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ABSTRACT Neurodegenerative diseases are particular diseases whose decline can partially or completely
compromise the normal course of life of a human being. In order to increase the quality of patient’s life,
a timely diagnosis plays a major role. The analysis of neurodegenerative diseases, and their stage, is also
carried out by means of gait analysis. Performing early stage neurodegenerative disease assessment is still
an open problem. In this paper, the focus is on modeling the human gait movement pattern by using the
kinematic theory of rapid human movements and its sigma-lognormal model. The hypothesis is that the
kinematic theory of rapid humanmovements, originally developed to describe handwriting patterns, and used
in conjunction with other spatio-temporal features, can discriminate neurodegenerative diseases patterns,
especially in early stages, while analyzing human gait with 2D cameras. The thesis empirically demonstrates
its effectiveness in describing neurodegenerative patterns, when used in conjunction with state-of-the-art
pose estimation and feature extraction techniques. The solution developed achieved 99.1% of accuracy using
velocity-based, angle-based and sigma-lognormal features and left walk orientation.

INDEX TERMS Pose-estimation, computer vision, computer aided diagnosis, gait analysis, machine
learning, early neurodegenerative diseases assessment, kinematic theory of rapid human movements,
sigma-lognormal.

I. INTRODUCTION
Neurodegenerative diseases are incurable diseases whose
decline can partially or completely compromise the normal
course of life of a human being.

In order to increase the quality of patient’s life, a timely
diagnosis plays a major role. Usually physicians asses the
disease by letting the patient performing several tasks, such
as Timed Up And Go (TUG) Test, Tandem Test, Sit to Stand,
ADL (Activities of Daily Living), IADL (Instrumental Activ-
ities of Daily Living), Romberg and many more, in which,
usually, the patient is asked to walk on a straight line or sit
and standup, try to remain immobile in balance and so on.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiri Mekyska.

These tests are important, because neurodegenerative dis-
eases act by destroying several parts of the nervous system
and showing various disorders in also other parts of human
body such as speaking, posture, coordination, handwriting
and many more [1], [6]

Gait is, thus, a complex activity which involves cognitive,
kinesthetic and perceptual-motor components [6]. Gait is
known to be one of the foundation movements of human
being and it is carried out from the first years of life.
It requires the use of an ensemble of resources of the nervous
system to bring it to completion.

The accuracy of the analysis carried out depends greatly on
the quality of the tools used. In past centuries, the analysis of
the gait was carried out mainly through the careful observa-
tion of experts, who were able to extrapolate qualitative and
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quantitative data from it (such as the cadence, the speed of
the pace and the distance traveled). The data obtained were,
certainly, valid for recognizing serious gait disturbances, but
proved inadequate to recognize small variations in the pro-
gression of diseases. This prevented early and precise diag-
noses, identifying the actual severity of a given disease and
carefully planning the next treatments.

Up to now, some Computer Aided Diagnosis (CAD) tools
for neurodegenerative assessment, have shown to be effec-
tive. Those tools are based on behavioral biometrics [1].
One of main examples of CAD tools for neurodegenerative
disease assessment is handwriting [2], [3] analyzing both
neuromuscular system parameters [4], and spatio-temporal
models [5]. In particular, as reported in [1], [2], [4], [5] the
sigma-lognormal (63) model [8] of the kinematic theory of
rapid human movements [9], was employed, with successful
results, in the early prediction of Parkinson Disease through
handwriting [5].

In the review presented in [2] authors subdivide the state
of art in neurodegenerative disease classification problem
with handwriting into two main categories: computational
and cognitive. Our focus is mainly on computational mod-
els. Computational models try to model or reconstruct the
final result of movements, in terms of velocity and accel-
eration profiles or stroke shapes by means of mathematics,
physics and computer science. One example of this com-
putational model is the kinematic theory of rapid human
movements. This theory is defined in terms of two ele-
ments: the agonist (acting in the direction of the move-
ment) and the antagonist (acting in the opposite direction)
neuromuscular systems involved in the production of rapid
human movements [9]. Plamondon showed that these kinds
of system have a log-normal impulse response that results
from the limiting behavior of a large number of interdepen-
dent neuromuscular networks controlling the velocity of a
movement [1], [2], [8], [9]. An evolution of this theory uses
the sigma-lognormal model (63). The effectiveness of this
theory in predicting Parkinson Diseases through handwriting
has been already demonstrated [1], [2], [4], [5].

The hypothesis at the very basis of this work is that trans-
posing the Plamondon’s kinematic theory of rapid human
movements and its sigma-lognormal model (63) from hand-
writing to gait analysis, it will still be possible to almost
perfectly reconstruct and thus, model, the movement pat-
terns of various body joints in terms of acceleration and
velocity profiles. The intuition is that, during gait, several
body parts share similar motor functions and neuromus-
cular parameters according to the sigma-lognormal model.
Thus, these movements are dictated by the brain and are not
involuntary.

These built models will be used, in conjunction with other
synthetized features, to classify if a person ‘gait is affected
by some neurodegenerative disease or is healthy. As it will be
shown later, the sigma-lognormal model will be used specif-
ically for capturing small variations in acceleration profiles
able to discriminate borderline subjects in early stages of the

disease with the consequent increase of the overall accuracy
of the developed decision support system.

Pose estimation technique in conjunction with Barrel dis-
tortion removal algorithm and Kalman filter will be used
to fix various problems discovered and thus, with the best
possible fidelity, extract the coordinates of body joints.

The main contributions of this work are the following:
1. The first application of kinematic theory of rapid

human movements to neurodegenerative disease
assessment through gait and commercial 2D cameras

2. Innovative pipeline comprehensive of gait phases
segmentation

3. Outstanding state of the art results and, thanks to the
interpretability capabilities of the developed system,
important findings on the body parts that play a major
role in neurodegenerative diseases assessment through
gait and computer vision

The use of off the shelf 2D cameras for pose estimation is
twofold: firstly, its cheap compared to infrared cameras, depth
cameras or 3D tracking wearable sensors, in second instance,
the system can easily be deployed in every hospital’s room or
at patient’s home. This is important when it comes to remote
monitoring, because there is no need from the patient side
to wear anything, avoiding problems such as forgetfulness
and rejection, but also for hospitals to reduce hospitalization
costs.

The paper is organized as follows. Section II describes neu-
rodegenerative diseases and motor patterns in gait analysis
from a pure pattern recognition perspective. Section III shows
a synthetic review on the techniques used in human gait anal-
ysis. Section IV depicts the kinematic theory of rapid human
movements and its sigma-lognormal model (63). In addi-
tion, the intuition behind the use of sigma-lognormalmodel in
gait analysis is also provided. Section V describes the dataset
used. Section VI sketches the experiment, implementation
details and results. Section VII provides a comprehensive
discussion from a purely pattern recognition perspective.
Conclusions and future work are presented in section VIII.

II. NEURODEGENERATIVE DISEASES MOTOR PATTERNS
Neurodegenerative diseases affect long neuronal cells. The
affected cells create physical disorder during the walk.
Some neurodegenerative diseases are Parkinson’s disease
(PD), Amyotrophic lateral sclerosis (ALS), Alzheimer dis-
ease (AD), the Huntington Korea (HD) and various forms
of Dementias (DD) [10]. PD patients show slow automatic
movements and slow balance. The symptoms are body rigid-
ity with hypertonia, bradykinesia plus akinesia and lack of
balance, especially when the disease is severe [11].

ALS shows an evolutionary muscular atrophy with
decrease in strength, with phonation and chewing
disorders [12].

AD neuronal damages affect the short-term memory com-
prehension and thus patients usually forget important infor-
mation. Also, the walk pattern is affected: AD patients show
uncoordinated movements with erect standing and walking,
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dysarthria, alteration of breathing, facial grimaces, dysphagia
and hyperkinesia [13].

DD represents a group of typical neurodegenerative dis-
eases of old age, with irreversible loss or reduction of intel-
lectual abilities. The HUN is a hereditary disease in which
cognitive and motor skills are particularly compromised. The
first clues are mood changes, memory loss, dementia, diffi-
culty in walking, language and swallowing, strong depression
in advanced stages and all its consequences [13]

The Gait Analysis studies the ways human Gait cycle is
a succession of physical actions involved during walking.
Formally, gait cycle is defined as the interval between two
successive occurrences of the same event. Literature reports
two ways of measuring gait cycle from a computational
perspective. These methods make use of Temporal/Spatial
features or Pressure measurements. In this paper gait cycle
is analyzed with respect to the first method (temporal) along
with its gait patterns [14]–[16]. This method is, by far, the
most common and scientifically validated by neurologists and
for which there are well-defined protocols (e.g. TUG test).

Phases of a gait cycle include:
• Initial contact (IC): when the foot touches the ground;
• Loading response (LR): when the other foot is lifted for
the swinging;

• Mid Stance (MS): the swinging foot exceeds the foot that
acts as a lever;

• Terminal stance (TS): the right foot’s heel moves verti-
cally until the left foot touches the ground;

• Pre-swing (PS): now the left foot acts as a lever allowing
the right foot to walk in

• Initial Swing: the hip, knee, and ankle are flexed to begin
advancement of the limb forward and create clearance of
the foot over the ground.

• Mid-swing (MS): the left leg’s tibia is vertical so that
right leg can overcome it;

• Terminal swing (TS): the progress of the limbs is com-
pleted when the right leg moves in front of the left thigh
and the right foot touches the ground, going back to the
IC phase.

This gait cycle will be used in section VI to describe the
segmentation phase.

Gait abnormalities show deviations from normal gait pat-
terns and are necessary to assess a specific neurodegenerative
disease [7].

The gaits abnormal patterns presented in [7] are impor-
tant to understand, from a pattern recognition perspective,
the features to be employed in the analysis as well as their
connection with the disease. From this perspective, it is clear
that spatio-temporal features, as well as kinematic features
play an important role in discriminating healthy subjects from
subjects with some form of neurodegenerative disease. Of no
less importance is the analysis of which parts of the body to
observe with greater importance. It seems natural to impute
the lower parts of the body as legs, ankles and feet as the most
important parts for gait analysis. As it will be shown later in
the discussion provided in Section VII, nonlinear correlation

among features, hardly observable with the naked eye, results
in a rise of importance of other analysed body parts.

III. LITERATURE REVIEW ON TECHNIQUES USED IN
HUMAN GAIT ANALYSIS
In this section, literature review is performed with respect
to data acquisition, preprocessing, tasks and mostly related
works.

A. DATA ACQUISITION
Several authors have used different types of sensors for real-
time data acquisition of human gaits. It is possible to divide
the sensors in three main categories [17]:

1. Wearable sensors on the patient’s body.
2. Floor Sensors deployed on the floor, usually a matrix

of pressure sensors.
3. Cameras able to capture video information.
4. Optical Motion Capture with model based optoelec-

tronic motion capture system [55].
Wearable sensors
Accelerometers are used for measuring the accelera-

tion of the body [18]. The gyroscope measures the angu-
lar velocity, thus is used for measuring human posture
by analyzing patient’s feet, leg and torso angulation [17].
Magneto-resistive sensors estimate the change of orientation
in relation to magnetic North. Inertial sensors measure body’s
parts velocity, acceleration, orientation, and gravitational
forces using what is called sensor fusion techniques based
on accelerometers, gyroscopes and magnetometers. Flexible
goniometers are used for measuring angles of ankles, knees,
hips and metatarsal.

Sensitive tissues are a mix of detection technology and
electronic devices made by fabric materials. This type of
sensor ensures a good level of comfortability because patients
wear them without particular problems.

Authors in [18] have integrated force sensors into shoes in
order to detect clinical ground forces (GRF) measures during
gait. Electromyography is used for detecting the activation of
one or more muscles and it is important to evaluate patients
with lower lib problems.

Floor Sensors
Force or pressure sensors deployed on the floor create

the ‘‘force platforms’’. These platforms collect, in a matrix
format, differentiated pressure measurements of each part of
the foot separately [19].

Video-Image Sensors
One or more cameras are used in conjunction with various

image processing techniques for removing noise and preserv-
ing relevant information. Techniques such as threshold filter-
ing and background segmentation allow for the separation of
background from the silhouette of the human body [17], [19].
Among the most successful techniques, the Infrared Ther-
mography, which make use of temperatures of human body,
is able to reach accuracy rates of about 91% [20]. In recent
years, human pose estimation from video clips has been
another emerging field of gait analysis. These techniques use
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deep learning techniques to extract information about body
parts from video frames. [21]

Optical Motion Capture
The typical optical motion capture system uses, in general,

about six calibrated infra-red (IR) cameras which tracks about
44 reflective markers to be attached to the human body. These
markers are necessary to extrapolate kinematic features from
the body joints and thus provide spatio-temporal features for
gait assessment [56]. Such systems can be used only in lab-
oratories. This is due to the setup, but also to the equipment,
the need for calibration and trained operators.

B. PREPROCESSING
The pre-processing phase usually involves trimming of
non-relevant information as well as normalizing the envi-
ronment. This last aspect is relevant when doing 3D
image reconstruction because there is no zero-point in a
three-dimensional space. In order to overcome this problem,
authors in [25] and [29] performed a series of ‘‘manual’’
calibrations in collaboration with patients. In [29] the gait
analysis starts when the patient touches the force platform
with the foot. In [39] measurements start after the patient
has walked on to a starting platform located before the
force platform used for real data capturing, while in [35]
pre-processing cuts noise. Especially in Silhouette analy-
sis, pre-processing techniques are used to remove noise,
background information and in some image processing
cases, overlapping obstacles [19], [27], [28], [30], [31],
[36]–[38], [40].

C. WALKING TASKS
Most part of literature considers only healthy subjects. Only
a small part of works, such as [22], [23] and [24] kept into
consideration both healthy and un-healthy people (patients
affected by PD).

Another common factor among publications is that authors
performed tests with non-conventional protocols [22],
[25]–[28]: for example, authors in [28] trained some subjects
to perform tests holding a ball as well as wearing a coat;
authors in [26], instead, asked patient to move the leg up and
down 5 times while a 3D ultra-wideband receiver estimated
the position of the leg during time. A very interesting task was
done by authors in [29] where 5 males and 5 females subjects
were asked to perform overground walking (30 trials), stair
ascent (30 trials) and stair descent (30 trials), while their body
parameters were collected. In a similar fashion, authors of
work [24] asked students and professors as well as patients
affected by PD to perform tests such as: random walking for
2-4 times, lifting a stair starting from being sitting. Another
interesting work is presented in [30] where authors used
Microsoft Kinect to extract patients’ skeleton by performing
25 meters on walkways and then stand in front of the Kinect
with 3.5 meters distance and then performing swings on
one side of the body. Similar approach was used by authors
in [31]. In general, a common practice is to ask subjects
to perform walk for different meters: 12 meters in [25],

3 to 7 meters in [22], alternate walk and run [32] and [23],
perform walk for only 20 seconds [33] or perform random
walk [24]. Depending on the capturing sensor, the subjects
were asked to walk on custom force platform [34], or run
in front of a camera [35], [36], walk while being captured
by 24 cameras all positioned with different angles in order
to reconstruct the 3D movement of the person [37], perform
random walk in front of the camera [27] and walk straight in
front of a camera [38].

D. RELATED WORKS
In [41] authors used a pose estimation algorithm called Con-
volutional Pose Estimation, which used Deep Learning and
Convolutional Neural Networks. This algorithm was used to
extract individual joints movement trajectories and synthetize
several features (e.g. kinematic, frequency). These features
were then used to train random forests to detect and estimate
the severity of parkinsonism and LID. Binary F1 score with
an interpatient [6] separation scheme was 0.906.

Ye et al. [42] observed that patients’ gait dynamic is
non-linear, for this reason, they proposed an Adaptive
Neuro-Fuzzy Inference System (ANFIS) which combined
neural network adaptive capabilities and the fuzzy logic
approach. A reduced set of features were adopted: left
stride interval, right stride interval, left stance interval, right
stance interval, and double support interval. An interpatient
separation scheme was used for carrying out the binary
classification. Accuracy ranges from 90 to 94%. At the same
time, standard classifiers were adopted observing compa-
rable results to those obtained by authors. In [43] authors
used Gaussian radial basis function and SVM in conjunction
with a similar separation scheme proposed in [42] to predict
Parkinson’s disease patterns from human gait with accuracy
of 83.3%.

In [45] authors built a decision support system (DSS)
with the aim of helping medical doctors in diagnosing the
PD influenced patients. Authors made use of grid search
optimization to develop an optimized deep learning model
to predict the early onset of Parkinson’s disease by tuning
several hyperparameters of the model. The grid search opti-
mization consisted in optimization of the deep learningmodel
topology, the hyperparameters, and the overall performance.
The resulting binary classification accuracy was of 91.69%.

In [46] authors used 3D body pose estimation technique
using Deep Neural Network. The resulting 3D coordinates
of joints time series are then fed in a classifier, with the aim
of classifying healthy subjects, Parkinson’s disease patients,
post stroke patients, and patients with orthopedic problems.
By using deep learning, no feature engineering was used,
differently from the solution proposed in this work, but also
the interpretability of their model was limited. Their classifi-
cation accuracy ranged from 56% to 96% for different groups.
The average accuracy was 71.25%.

Since neurodegenerative disease recognition from human
gait is within the broader area of activity recognition in
healthcare, it has been decided to compare results with state
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of the art shallow learning activity recognition techniques
such as motion blobs [57] and optical flow [58]. In [57]
authors analyzed human activities in sequence of frames.
Firstly, they performed background subtraction in the video
stream. Then, authors computed motion blobs of the current
frame and a series of frames before the current frame to
form a new feature image in certain rules. Finally, authors
combined the non-zero pixels in the feature image into blobs
using the connected component method. At the end, authors
used Gaussian Mixture to model features and used standard
classifiers to ensure the accuracy. The second technique used
for comparison is the optical flow. Authors in [58] analyzed
the use of local descriptor built by optical flow vectors along
the edges of the human silhouette. As before, they first
removed the background, then computed the optical flow on
the silhouette along the boundary lines. From the centroid,
radial lines are drawn at 5k degrees to intersect the boundary
lines. The radial distances of the boundary points that lie
on these radial lines along with the optical flow vectors
computed at these points and are later used for classification
through rbf-svm. For a more in depth analysis deep learning
has been investigated. The 3D ResNet, a ResNet that captures
3D spatio-temporal relation has been used for comparison
purposes as shown in [59].

IV. THE KINEMATIC THEORY OF RAPID HUMAN
MOVEMENTS
The Kinematic Theory of Rapid Human Movements can
be defined as an instrument to analyze handwriting move-
ments as a statistical process that leverages on neuromuscular
parameters of human body and brain [8], [9].

At the basis of this theory there is the intuition that any
movement (movements of elbow, wrist, but also arms, legs,
and so on), is the combination of primitives, called strokes,
whose velocity and acceleration profile is lognormal [47].

Following the Sigma-lognormal model in equation (1),
the velocity profile of each stroke j has a lognormal shape
3 which is scaled by an input command D and time-shifted
by the instant the command t0starts:∣∣Evj (t)∣∣ = Dj

σj
(
t − t0j

)√
2π

exp

(
−

[
ln
(
t − t0j

)
− µj

]2
2σ 2

j

)
(1)

µj is the log-time delay generated by the action plan of the
neuromuscular system, while σj is its log-response time. The
model assumption is built around the fact that each stroke
happens around a pivot making use of a starting angle θsj and
an ending angle θej as shown in equation (2)

θ (t) = θs +
θe − θs

D

∫ t

0

∣∣Evj (t)∣∣ dt (2)

Equation (2) reveals that each movement could be composed
by several lognormal strokes in continuous domain.

Comparing the velocity profile (the upper side of the image
with time as abscissa) in Figure 1 and Figure 2 it is possible
to assert that:

FIGURE 1. Sigma-lognormal velocity profile of healthy subject’ nose. The
blue line is the reconstructed sigma-lognormal profile, the black line is
the original signal’ coordinates of subject ‘nose while walking.

FIGURE 2. Sigma-lognormal velocity profile of Parkinsonian patient’
nose. The blue line is the reconstructed sigma-lognormal profile,
the black line is the original signal’ coordinates of patient while walking.

• The sigma-lognormal almost perfectly reconstruct the
signal from the velocity profile. Its reconstruction signal
to noise ratio (SNR) is of about 17-35 dB in average.

• The patient’s nose walk (Fig.2) is composed of several
small oscillations after a high spike, instead intensity
and numerosity of spikes in normal subject (Fig. 1) are
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almost always in a predefined range without such high
variations.

The intuition behind this work is that, using the Kinematic
Theory of Rapid HumanMovements for capturing such small
variations, it is possible to especially discriminate borderline
subjects in early stages of the disease and thus add impor-
tant information to the plethora of features used in reviewed
works.Without loss of generality, an example of this intuition
is that, features such as mean acceleration or mean displace-
ment would smooth out such small oscillations, instead the
sigma-lognormal model, if used correctly, would put them
back in the game.

The Sigma-Lognormal model has been already success-
fully used for detecting neurodegenerative diseases thorough
handwriting [1], [2], [4], [5].

V. DATASET DESCRIPTION
The reference dataset contains 115 videos regarding total
40 subjects divided in patients and controls as follows:
• 20 healthy control subjects
• 20 patients with neurodegenerative diseases (with differ-
ent severity levels)

21 subjects are female, 19 have male sex.
Overall, the dataset has:
• 61 videos related to healthy subjects
• 54 videos related to patients.

The videos are variable in length and were made at different
times and structures. Each video presents a patient’s walk,
which follows a linear path in both directions, from left to
right and from right to left. All videos were fixed at 25 fps.

The videos were made using the following guidelines reas-
sumed in Figure 3:

FIGURE 3. The camera setup for video acquisition.

• The subjects traveled a fixed distance of 4 meters fol-
lowing a traced route, represented by a straight line
highlighted on the floor.

• The videos were recorded with a camera placed per-
pendicularly 4 meters away from the straight line high-
lighted on the floor and at a height of 2 meters (or higher
where needed).

Some video presented a fish-eye effect that was mitigated as
reported in section VI.

The age of the patients is unbalanced: it was difficult
to find subjects in their 80s who were perfectly healthy.
Healthy subjects aging ranged [30-75] while patients aging
ranged [65-90].

The dataset is also accompanied with the following
metadata:
• The ID of the patient
• The sex of the patient
• The neurodegenerative disease stage which could be

one of the following:
1. Mild
2. Found
3. Moderate
4. Severe

In this work, the classification performed is binary
(healthy/unhealthy), but such disease’ stages, as will be
discussed in section VIII, will be used to evaluate the impor-
tance of sigma-lognormal features in discriminating border-
line subjects, especially subjects with a neurodegenerative
disease in mild or found stage from healthy control sub-
jects. The neurodegenerative disease stage assessment was
performed with several cognitive tests performed by trained
and experienced psychologists and neurologists.

Some video presented mirrors and various kind of obsta-
cles (chairs, body of the physiotherapist and so on) which
added lots of complexity to the overall computation pipeline
depicted in Section VI.

VI. EXPERIMENT AND IMPLEMENTATION DETAILS
A. PIPELINE & PREPROCESSING
The classification pipeline is depicted in Figure 4. The nec-
essary phases are, in order, the lens-distortion algorithm to
remove the fish-eye effect (also known as Barrel distor-
tion) [48] present in some videos followed by the subject
selection phase. This second phase is necessary when there
are more people in the video. In almost all patient’ videos,
physiotherapist was present to supervise the patient during
his/her performance. The third phase is the

pose estimation, where for each frame of each video, joints
coordinates of the body parts of the analyzed subject were
extracted.

The fourth phase is necessary to fix some missing data
and outlier present in extracted coordinates and caused by
occlusion, pose estimation errors due to different light con-
ditions and variations and colors’ overlay. The fifth phase
is of paramount importance: the step segmentation phase.
Segmented steps will be smoothed in the sixth phase to
remove unnatural and implausible coordinates. In the eight
phase, for each segmented step, spatio-temporal features,
sigma-lognormal features as well as angles features will
be extracted. Various pattern recognition algorithms were
trained with 10-Fold cross validation on an inter-patient sep-
aration scheme. In order to extract the relevant patterns that
are able to discern subjects with some kind of neurode-
generative disease and healthy subjects, it is necessary to
apply an inter-patient separation scheme as presented in [6].
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FIGURE 4. The classification pipeline.

The inter-patient scheme uses extracted features of some
people ‘steps for training and extracted features of completely
other people ‘steps for testing. This separation scheme is
better suited for medical purposes, this is because, firstly,
the model learnt must answer the question ‘‘what is the
particular pattern of people with some form of dementia?’’
correctly, second because otherwise there would be bleeding
of information from training to testing and third, but not of
less importance, because without an inter-patient separation
scheme, the i.i.d. (independently and identically distributed)
assumption among instances, in this specific case, is not
achievable.

Fish-Eye effect removal
For the fish-eye removal (Barrel distortion) the algorithm

presented in [48] was used. Empirical parameters were esti-
mated by fixing field of view (FoV) at 75.0. Results are shown
in Figure 5.

FIGURE 5. Before and after application of fish-eye removal algorithm.

Subject Selection
In phase two, the user is asked to select with a click of the

mouse the central point of the hips, which can be approxi-
mated to the center of gravity, of the subject protagonists of
the analysis within the video. This procedure is necessary for
both the start frame of the right walk and the start frame of the
left walk. For all other frames, the algorithm seeks the center
of gravity, which is closest, in Euclidean sense, to the position
of the previous frame center of gravity. The subject selection
window is presented in Figure 6.

Pose Estimation
For this task, OpenPose 1.6.1 was used. This version

brought an improvement with respect to the previous espe-
cially in false positive detection rate. In general, the system
takes as input a colored image and returns the 2D pixels

FIGURE 6. The first frame where the operator is asked to select the
subject to analyze.

coordinates of the anatomical key points of the people with
respect to the image frame. Initially, a feedforward network
forecasts 2D confidence maps of the positions of body parts
and a set of 2D vectors for the affinity parts (which essen-
tially describe the degree of association between the parts).
At the end, each confidence map is converted to ‘‘greedy
inference’’, returning the key points of the body parts within
the image. [21]

There is no need of a calibration phase for performing pose
estimation through OpenPose [21].

Microsoft COCO [49] image dataset training was used.
The used body parts are listed in Table 1.

Coordinates missing and adjusting
The system proceeds with the elimination of peaks from

the data sequences: since walking is a continuous and harmo-
nious movement, it is unthinkable that the extracted data will
report sharp jumps forward or backward. Therefore, having
established a threshold equal to 50 pixels and considering
the position of each part of the body in correspondence with
the first frame of each walk, all those measurements whose
ordinate component y go out of the interval defined by the
threshold [y - 50, y + 50 ] were removed. In this way, any
errors made during the acquisition or isolation of the subject
are eliminated. Figure 7 presents the result of this operation.
Once the peak removal operation is complete, the system
takes care of estimating the missing coordinates of each part
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TABLE 1. Microsoft COCO Body Parts.

FIGURE 7. On the left, the hip pixels coordinates before jump removal
algorithm, on the right after the application of the removal algorithm.

FIGURE 8. On the left, nose pixels coordinates before linear interpolation
on the right after the application of the linear interpolation.

of the body by linearly interpolating them both in cases where
these are not visible within the video, and in cases where
they were eliminated following the peak elimination process.
The result is depicted in Figure 8. This operation is essential
because it allows to create a database of homogeneous infor-
mation: each part of the body will have the same number of
points identified.

Step Segmentation
Once the data modification phase is completed, the system

proceeds with a new phase: recognition of the individual
steps. To divide the entire walk into single steps, the system
identifies stance phases discussed in Section II. In these
phases the ankle remains still: these phases represent the
initial part of a step and are followed by a swing phase, in
which the ankle moves. To proceed with the identification
of the stance phases, the system extrapolates from the entire
database the x and y coordinates of the right and left ankles.

Before being able to isolate the stance phases with enough
accuracy, it is necessary to subject the ankle coordinates to
further changes: the elimination of burrs. Despite the fact
that the accuracy of data acquisition by OpenPose is quite
high, it is inevitable that small smudges will be generated in
the data, which would make it impossible to recognize the
stance phases. The system then proceeds to analyze blocks of
frames corresponding to a duration of 0.15 seconds (empiri-
cally estimated time as the minimum necessary to identify a
stance phase), to check if there are any burrs, or if the central
elements of the block have small variations compared to the
elements that act as extremes for the considered block. If the
system recognizes a burr, it proceeds to level the differences,
replacing the values of the central elements of the analyzed
block with the value present at the ends. Once the burr elim-
ination procedure is over, the system can finally take care of
recognizing the stance phases, saving the starting frame and
the duration in the number of frames.

Once all the stance phases were identified, the system
proceeds with further analyzes aimed at eliminating any of
the following situations:
• The system combines two successive stance phases,
if they are not interspersed with a swing phase: it could
in fact be a slight movement of the foot during the stance
phase that pushed the system to recognize two different
phases instead of one.

• The system combines two phases of successive stances,
if the starting point of the second stance coincides with
the end point of the first stance: the fake swing phase rec-
ognized by the system could, in fact, derive from a data
acquisition error that pushed the system to recognize
a definitely wrong swing phase as it does not produce
displacement.

• The system eliminates the first stance if it coincides
with the start of the right or left walk, in order to avoid
considering an incomplete stance phase.

Once the analysis of the identified stance phases was com-
pleted, the system proceeds with the identification of the
individual steps: a step is identified as the interval between
the beginning of a stance phase and the beginning of the next.

Step’s coordinate smoothing
The sixth phase is the application of the Kalman filter [50]

to the timeseries of data, of which every step is taken. This
is necessary because consecutive frames, may suffer of high
coordinate variance: key point of same body part in two
consecutive frames, could have high variance due to small
inaccuracies of the pose estimation algorithm.

Kalman Filter is an important and widely used estimation
algorithm. The Kalman Filter works by computing estimates
of hidden variables with the hypotheses that these variables
are inaccurate and under uncertain measurements. The aim
of the algorithm is to predict the future state of the system by
using the past estimations. The Kalman filter is used in con-
trol system, tracking, space navigation and so on. [50], [51]

Given the entire sequence of joint coordinates of a seg-
mented step, the Kalman filter, through 5 iterations of the
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FIGURE 9. On the left, step’s coordinate before Kalman smoothing and
after on the right.

estimation operation, outputs the smoothed sequence of coor-
dinates. This task is performed for all key points. Results are
shown in Figure 9.

B. FEATURE EXTRACTION
The features are calculated on each analyzed step, distin-
guishing between right and left steps. For each step, all the
features are calculated for each frame that makes up the video
fragment relating to the analyzed step. Finally, after all the
features were calculated, the timeseries containing the mea-
surements relating to each feature are subjected to 5 statistical
measurements shown in Table 2 (mean, median, standard
deviation, first percentile and ninety-ninth percentile), which
are then used by the system for recognition and classifi-
cation phase. This is because, as said previously, features
are computed on timeseries of joints coordinates of each
segmented step.

TABLE 2. Statistical Measures.

Features can be divided into three major macro categories:
spatio-temporal features, angles, sigma-lognormal features.
Spatio-temporal features are shown in Table 3. These fea-
tures are synthetized from the timeseries of coordinates of
each segmented step. These features are reassumed using the
statistical measures used in Table 2.

By carefully viewing the walking of patients with very
serious neurodegenerative pathologies and referring to the
literature reviewed regarding abnormal gait and reported in
Section II, the following angles were computed:
− nose, neck, hip (right or left), this because patients tend

to walk with their heads more inclined downwards;
− neck, hip (right or left), knee (right or left), this because

patients tend to walk with their torso more inclined
forward;

TABLE 3. Spatio-Temporal Features.

− shoulder (right or left), elbow (right or left), wrist (right
or left), this because patients tend to walk with their arms
much more curled up;

− hip (right or left), knee (right or left), ankle (right or left),
this other because patients tend to walk with their knees
more bent;

− knee (right or left), hip (right or left), knee (left or right)
this also because patients tend to take smaller steps, with
a much smaller opening of the legs.

For angles computation, the formula provided in equation (3)
was used.

γ = deg(arc cos

(
EAB ∗ EBC
|AB| ∗ |BC|

)
) (3)

In equation (3), deg converts radians to degrees. EA, EB and EC
are, in order, the coordinates of the joints discussed in the
previous bulleted list. The timeseries containing the measure-
ments of these angles are subjected to 6 statistical measure-
ments, instead of 5: the statistical measure shown in Table 2
plus the maximum amplitude reached of each angle.

TABLE 4. Sigma-Lognormal Features.

The sigma-lognormal features reported in Table 4, with the
exception of the first, the number of lognormals found (which
is calculated only once), are calculated, based on the type of
step, for each part of the visible body: nose, neck, shoulder
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(right or left), elbow (right or left), wrist ( right or left), hip
(right or left), knee (right or left), ankle (right or left). For all
those, apart the first, the statistical measures in Table 2 are
applied.

The dataset which contains all the features (velocity, angles
and sigma-lognormal) is composed by 675 synthetized seg-
mented steps (the rows) and for a total of 679 features
(columns).

In addition to this dataset, two additional datasets were
created as the combination of one or more different features.
Specifically, the first is composed only by velocity-based
features and angles. The third is composed by only sigma-
lognormal features. These datasets are fed into the classifica-
tion models explained in section C.

C. CLASSIFIERS AND EXPERIMENTAL SETUP
The classification is performed with 10-Fold cross valida-
tion with 70-30 ratio maintaining the inter-patient separation
scheme: 28 subjects in training and 12 in test set randomly
kept 10 different times. The produced train-test sets within
10-Fold cross validation may be imbalanced [52]. For this
reason and only when there was relevant imbalance between
healthy and sick, it was decided to perform, before feature
selection, a novel oversampling technique called LICIC [52].
This oversampling technique creates new instances balancing
the minority classes by preserving nonlinearities and the
particular pattern present in each specific class.

It works by copying most important components and per-
mutating less important components among instances of the
same class, and thus, create new offspring. It was avoided to
use LICIC at the beginning of the pipeline for the dataset as a
whole, because it would bleed specific patterns of samples
used for testing, also in training, thus making results, less
reliable. This kind of bleeding is not considered cheating, but
it is not suitable for medical application research.

Before doing the final classification, feature selection was
performed using Extra Trees [53] with ordered feature impor-
tance. Extra Trees is an ensemble technique which uses the
results of multiple de-correlated trees, aggregating them and
outputting the classification result. The feature importance
metric used was the Gini Index. At the end of the procedure,
the features were ordered with respect to their Gini index,
from higher to lower and the top 100 features in descending
order were kept.

For the binary classification, the following 5 classifiers
were used:

1. K-Nearest Neighbors
2. Random Forest
3. AdaBoost with Decision Tree as base learner
4. Linear Support Vector Machines
5. Radial Basis Function (rbf) Support Vector Machines

K-Nearest Neighbor was configured with 5 nearest neigh-
bors. Support Vector Machine with linear kernel and C = 1.
The rbf version of Support Vector Machine used auto-
matic gamma adjusting and C = 1. Random Forest classi-
fier was used with 50 trees and maximum depth of 5 for

conquering overfitting. Finally, AdaBoost with 10 decision
trees as week learner each with 10 as max depth.

For comparison purposes, two widely known activity
recognition algorithm were used for shallow learning. These
two algorithms are Motion Blobs [57] and Optical Flow [58].
Both techniques extracted their respective features who were
tested against AdaBoost with 50 decision trees and SVMwith
linear classifier and C = 1.
For deep learning, the ResNet deep learning architecture

making use of 3D CNN [59] for encoding spatio-temporal
information was used. In this work it has been used the
34-layer 3D ResNet with Adam [60] as optimizer. The
training time took over 8 days on GPU enabled server
with Nvidia Tesla V100 with 16GB video RAM. For addi-
tional comparison purposes, well known ResNet-50 [62] and
Inception-V3 [63] deep neural network architectures were
tested in exactly same conditions. These two last networks
were trained end-to-end on a frame by frame basis.

D. RESULTS
The averaged results of 10-Fold cross validation performed
on the whole dataset by the 5 different algorithms is shown
in Table 5. The best performing classifier is the linear SVM.

TABLE 5. Results on complete dataset.

TABLE 6. Results with and without sigma-lognormal features.

Table 6, instead, shows results of Linear SVM, with and
without sigma-lognormal features. This comparison is impor-
tant and will be discussed in more details in Section VII.
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To evaluate the possibility that the right and left steps can
generate different features due to their intrinsic nature, it was
decided to try to classify the right and left steps also sepa-
rately. The results are presented in Table 7.

TABLE 7. Results comparison between left steps, right steps and both.

TABLE 8. Results comparison between other works on same dataset.

Table 8 contains comparison results with other state of the
art techniques on the same dataset.

VII. DISCUSSION
The results presented in Table 5 show a mean accuracy of
the system of 95.5% when linear SVM is used. This result is
higher with respect to other reviewed works, but a rigorous
comparison among other systems cannot be done because
also other reviewed works, make use of private datasets to
remain compliant with the privacy laws, in this case the
GDPR (European).

The hypotheses at the basis of this work is that sigma-
lognormal features would help in discriminating healthy from
unhealthy subjects.

FIGURE 10. Lime result of patient performing gait (a) and healthy subject
performing gait (b). In red the areas that contributed less in the
classification of healthy/unhealthy subject, in green areas that
contributed most.

Table 6 shows thatmean accuracy is increasedwhen sigma-
lognormal features are used by 0.5%. This sensible increase
in accuracy is important because, thanks to the inter-patient
separation scheme, it was therefore possible to make an
analysis to understand to whom, the badly classified steps,
belonged towhen no sigma-lognormal features were kept into
consideration.

As results, all badly classified instances belonged to mild
and found stages. In this case, adding sigma-lognormal fea-
tures, increased the chance of recognizing borderline sub-
jects, especially subjects with an early stage disease.

This finding confirms our hypotheses and empirically
shows that sigma-lognormal features and, more in general,
the Plamondon’s Kinematic Theory of Rapid Human Move-
ments [8], [9] can be effectively transposed from the hand-
writing domain to a more general scenario. That is, these
sigma-lognormal features can capture small grain movement
details, otherwise impossible to be captured by effective but
coarse features such as velocity, displacement and angles.

Sigma-lognormal features, at the end, contribute in classi-
fying the most difficult, borderline, instances, contributing,
in an important way, in the realization of the big picture
of this work: early stage neurodegenerative disease classi-
fication. From Table 6 is also possible to note that when
sigma-lognormal features are considered in isolation, the
sensitivity, which is the number of sick patients correctly
identified as sick, is higher with respect to other, hitting
0.982. This finding contributes in confirming the hypothesis
that the Kinematic Theory of Rapid Human Movement and
its sigma-lognormal model captures fine grained variabilities
present in borderline subjects.

Another interesting finding is that the separate classifica-
tion of the right and left steps produces better results than
the joint classification. This is because, the classification
algorithmwould learn more discriminated and correlated pat-
terns when features are synthetized on exactly same walking
direction and orientation. In this specific scenario, the highest
accuracy of 99.1% was achieved by using all types of fea-
tures but analyzing only the left walk orientation, as shown
in Table 7.

The comparison results in Table 8 shows that our technique
is at least 7 percentual points more accurate than all others.
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FIGURE 11. Top 13 ranked features used for classification.

Motion Blobs and Optical Flows perform better than the 3D
(spatio-temporal) Deep Learning technique called 3DResNet
and also all other DL architectures tested. This result contra-
dicts the common opinion in the community that deep learn-
ing is on par or outperforms other techniques. The hypothesis
is that DL architectures were biased toward several scene’s
details: algorithms may learn several scene parameters, such
as the surrounding environment, the presence of another
person (nurse), the camera orientation and the focus with
respect to the subject acting. This is particularly visible when
interpatient separation scheme is applied, in fact few videos of
patients walking were recorded at the exact same room, some,
different, healthy subject videos were recorded in another
place with wooden surroundings.

For understanding what the DL models have learnt, it has
been used the local interpretablemodel-agnostic explanations
(LIME) [60] technique. This explainable artificial intelli-
gence [54] technique is one of the most widely used imple-
mentation of local surrogate models. Surrogate models are
trained to approximate the predictions of the underlaying
neural network model. In this specific case, LIME focused
on training local surrogate models to explain individual pre-
dictions of the 3D ResNet.

Figure 10 shows that LIME [60] algorithm found the envi-
ronment, as most important parts for discriminating healthy
from unhealthy subjects. This confirms the hypotheses of
scene bias of some deep learning techniques applied to this
kind of tasks.

Returning to the original technique developed in this work,
thanks to the interpretability brought by Decision Trees inte-
grated within Extra Trees algorithm used in feature selection,
it is possible to rank features from the most to the least
important. Figure 11 shows the top 13 features.

As it is possible to observe, velocity, acceleration and
displacement of nose, hip and neck are the most important.
By important, it is meant, the characteristics that allow to
better distinguish the pattern of a healthy person from the
pattern of a sick person.

Interesting is also the presence of the input command D of
the sigma-lognormal model for the hip in 13th position (the
green bar in Figure 11).

The ability for such a system to be interpretable is of
paramount importance in computer aided diagnosis tools.
Explainable Artificial Intelligence (briefly XAI) [54] allows
the human being to understand, but also trust, what the system
has predicted.

In this case, the high interpretability of this system allowed
to draw different conclusions with respect to what other
authors in [6], [14], [7], [17], [23], [26], [32] reported. From
a pure computer vision and pattern recognition perspective,
differently from the global medical assumption of measuring
legs muscle activities, there is important evidence that the
upper side of the body, such as nose, hip, neck and shoulders,
play a major role in discriminating healthy from unhealthy
subjects.

VIII. CONCLUSIONS AND FUTURE WORK
In this work, an early neurodegenerative disease assessment
computer aided tool was developed. The high accuracies
achieved by this system suggests that the proposed pipeline
is effective.

It is important to assert that there is enough evidence that
the Kinematic Theory of Rapid Human Movements can be
used also in this specific domain. In this case, this theory
and its sigma-lognormal model were capable of capturing
fine grained movements that allowed to correctly classify
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borderline people affected by some kind of neurodegenerative
disease in early stage, thus achieving the goal of this work.

Though this is a preliminary work in the field, thanks to
the interpretability of the resulting model, it is possible to
state that, from a pure computer vision perspective, the most
important body parts when it comes to neurodegenerative
disease classification trough 2D cameras are in the upper side
of the body, in particular nose, neck, hip and shoulders.

Despite the numerosity of the dataset, results are encour-
aging and higher with respect to the reviewed works.

In a future work, 3D pose estimation will be performed and
these features plus other new features from signal processing
domain will be used on the 3D estimated pose. In addition,
multi-class classification will be performed with the aim of
predicting the severity of the disease.

With the help of trained psychologists and neurologists,
more data will be collected. Of extreme importance is balanc-
ing the dataset finding healthy control subjects in their 80s.

The final aim of this research is to early predict the nature
of different neurodegenerative diseases bymeans of computer
vision. This is only our first step towards this big picture.
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