performance measures. According to the literature, little has been
Fig. 3. The receiver-operating-characteristic (ROC) curve on all test data for the best
performing algorithm: Sørensen-equal.
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Fig. 4. Accuracy (a) and area under the ROC-curve (AUC) (b) on the test data for the participating algorithms on all data (N = 354) and on the three subsets of test data from different
centers: VUMC (N= 166), EMC (N= 161), UP (N = 27). For accuracy and AUC on all data, the 95% confidence interval is shown in gray.

573E.E. Bron et al. / NeuroImage 111 (2015) 562–579
done in comparing different algorithms using the same data and meth-
odology. We found two studies that compared multiple algorithms
(Cuingnet et al., 2011; Sabuncu and Konukoglu, 2015), of which the
work of Cuingnet et al. (2011) does not allow addition of newmethods
to the comparison. For our evaluation framework, we aimed to increase
comparability of the evaluated algorithms by making the testing data
set and the validation scripts publicly available. Effortwasmade to com-
pose a largemulti-center data set and to define good evaluation criteria
for multi-class classification. One of the main advantages of this evalua-
tion framework is that it can be used by every researcher: anyone who
developed a new algorithm can download the data and submit results
via our web-based framework13. Both established and state-of-the-art
algorithms can be evaluated and compared to algorithms evaluated by
others. The framework remains open for new submissions.

Since the main question that we aimed to address with this frame-
work is how well the current state-of-the-art methods would perform
in clinical practice, we specifically chose to use few constraints for the
participating methods. Therefore, the framework allows to compare al-
gorithms performing the full analysis, from image to diagnosis. This in-
troduces a lot of variation in the participating algorithms. Participants
had a lot of freedom in their choices for the training data and the
methods for image processing and classification. Therefore, in
discussing themethodswewere not able to completely explain the per-
formance differences betweenmethods in all cases. For example, a very
good method that uses a small amount of training data may have the
sameperformance as anothermethod that isworse but usesmore train-
ing data. With the chosen set-up, it is also not possible to assess which
part of the algorithm led to the increase in performance. These include
a multitude of aspects, such as feature extraction, feature selection,
and classification.

At present, a similar challenge is running: the Alzheimer's Disease
Big Data (ADBD) DREAM challenge #114, of which sub-challenge 3 is
similar to the work presented in this paper. In the ADBD DREAM chal-
lenge, participants are asked to build a predictive model for MMSE
and diagnosis based on T1w MRI data and other variables (i.e., age at
baseline, years of education, sex, APOE4 genotype, imputed genotypes).
One of the differenceswith our challenge is that the ADBDDREAM chal-
lenge supplies a fixed training set from the ADNI database, instead of
leaving this open to the participants. Two test sets, both consisting of
107 subjects from the AddNeuroMed database (Lovestone et al., 2009)
13 http://caddementia.grand-challenge.org.
14 http://www.synapse.org/#!Synapse:syn2290704/.
are provided. The ADBD DREAM challenge generally made the same
choices for their evaluation framework, as they use the same diagnostic
groups and reference standard. Preliminary results for the ADBD
DREAM challenge are available from their web site. The best predictive
model for MMSE yielded a Pearson correlation of 0.602, and the best
model for diagnosis yielded an accuracy of 60.2%. The algorithm that
was best ranked on average used Gaussian process regression with 20
image features, APOE4 and education (Fan and Guan, 2014).

Generalizability
For newmethods, it is important to know how they would general-

ize to a new, clinically representative data set. Often cross-validation is
used to validate the performance of machine learning algorithms
(Falahati et al., 2014). Although cross-validation is very useful, especial-
ly in the situation when not many scans are available, it optimizes per-
formance on a specific population and can therefore overestimate
performance on the general population (Adaszewski et al., 2013). In ad-
dition, algorithms are often tuned to specific cohorts which limit their
generalizability (Adaszewski et al., 2013). When generalizing an algo-
rithm to other data, variability in the data acquisition protocol, the pop-
ulation or the reference standard can be problematic and can decrease
performance (Sabuncu and Konukoglu, 2015). To evaluate generaliz-
ability of the algorithms, which is certainly required for clinical imple-
mentation, we used a large, new and unseen test set in this work. This
data set consisted of scans acquired with GE (n = 354) and Siemens
(n = 30) scanners, so we do not have information on the performance
of the algorithms on data from other scanners. However, the data set
had some differences in scanning parameters, which allows evaluation
of the generalizability of the algorithms to different scanning protocols.
The diagnostic labels of the test set were blinded to the authors of the
algorithms, which is different from the benchmark papers by Cuingnet
et al. (2011) and Sabuncu and Konukoglu (2015). The importance of
an independent test is also confirmed by Fig. 7, which shows that all al-
gorithms overestimated the performance by cross-validating or tuning
on the training set.

Another factor providing insight into the generalizability of the per-
formance results was the size of the test set. The test set was quite large,
consisting of 354 subjects. Not many other studies used an unseen test
set. For studies using cross-validation, usually 500–800 data sets from
the ADNI database are used (Cuingnet et al., 2011; Falahati et al.,
2014; Sabuncu and Konukoglu, 2015). The ADBD DREAM challenge
uses an unseen test set, but much smaller than the one used here (107
subjects).

http://caddementia.grand-challenge.org
http://www.synapse.org/#!Synapse:syn2290704/
Image of Fig. 4


Fig. 5.Mean accuracy and area under the ROC-curve (AUC) on the test data for the different types of features used by the algorithms. The error bars show the standard deviation.
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Clinical applicability
For this evaluation framework, the decision was made to split our

multi-center data set into a small (n = 30) training set and a large
test set. This choice resembles a clinical setting, where in a certain hos-
pital only a small training data set is available. On the other hand, a lot of
training data are available from publicly available databases like the
ADNI and AIBL, which can be used for training the algorithms.

As reference standard for evaluation of the algorithms, the current
clinical diagnosis criteria for AD (McKhann et al., 2011) and MCI
(Petersen, 2004) were used, which is a common practice in studies of
computer-aided diagnosis methods (Cuingnet et al., 2011; Klöppel
et al., 2008; Falahati et al., 2014; Davatzikos et al., 2008a; Duchesne
et al., 2008; Fan et al., 2008a,b; Gray et al., 2013; Koikkalainen et al.,
2012; Magnin et al., 2009; Vemuri et al., 2008; Wolz et al., 2011).
Ground truth diagnosis of dementia can only be assessed using autopsy
and is therefore only rarely available. Of the previously mentioned pa-
pers, only one paper included one group of 20 AD patients with an au-
topsy confirmed diagnosis (Klöppel et al., 2008). Amyloid imaging
(Klunk et al., 2004) has also proven to be a good biomarker for AD, as
subjects with positive amyloid showed to have a more rapid disease
progression (Jack et al., 2010). However, availability of these data is
also very limited. The limitation of using clinical diagnosis as the ground
truth is that itmay be incorrect. In the literature, the reported accuracies
of the clinical diagnosis of AD, based on the old criteria (McKhann et al.,
1984), compared to postmortem neuropathological gold standard diag-
nosis were in the range of 70–90% (Mattila et al., 2012; Lim et al., 1999;
Petrovitch et al., 2001; Kazee et al., 1993). Although the clinical diagno-
sis has limitations, we believe that it is the best available reference stan-
dard. One should also note that this challenge does not aim to assess the
diagnostic accuracy of structuralMRI, asMRI itself is also included in the
criteria for clinical diagnosis. Instead, we focus on comparing computer-
aided diagnosis algorithms on an unseen blinded test set with standard-
ized evaluation methods using the clinical diagnosis as the best avail-
able reference standard.

This work interprets the differentiation of patients with AD,MCI and
controls as a multi-class classification problem. This might not be
(a)

Fig. 6. The number of training data sets used plotted against the test set performance of every a
confidence interval.
optimal as there is an ordering of the classes, i.e., classification of an
AD patient as an MCI patient might be less bad than classifying as a
healthy person. However, addressing only binary problems, such as
AD/CN classification, does not reflect the clinical diagnosis making and
results in a too optimistic performance estimate. Because the current
clinical diagnosis uses the three classes, we chose to focus on multi-
class classification in this challenge and did not use the ordering in the
evaluation.

According to the criteria of Petersen (2004) and similar to ADNI, only
MCI patients with memory complaints, amnestic MCIs, were included in
the data set. For classification, all MCI patients were considered to be a
single group which is according to current clinical practice Petersen
(2004). This is debatable, since MCI patients are known to be a clinically
heterogeneous group with different patterns of brain atrophy (Misra
et al., 2009), of which some cases will not progress to AD. From this
point of view, it can be questioned whether MCI is a diagnostic entity or
whether MCI describes a stage on a continuum from cognitively normal
to AD. If MCI is actually an intermediate between the two other classes,
theAD/CNborder in three-class classificationwould be also subject to dis-
cussion. Although the usage of the MCI definition is advised for diagnosis
in clinical practice (Petersen, 2004), the borders between AD/MCI and
MCI/CN based on diagnostic criteria can be unclear. Because of those un-
clear borders and the heterogeneity in theMCI class, classification accura-
cies are expected to be reduced. The results of the evaluated algorithms
confirmed that distinguishing MCI from AD and CN is difficult. The AUC
for all algorithms was the lowest for the MCI class and in most cases
also TPF was the lowest for MCI. Despite these limitations, the same
choices for the reference standard, classification, and the MCI group
were made in the ADBD DREAM challenge. Moreover, since MCI is still
used as diagnostic label in current clinical practice, having an objective
and automated algorithm that makes such diagnosis based on structural
MRI, would already be useful, for example, as a second opinion.

For facilitating clinical implementation of the algorithms, itwould be a
great benefit to make the evaluated algorithms publicly available for en-
abling validation on other data without the need for reimplementation.
In our evaluation framework, this is not yet possible. Instead, in our
(b)

lgorithm: (a) accuracy, (b) area under the ROC-curve (AUC). The error bars show the 95%
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Fig. 7. Accuracies for each algorithm estimated on the provided training data plotted
against the final accuracy. The error bars show the 95% confidence interval on the test
data. The black line (y = x) indicates the expected relationship.
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framework, all teams were encouraged to make a step-by-step imple-
mentation guide15 to make it possible to run the submitted algorithms
on other data sets.
Evaluated algorithms and results

The best performing algorithm (Sørensen-equal: accuracy = 63.0%,
AUC=78.8%)wasbased on a combination of features and used a simple
linear classifier (LDA). Also, regarding the other top-ranked algorithms,
the best performances were achieved by algorithms that incorporated
features describing different properties of the scans. Although the per-
formance differences between the different feature extraction strategies
were small, algorithms that used shape or intensity features in addition
to regional volumes and thickness performed slightly better than algo-
rithms solely based on shape features or on volume features. The
VBM-based methods also performed well. Different multivariate analy-
sis techniques were used by the algorithms, mainly regression, SVM,
and random forest classifiers. No trend in the best performing type of
classifier could be found.

Since hardly any results for three-class classification have been re-
ported, we cannot compare with representative results from the litera-
ture. The TPFs and AUCs for the AD and CN classes in this work are a bit
lower than those reported previously for AD/CN classification (Falahati
et al., 2014), but we expect that this is mainly due to the additional MCI
class in the classification and its heterogeneity. The ADBD DREAM chal-
lenge also evaluated three-class classification, and it reported perfor-
mances similar to those of this study (see Comparability section).

The methods Sørensen-equal and Sørensen-optimized were ranked
highest both based on accuracy and AUC. In general, the rankings by
the two performance measures were similar, but there were some ex-
ceptions. Abdulkadir, for example, ranked much higher based on AUC
(rank = 3) than on accuracy (rank = 12.5), which means that this
method was capable of distinguishing the classes with high sensitivity
and specificity at different cut-off points. However, for measuring the
accuracy, not the optimal cut-off point was chosen by the classifier.
The accuracy of this method could be improved by optimizing the
class priors used by the classifier. For classification, it is generally as-
sumed that the training data and its class priors are representative for
the test data. Depending on the class distributions of the training data
used, this assumption on class priors might not always have been justi-
fied. On the other hand, it is difficult to correct for differences in class
priors, as the distribution of the test set is often unknown. Of the
15 http://caddementia.grand-challenge.org/wiki.
participating teams, two specifically took the issue of class priors into
account. Eskildsen et al. removed the class unbalance of the training
set using a resampling technique (Eskildsen et al., 2014; Chawla et al.,
2002). Sørensen et al. experimented with two sets of class priors:
equal class priors and class priors optimized on the 30 training subjects
(Sørensen et al., 2014). However, formost algorithms accuracy andAUC
were similar, indicating that reasonable assumptions on the class priors
were made.

The provided data set consisted of structural MRI scans from three
centers. We noticed a small performance difference between the three
subsets. The performance on the UP subset was the highest, but this
might be explained by chance given the small size of the UP data set
(n = 27 in the test set, n = 3 in the training set) and a slight selection
bias towardsmore clinically clear-cut cases. Between the two other sub-
sets, a minor performance difference could be noted. The performance
differences might be caused by slight differences in inclusion criteria,
used scanners and scanning protocols between the centers, emphasiz-
ing the importance of a multi-center test set.

The size of the training set is known to have a large influence on the
performance of the classifier (Falahati et al., 2014). Although this study
does not provide enough information to draw a valid conclusion, as we
evaluated only 29 algorithms with the majority of training sets
consisting of 600–800 subjects,we see a slight positive relation between
the number of training data sets and the test set performance.

Themean age of ADpatients in the used data setwas 66.1±5.2 years,
whereas the age for AD patients in the ADNI cohorts that were used by
many algorithms for training was about 10 years higher (Abdulkadir
et al., 2014; Amoroso et al., 2014; Eskildsen et al., 2014; Ledig et al.,
2014; Sarica et al., 2014; Sensi et al., 2014; Sørensen et al., 2014;
Wachinger et al., 2014a). Although the same diagnosis criteria were
used in both cohorts, this age difference is most probably due to selection
bias. The used dataset consists of clinical data representing the outpatient
clinic population, whereas ADNI consists of research data. For clinical
practice, MRI may be used more conservatively. In addition, there is a re-
ferral bias towards younger patients because the VUMC and the EMC are
tertiary centers specialized in presenile dementia. This age difference be-
tween training and test datamight have had a negative effect on the per-
formances found in this study. To take this into account, eight of the 15
teams incorporated age effects in their algorithms.
Recommendations for future work

This challenge provided insight on the best strategies for computer-
aided diagnosis of dementia and on the performance of such algorithms
on an independent clinically representative data set. However, for this
challenge, specific choices for the evaluation framework were made.
Therefore, for clinical implementation of such algorithms, more valida-
tion studies that explore variations of this challenge are necessary.

A limitation of this challenge is that the clinical diagnosis is used as
reference standard. For the clinical diagnosis, MCI is used as a diagnostic
entity; it could however be questioned whether this can exist as sepa-
rate diagnosis next to AD. In addition, the accuracy of the clinical diag-
nosis is limited, but data sets with better reference standards are
scarce. The best reference standard is the postmortem diagnosis based
on pathology, which is the ground truth for AD diagnosis. A good alter-
native would be a reference standard based on the clinical diagnosis in-
cluding amyloid biomarkers or a long-term follow-up. For a validation
study, we strongly recommend to have an independent test set with
blinded diagnostic labels to promote generalizability.

In this challenge, classification was based on structural MRI using
subject age and sex as the only additional information. For a future chal-
lenge in which ground truth diagnosis is used for reference, it would be
very interesting to use all available clinical data in addition to structural
MRI as input for the computer-aided diagnosis algorithms. For the cur-
rent challenge, this was not yet useful as the reference standard was

http://caddementia.grand-challenge.org/wiki
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based directly on these clinical data. For structural MRI, this is not a
problem as it is only used qualitatively in clinical diagnosis making.

For the currentwork, we adopted hardly any constraints resulting in
a wide range of participating algorithms. To aid the understanding of
the influence of certainmethodological choices on the algorithmperfor-
mance, new projects could decide to focus on comparing specific ele-
ments of the algorithms.

We cannot be sure that the included algorithms are the best current-
ly available. Although this challengewas broadly advertised, quite some
effort from participants was required which may have kept some re-
searchers from participating. Of the teams that submitted a proposal,
two thirds did not participate in the challenge, possibly due to lack of
time or resources. To reach a wider audience in future challenges, orga-
nizers could reduce the effort required fromparticipants, for example by
providing precomputed features.

Another interesting problem to address in a future challenge is
that of differential diagnosis of AD and other types of dementia
(e.g., frontotemporal dementia (Du et al., 2006; Davatzikos et al., 2008b;
Raamana et al., 2014) or Lewy body dementia (Lebedev et al., 2013)). In
addition, instead of evaluating diagnostic algorithms, evaluation of prog-
nostic algorithmswould be very useful. Future challenges could therefore
evaluate the classification of MCI patients that convert to AD andMCI pa-
tients that do not convert to AD within a certain time period.

Lastly, newprojects could request their participants tomake their al-
gorithms publicly available to facilitate clinical implementation of the
algorithms for computer-aided diagnosis.

Conclusion

We presented a framework for the comparison of algorithms for
computer-aided diagnosis of AD and MCI using structural MRI data and
used it to compare 29 algorithms submitted by 15 research teams. The
framework defines evaluation criteria and provides a previously unseen
multi-center data set with the diagnoses blinded to the authors of the al-
gorithms. The results of this framework therefore present a fair compari-
son of algorithms formulti-class classification of AD,MCI and CN. The best
algorithm, developedby Sørensen et al., yielded an accuracy of 63%andan
AUCof 78.8%. Although the performance of the algorithmswas influenced
by many factors, we noted that the best performance was generally
achieved by methods that used a combination of features.

The evaluation framework remains open for new submissions to
be added to the ranking. We refer interested readers to the web site
http://caddementia.grand-challenge.org, where instructions for partici-
pation can be found.

We believe that public large-scale validation studies, such as this
work, are an important step towards the introduction of high-potential al-
gorithms for computer-aided diagnosis of dementia into clinical practice.
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Appendix A. Confusion matrices of the algorithms
True class Routier-adni True class
CN MCI AD CN MCI AD
82 49 7 Hypothesized class CN 122 87 42
47 58 46 MCI 7 14 23
0 15 50 AD 0 21 38
True class Eskildsen-FACEADNI2 True class
CN MCI AD CN MCI AD
85 43 11 Hypothesized class CN 63 31 6
41 48 34 MCI 56 52 41
3 29 57 AD 10 39 56

(continued on next page)

http://caddementia.grand-challenge.org
http://grand-challenge.org
http://www.fnih.org


Wachinger-enetNorm True class Wachinger-step2 True class Routier-train True class
CN MCI AD CN MCI AD CN MCI AD

Hypothesized class CN 93 44 6 Hypothesized class CN 86 51 4 Hypothesized class CN 62 17 2
MCI 36 63 44 MCI 41 47 42 MCI 42 26 18
AD 0 15 53 AD 2 24 57 AD 25 79 83

Ledig-ALL True class Abdulkadir True class Ledig-VOL True class
CN MCI AD CN MCI AD CN MCI AD

Hypothesized class CN 115 57 16 Hypothesized class CN 59 19 2 Hypothesized class CN 86 53 11
MCI 14 50 47 MCI 69 80 50 MCI 41 45 54
AD 0 15 40 AD 1 23 51 AD 2 24 38

Moradi True class Ledig-MBL True class Eskildsen-ADNI2 True class
CN MCI AD CN MCI AD CN MCI AD

Hypothesized class CN 74 30 2 Hypothesized class CN 107 66 13 Hypothesized class CN 77 36 7
MCI 52 73 44 MCI 20 53 61 MCI 49 47 51
AD 3 19 57 AD 2 3 29 AD 3 39 45

Franke True class Wachinger-man True class Amoroso True class
CN MCI AD CN MCI AD CN MCI AD

Hypothesized class CN 76 48 12 Hypothesized class CN 79 39 5 Hypothesized class CN 87 58 32
MCI 44 53 21 MCI 50 74 63 MCI 36 52 44
AD 9 21 70 AD 0 9 35 AD 6 12 27

Sensi True class Eskildsen-ADNI1 True class Tangaro True class
CN MCI AD CN MCI AD CN MCI AD

Hypothesized class CN 92 45 9 Hypothesized class CN 84 30 7 Hypothesized class CN 88 62 18
MCI 36 49 40 MCI 33 39 35 MCI 31 46 54
AD 1 28 54 AD 12 53 61 AD 10 14 31

Ledig-CORT True class Eskildsen-FACEADNI1 True class Cárdenas-Peña True class
CN MCI AD CN MCI AD CN MCI AD

Hypothesized class CN 88 49 18 Hypothesized class CN 84 29 8 Hypothesized class CN 65 51 36
MCI 32 55 33 MCI 38 44 39 MCI 30 35 29
AD 9 18 52 AD 7 49 56 AD 34 36 38

Ledig-GRAD True class Eskildsen-Combined True class Smith True class
CN MCI AD CN MCI AD CN MCI AD

Hypothesized class CN 113 59 19 Hypothesized class CN 83 33 7 Hypothesized class CN 62 51 44
MCI 15 46 52 MCI 39 43 41 MCI 39 25 32
AD 1 17 32 AD 7 46 55 AD 28 46 27

Wachinger-step1 True class Dolph True class
CN MCI AD CN MCI AD

Hypothesized class CN 88 57 7 Hypothesized class CN 109 73 46
MCI 40 50 43 MCI 14 28 18
AD 1 15 53 AD 6 21 39
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