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Abstract: The chromoelectric field generated by a static quark-antiquark pair, with its

peculiar tube-like shape, can be nicely described, at zero temperature, within the dual

superconductor scenario for the QCD confining vacuum. In this work we investigate, by

lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric

flux tubes across the deconfinement transition. We find that, if the distance between the

static sources is kept fixed at about 0.76 fm ' 1.6/
√
σ and the temperature is increased

towards and above the deconfinement temperature Tc, the amplitude of the field inside the

flux tube gets smaller, while the shape of the flux tube does not vary appreciably across

deconfinement. This scenario with flux-tube “evaporation” above Tc has no correspondence

in ordinary (type-II) superconductivity, where instead the transition to the phase with

normal conductivity is characterized by a divergent fattening of flux tubes as the transition

temperature is approached from below. We present also some evidence about the existence

of flux-tube structures in the magnetic sector of the theory in the deconfined phase.
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1 Introduction

Quarks and gluons, the elementary colored degrees of freedom of strong interactions,

present some of the most interesting open issues within the Standard Model of particle

physics. In fact, strong interactions are described by Quantum ChromoDynamics (QCD),

a local relativistic non-Abelian quantum field theory, which is not amenable to perturbation

theory in the low-energy, large-distance regimes. However, many fundamental questions

are linked to the large-scale behavior of QCD. In particular, quarks and gluons appear to

be confined in ordinary matter, due to the mechanism of color confinement which is not

yet fully understood. Reaching a detailed understanding of color confinement is one of the

central goals of nonperturbative studies of QCD.

Lattice formulation of gauge theories allows us to investigate the color confinement phe-

nomenon within a nonperturbative framework. Indeed, Monte Carlo simulations produce

samples of vacuum configurations that, in principle, contain all the relevant information

on the nonperturbative sector of QCD.

It is known since long that, in lattice numerical simulations, tubelike structures emerge

by analyzing the chromoelectric fields between static quarks [1–24]. Such tubelike struc-

tures naturally lead to a linear potential between static color charges and, consequently, to

a direct numerical evidence of color confinement [25, 26].

Long time ago ’t Hooft [27] and Mandelstam [28] conjectured that the vacuum of QCD

could be modeled as a coherent state of color magnetic monopoles, what is now known as

a dual superconductor [29, 30]. In the dual superconductor model of the QCD vacuum

the condensation of color magnetic monopoles is analogous to the formation of Cooper

pairs in the BCS theory of superconductivity. Remarkably, there are several numerical evi-

dences [31–40] for the color magnetic condensation in QCD vacuum. However, it should be

recognized [41] that the color magnetic monopole condensation in the confinement mode

of QCD could be a consequence rather than the origin of the mechanism of color con-

finement, that could actually arise from additional dynamical causes. Notwithstanding,
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the dual superconductivity picture of the QCD vacuum remains at least a very useful

phenomenological frame to interpret the vacuum dynamics.

In previous studies [10–14, 18–22] color flux tubes made up of chromoelectric field

directed along the line joining a static quark-antiquark pair have been investigated, in

the cases of SU(2) and SU(3) pure gauge theories at zero temperature. The aim of the

present paper is to extend the investigation of the structure of flux tubes to the case of the

SU(3) pure gauge theory at finite temperatures. In fact, on one hand the nonperturbative

study in full QCD of the chromoelectric flux tubes generated by static color sources at

finite temperature is directly relevant to clarify the formation of cc̄ and bb̄ bound states in

heavy-ion collisions at high energies. On the other hand, the study of the behavior of the

flux-tube parameters across the deconfining temperature in the SU(3) pure gauge theory

allows us to check quantitatively the dual superconductor model of the QCD vacuum and

to get hints about mechanisms possibly active also in full QCD.

The state of the art is the following. Differently from full QCD, which exhibits a

smooth crossover at about 170 MeV, the SU(3) pure gauge theory undergoes a first order

phase transition at Tc ' 260 MeV (see ref. [42] and references therein), separating a low-

temperature confined phase with a non-vanishing string tension from the high-temperature

deconfined phase with Debye-screened quark-antiquark potential and vanishing string ten-

sion. In the confined phase it has been observed that, as the temperature approaches Tc,

the string tension decreases, retaining however a non-zero values at Tc [43, 44]. The inter-

play among the string tension, which gives the energy per unit length in a (long enough)

flux tube, the color fields, whose square contributes to the energy per unit volume, and the

fields’ spatial distribution, i.e. the shape of the flux tube, is not yet fully understood. There

are, however, a few effective descriptions, whose validity domain depends crucially on the

distance between the static sources, as nicely discussed in a recent paper [45]. For large

enough distances (say, above 2/
√
σ), the effective string theory approach [46–48] should

hold, according to which the shape of the flux tube is determined by a fluctuating thin string

connecting the sources. The implications of this approach on the quark-antiquark potential

and on the width of the flux tube have been studied numerically in SU(N) gauge theories,

both at T = 0 and at T < Tc, in many papers [49–55]. In several other recent works [23, 56–

61], the detailed profile of the color field distribution near static sources has been studied,

providing with information on the flux tube shape which goes well beyond the one encoded

in its width. The effective string theory approach is expected to fail at small distances

and close to Tc even at large distances. At short distances between the sources, the dual

superconductivity picture should instead be valid, thus implying that color fields between

a quark-antiquark pair can be described in the same fashion as isolated vortex solutions in

ordinary superconductors. It would be extremely interesting to study by numerical Monte

Carlo simulations the shape of flux tubes in a wide enough range of distances between the

static sources and for various temperatures around Tc to cover both domains where the dual

superconductivity picture and the effective string theory approach are expected to hold.

As a first step in this direction, in this paper we study the profile of flux tubes at a

fixed distance, about 0.76 fm, corresponding to about 1.6/
√
σ, scanning the temperature in

the range 0.8Tc÷Tc, with the aim of understanding the mechanism underlying the lowering
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of the string tension, i.e. if it is dominated by the weakening of the color fields in the flux

tube or by the broadening of the flux tube itself. Moreover, we extend our analysis also to

temperatures in the range Tc÷1.2Tc, i.e. in the domain of color charge screening, to see how

the expected vanishing of the string tension in this region reflects in the shape of flux tubes.

The part of investigation in the latter temperature domain shoud be understood just as “nu-

merical experiment”, without any prejudice about possible results and their explanation.

To implement this program, however, we need to perform numerical simulations on

lattices with very large volumes. To this end, we have made use of the publicly available

MILC code [62], which has been suitably modified by us in order to introduce the relevant

observables. Indeed, the use of the MILC code will permit to do simulations for the

physically relevant case of full QCD with dynamical quarks.

The plan of the paper is as follows. In section 2 we discuss the observables needed

to extract the field strength tensor of the static quark-antiquark sources and present some

consistency checks of our code. Section 3 is devoted to the discussion of finite-temperature

results. In particular we critically analyze the behavior of the coherence and penetration

lengths across the deconfining transition. In section 4 we discuss the structure of the flux

tubes in the magnetic sector at finite temperature, also in the deconfined phase. Finally,

in section 5, we summarize our results and present our conclusions.

2 Lattice setup

To explore on the lattice the field configurations produced by a static quark-antiquark pair,

the following connected correlation function [5, 6, 63, 64] was used:

ρconn
W =

〈
tr
(
WLUPL

†)〉
〈tr(W )〉

− 1

N

〈tr(UP )tr(W )〉
〈tr(W )〉

, (2.1)

where UP = Uµν(x) is the plaquette in the (µ, ν) plane, connected to the Wilson loop W by

a Schwinger line L, and N is the number of colors (see figure 1). The correlation function

defined in eq. (2.1) measures the field strength, since in the naive continuum limit [6, 65]

ρconn
W

a→0−→ a2g
[
〈Fµν〉qq̄ − 〈Fµν〉0

]
, (2.2)

where 〈 〉qq̄ denotes the average in the presence of a static qq̄ pair and 〈 〉0 is the vacuum

average, which is expected to vanish. Accordingly, we are led to define the quark-antiquark

field strength tensor as:

Fµν(x) =

√
β

2N
ρconn
W (x) . (2.3)

To specify better the color structure of the field Fµν , we note that the Wilson loop connected

to the plaquette is the source of a color field which points, in average, onto an unknown

direction na in color space, given by the loop itself (there is no preferred direction). What

we measure is the average projection of the color field onto that direction. The color indices

of the Schwinger lines are contracted with the loop, which is the source of the field, and
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W

UP

L

Figure 1. The connected correlator given in eq. (2.1) between the plaquette UP and the Wilson

loop (subtraction in ρconnW not explicitly drawn).

realize the color parallel transport between the source loop and the plaquette position. For

this reason, the Fµν appearing in eq. (2.3), should be understood as naF aµν ,

ρconn
W

a→0−→ a2g
[〈
naF aµν

〉
qq̄

]
. (2.4)

That this relation must hold and that the vector in color space na must be introduced

follows from the linearity in the color field of the operator in (2.2) and from its gauge

invariance. Similar considerations apply to the operator (2.11) defined below (see also

ref. [66]). In eq. (2.1) the Schwinger line L is taken in such a way that it leaves the plane

of the Wilson loop just at the center of the latter, which means that the field is measured

on the plane cutting orthogonally the line between the static sources in its mid-point. We

have not considered here other possibilities, thus implying that the tubular shape of the

flux profile is only assumed.

In the dual superconductor model of the QCD vacuum, the formation of the chromo-

electric flux tube can be interpreted as the dual Meissner effect. In this context the trans-

verse shape of the longitudinal chromoelectric field El should resemble the dual version of

the Abrikosov vortex field distribution. Therefore, the proposal was advanced [8, 10–14]

to fit the transverse shape of the longitudinal chromoelectric field according to

El(xt) =
φ

2π
µ2K0(µxt) , xt > 0 , (2.5)

where Kn is the modified Bessel function of order n, φ is the external flux, and λ = 1/µ is

the London penetration length. Note that eq. (2.5) is valid as long as λ � ξ, ξ being the

coherence length (type-II superconductor), which measures the coherence of the magnetic

monopole condensate (the dual version of the Cooper condensate).
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However, several numerical studies [7, 67–76], in both SU(2) and SU(3) lattice gauge

theories, have shown that the confining vacuum seems to behave like an effective dual

superconductor which lies on the borderline between a type-I and a type-II superconductor.

If this is the case, eq. (2.5) is no longer adequate to account for the transverse structure

of the longitudinal chromoelectric field. In fact, in refs. [19–22] it has been suggested that

lattice data for chromoelectric flux tubes can be analyzed by exploiting the results presented

in ref. [77], where, from the assumption of a simple variational model for the magnitude of

the normalized order parameter of an isolated vortex, an analytic expression is derived for

magnetic field and supercurrent density, that solves the Ampere’s law and the Ginzburg-

Landau equations. As a consequence, the transverse distribution of the chromoelectric flux

tube can be described, according to [19–22], by

El(xt) =
φ

2π

1

λξv

K0(R/λ)

K1(ξv/λ)
, (2.6)

where

R =
√
x2
t + ξ2

v (2.7)

and ξv is a variational core-radius parameter. Equation (2.6) can be rewritten as

El(xt) =
φ

2π

µ2

α

K0[(µ2x2
t + α2)1/2]

K1[α]
, (2.8)

with

µ =
1

λ
,

1

α
=

λ

ξv
. (2.9)

By fitting eq. (2.8) to flux-tube data, one can get both the penetration length λ and the

ratio of the penetration length to the variational core-radius parameter, λ/ξv. Moreover,

the Ginzburg-Landau κ parameter can be obtained by

κ =
λ

ξ
=

√
2

α

[
1−K2

0 (α)/K2
1 (α)

]1/2
. (2.10)

Finally, the coherence length ξ is determined by combining eqs. (2.9) and (2.10).

We have already said that our aim is to extend previous studies of the structure of

flux tubes performed at zero temperature to the case of SU(3) pure gauge theory at finite

temperatures. From the phenomenological point of view, the nonperturbative study of the

chromoelectric flux tubes generated by static color sources at finite temperature is directly

relevant to clarify the formation of cc̄ and bb̄ bound states in heavy-ion collisions at high

energies. It should be evident, however, that to implement this program we cannot employ

the Wilson loop operator in the connected correlation in eq. (2.1). This problem can be eas-

ily overcome if we replace in eq. (2.1) the Wilson loop with two Polyakov lines. In addition,

we also need to surrogate the cooling mechanism previously used to enhance the signal-to-

noise ratio. Indeed, cooling is a well established method for locally suppressing quantum

fluctuations in gauge field configurations. However, at finite temperatures the cooling pro-

cedure tends to suppress also thermal fluctuations. Fortunately, there is an alternative, yet

somewhat related, approach that is the application of APE smearing [78, 79] to the gauge

– 5 –



J
H
E
P
0
6
(
2
0
1
6
)
0
3
3

Figure 2. The connected correlator given in eq. (2.11) between the plaquette UP and the Polyakov

loops (subtraction in ρconnP not explicitly drawn).

field configurations. This approach also leads to the desirable effect of suppressing lattice

artifacts at the scale of the cutoff, without affecting the thermal fluctuations. Moreover,

this procedure can be iterated many times to obtain smoother and smoother gauge field

configurations and allows the anisotropic treatment of spatial and temporal links.

In fact, in ref. [20–22] we suggested that the following connected correlations (depicted

in figure 2):

ρconn
P =

〈
tr
(
P (x)LUPL

†) trP † (y)
〉

〈tr (P (x)) tr (P † (y))〉
(2.11)

−1

3

〈
tr (P (x)) tr

(
P † (y)

)
tr (UP )

〉
〈tr (P (x)) tr (P † (y))〉

,

where the two Polyakov lines are separated by a distance ∆, could replace the correlator

with the Wilson loop defined in eq. (2.1). Even in this case, after taking into account

eqs. (2.2) and (2.3), we may define the field strength tensor as:

Fµν (x) =

√
β

6
ρconn
P (x) . (2.12)

A detailed derivation of eq. (2.12), together with the discussion of its physical interpreta-

tion, can be found in ref. [80].

Obviously, one must preliminarily check that this method gives results which are consis-

tent with previous studies obtained with Wilson loops and cooling. In fact, in refs. [20–22]

we showed that results obtained with the operator eq. (2.11) are consistent within statis-

tical uncertainties with the results obtained by employing Wilson loops and the cooling

procedure. In [21] we discussed also the comparison with the approach of ref. [81], where a

disconnected correlator of plaquette and Wilson loop was adopted, and with that of ref. [55],

where the adopted probe observable was the disconnected correlator of two Polyakov lines

and a plaquette.
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Figure 3. (color online). Longitudinal chromoelectric field for the two different orientations of the

plaquette entering the definition of the connected correlator given in eq. (2.11).

Our lattice setup is as follows. In order to reduce the ultraviolet noise, we applied to

the operator in eq. (2.11) one step of HYP smearing [82] to temporal links, with smearing

parameters (α1, α2, α3) = (1.0, 0.5, 0.5), and NAPE steps of APE smearing [78, 79] to spatial

links, with smearing parameter αAPE = 0.50. Here αAPE is the ratio between the weight

of one staple and the weight of the original link. We expect that the smearing procedure

should improve the approach to the continuum and, therefore, enforce the validity of the

continuum limit given in eq. (2.2). We performed numerical simulations using the Wilson

action on lattices with periodic boundary conditions and the heat-bath algorithm combined

with overrelaxation. For each value of the gauge coupling we collected 4000 - 5000 sweeps;

one sweep corresponds to four overrelaxation steps followed by one heat-bath step. To

allow thermalization we typically discarded a few thousand sweeps and, in order to reduce

the autocorrelation time, measurements were taken after 10 updatings. The error analysis

was performed by the jackknife method over bins at different blocking levels.

Since we are adopting a new numerical code build from the MILC code, we have,

preliminarily, performed some consistency checks. First, we simulated the SU(3) pure

gauge theory a zero temperature on larger lattices. We performed numerical simulations

on 324 lattices and measured the operator given in eq. (2.1). In fact, we obtained results

for the field strength tensor which, within the statistical uncertainties, were compatible

with the ones obtained in refs. [20–22] on 204 lattices. After that, we checked that our
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operator is sensitive to the field strength tensor and not to its square. To this end, it is

enough to check that:

Fµν(x) = − Fνµ(x) , (2.13)

where Fµν(x) is defined by eq. (2.12). This amounts to change UP into U †P in eq. (2.11),

for a fixed choice of the µν-plane where the plaquette lies. In fact, in figure 3 it is shown

that, under this transformation, two independent simulations, differing in the choice of the

orientation of the plaquette, give two field strengths with opposite sign, within 1σ accuracy.

The small deviations seen in figure 3 from the exact linearity can be attributed to lattice

artifacts and are expected to vanish in the a→ 0 limit. Finally, we have checked that also

at finite temperatures only the longitudinal chromoelectric field gave a statistically sizable

signal. Therefore, in the following, we will focus only on the numerical results regarding

the longitudinal chromoelectric fields.

3 Numerical results

We performed numerical simulations at finite temperatures on lattices with temporal ex-

tension ranging from Lt = 10 up to Lt = 16 and spatial size Ls fixed as to have aspect

ratio Ls/Lt ≥ 4. The temperature of the gauge system is varied according to

T =
1

a(β)Lt
, (3.1)

where the scale is fixed using the parameterization [83]:(
a
√
σ
)

(g) = fSU(3)(g
2)
{

1 + 0.2731 â2(g) (3.2)

−0.01545 â4(g) + 0.01975 â6(g) } /0.01364 ,

â(g) =
fSU(3)(g

2)

fSU(3)(g2(β = 6))
, β =

6

g2
, 5.6 ≤ β ≤ 6.5 ,

with

fSU(3)(g
2) =

(
b0g

2
)−b1/2b20 exp

(
− 1

2b0g2

)
, (3.3)

b0 =
11

(4π)2
, b1 =

102

(4π)4
.

In the following, we assumed for the string tension the standard value of
√
σ = 420 MeV.

We measured the connected correlator given in eq. (2.11) at the middle of the line

connecting the static color sources, for various values of the distance between the sources

and for integer transverse distances. As already discussed, to reduce statistical fluctuations

in gauge field configurations, we performed measurements after several APE smearing steps.

At each smearing step, we fitted our data for the transverse shape of the longitudinal

chromoelectric field to eq. (2.8). Remarkably, we found that eq. (2.8) is able to reproduce

the transverse profile of the longitudinal chromoelectric field even at finite temperatures.

As a result, we obtained the fit parameters for different smearing steps. This allowed us
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Figure 4. (color online). Behavior of the parameter φ vs smearing on a 403 × 10 lattice from

measurements of the Polyakov connected correlator at different nonzero temperatures.

β Ls × Lt ∆ [fm] T/Tc statistics

optimal

smearing

step

6.05 403 × 10 0.714 0.8 3000 100

6.37 643 × 16 0.761 0.8 4000 180

Table 1. Summary of simulation parameters used to check the scaling of the longitudinal chromo-

electric field.

to check the dependence of these parameters on the number of smearing steps. To fix the

optimal value of the smearing step, we looked at well defined plateaux in the values of the fit

parameters versus the smearing step. We found that the most reasonable choice was to look

at plateaux for the parameter φ, which is related to the flux of the chromoelectric field: since

this observable encodes both the amplitude of the chromoelectric field and the transverse

size of the flux tube, it is the best candidate to indicate the disentanglement of the signal

from the background noise. In figure 4 we display the fitted parameter φ versus the smearing

steps for the different temperatures considered in this paper. We see that, indeed, φ displays

rather shallow plateaux at NAPE ∼ 100 for all the adopted temperatures. We looked also

for contamination effects on the longitudinal chromoelectric field due to the presence of

the static color sources. To this aim, we varied the distance ∆ between the Polyakov lines
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Figure 5. (color online). Comparison of the behavior of the longitudinal chromoelectric field at a

fixed temperature, T ' 0.8Tc, obtained by different combinations of β and Lt, as showed in table 1.

The solid lines are the fit of our data to eq. (2.8).

keeping the temperature fixed at T/Tc = 0.8 and measured the longitudinal chromoelectric

field on lattices with different values of Lt and of the gauge coupling β. This allowed us to

size the cut-off effects and to single out the scaling region in β. The results of our study

showed that fixing the distance between the static color sources such that ∆ & 0.7 fm

was a good compromise between the absence of spurious contamination effects due to the

static color sources and a reasonable signal-to-noise ratio. In addition, we found that

the longitudinal chromoelectric field displays a nice scaling behavior if one adopts lattices

with Lt ≥ 10. In fact, in figure 5 we compare the transverse profile of the longitudinal

chromoelectric field for two different lattice setups, as summarized in table 1. From figure 5,

we see that the chromoelectric field seems to display an almost perfect scaling.

Having selected the gauge coupling region where continuum scaling holds, we focused

on the temperature dependence of the longitudinal chromoelectric field. We measured the

connected correlator given in eq. (2.11) on 403×10 lattices for physical temperatures rang-

ing from 0.8Tc up to 1.2Tc. We chose the distance ∆ between the two Polyakov lines around

0.76 fm. In table 2 we summarize the simulation setup and the corresponding best-fit values

of the parameters. In figure 6 we display the transverse distribution of the longitudinal

chromoelectric field for the different temperatures used in the present study. From figure 6

we infer that, as the temperature is increased towards and above the deconfinement tem-
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β ∆ [fm] T/Tc φ µ ξv χ2
r

6.050 0.761 0.8 6.201(68) 0.382(13) 3.117(191) 0.02

6.125 0.761 0.9 5.941(101) 0.337(20) 3.652(360) 0.01

6.200 0.756 1.0 2.061(45) 0.328(22) 3.312(389) 0.01

6.265 0.757 1.1 1.359(9) 0.344(7) 4.286(131) 0.06

6.325 0.760 1.2 1.324(11) 0.332(8) 4.248(142) 0.06

Table 2. Simulation parameters for the lattice Ls×Lt = 403× 10, fitted values of the parameters,

and reduced chi-square (chromoelectric sector).
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Figure 6. (color online). Behavior of the longitudinal chromoelectric field at a fixed lattice size

403 × 10 and various gauge couplings in the scaling region vs the transverse distance. The solid

lines are the fit of our data to eq. (2.8).

perature Tc, the strength of the flux-tube chromoelectric field decreases very quickly, while

the size of the flux tube does not seem to vary appreciably. This behavior suggests that,

by increasing the temperature above the critical one, the flux tube is evaporating while

almost preserving his shape. This scenario with flux-tube evaporation above Tc has no

correspondence in ordinary type-II superconductivity, where instead the transition to the

phase with normal conductivity is characterized by a divergent fattening of flux tubes as

the transition temperature is approached from below. A difference in the behavior is to be

expected, given that the transition in SU(3) is first order, whereas in superconductors it is
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Figure 7. (color online). London penetration depth λ vs T/Tc. The λT=0 = 0.1750(63) value is

included.

second order. To better clarify this point, it is fundamental to inquire on the temperature

dependence of both the penetration depth and coherence length, since in our approach

these two parameters fully determine the shape of the longitudinal chromoelectric field.

In figures 7 and 8 we display the penetration depth and the coherence length, in physical

units, respectively versus the reduced temperature T/Tc. We also report the values of these

lengths at zero temperature, as previously obtained on 204 lattices [20–22]. As concerns the

London penetration length, figure 7 shows that it seems to slightly increase with respect

to the zero-temperature value for temperatures T < Tc, and then to decrease above the

critical temperature. However, the overall variation of λ is rather modest, so that, we can

safely affirm that the London penetration length is almost temperature independent. On

the other hand, at finite temperatures the coherence length suffers from a rather drastic

reduction with respect to the zero-temperature value. After that, we see from figure 8 that

ξ is almost constant across deconfinement. In any case, these results indicate clearly that

the flux tube survives even after the color deconfinement transition.

4 Magnetic sector in the deconfined phase

In this section we would like to investigate the structure of QCD in the high-temperature

regime [84, 85]. At high temperatures, through dimensional reduction, QCD can be refor-

mulated as an effective three-dimensional theory with the scale of the effective couplings
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Figure 8. (color online). Coherence length ξ vs T/Tc. The ξT=0 = 0.983(121) value is included.

given in terms of the temperature. However, the QCD effective theory is quite complicated

even at high temperatures, since straightforward perturbation theory does not work due to

the presence of infrared singularities in the magnetic sector. These nonperturbative effects

will manifest themselves in correlation functions for the spatial components of gauge fields.

In fact, it is known since long that gauge-invariant correlation functions for the spatial

components of gauge fields, i.e. spatial Wilson loops, obey an area law behavior in the

high-temperature phase, with a nonzero spatial string tension σs [86, 87]. An analysis of

the temperature dependence of the spatial string tension thus yields information on the

importance of the nonstatic sector for long-distance properties of high-temperature QCD.

It turns out that, for temperatures larger than 2Tc, the spatial string tension is consistent

with the behavior
√
σs = γ g(T ) T , (4.1)

where g(T ) is the temperature-dependent coupling constant, running according to the

two-loop β-function, and γ is a constant, with γ = 0.586 ± 0.045 for SU(3) [87], and

γ = 0.369± 0.015 for SU(2) [86].

We see, thus, that for a better understanding of the nonperturbative structure of QCD

at high temperature, it is fundamental to arrive at a quantitative description of the prop-

erties of the spatial string tension. To this end, we considered the connected correlator

built with gauge links belonging to the spatial sublattice. Obviously, in this case the field

strength tensor eq. (2.3) corresponds to the chromomagnetic field. As in the previous study,
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β ∆ [fm] T/Tc φ µ ξv χ2
r

6.050 0.761 0.8 7.600(14) 0.653(5) 3.313(6) 1.52

6.125 0.761 0.9 8.164(7) 0.593(3) 5.978(38) 2.90

6.200 0.756 1.0 7.887(11) 0.544(4) 6.413(76) 1.27

6.265 0.757 1.1 8.085(12) 0.498(6) 7.572(117) 0.45

6.490 0.759 1.5 9.475(80) 0.393(23) 10.793(721) 0.01

Table 3. Simulation parameters for the lattice Ls×Lt = 403× 10, fitted values of the parameters,

and reduced chi-square (chromomagnetic sector).
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Figure 9. (color online). Transverse profile of the longitudinal chromomagnetic field vs the

transverse distance across the deconfinement temperature. The solid lines are the fit of our data

to eq. (2.8).

we performed simulations on 403×10 lattices for physical temperatures ranging from 0.8Tc
up to 1.5Tc. We chose squared Wilson loops with side ∆ ' 0.76 fm (see table 3 for the

summary of our simulation setup). Remarkably, we found that even in this case the chro-

momagnetic flux tube is built from the longitudinal chromomagnetic field only. Moreover,

the longitudinal chromomagnetic field profile in the transverse directions is accounted for

by the function given in eq. (2.8). In table 3, we report the values of the fitted parameters

together with the reduced chi-square. The transverse profiles of the longitudinal chromo-

magnetic field for different temperatures are displayed in figure 9. Unlike the longitudinal
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chromoelectric field, we see that the strength of the longitudinal chromomagnetic field and

the size of the flux tube increase with the temperature. Moreover, it turns out that the

temperature behavior of the chromomagnetic flux tube is consistent with the observed

increase of the spatial string tension. In fact, we evaluated the spatial string tension as

reconstructed from the profile of the chromomagnetic field according to refs. [20–22] and

found results which are in agreement with the direct, standard determination from spatial

Wilson loops, eq. (4.1) for SU(3), as reported in ref. [87].

5 Summary and conclusions

In this paper we studied the color field distribution between a static quark-antiquark pair

in the SU(3) pure gauge theory at finite temperatures. To our knowledge, this kind of

investigation within the dual superconductivity approach is so far unique, after the pioneer

study of ref. [6], except for the preliminary analyses of refs. [88–92].

For the chromoelectric sector we adopted the connected correlator built with Polyakov

lines, while for the chromomagnetic sector we used the connected correlator built with

Wilson loops. We have made use of the publicly available MILC code [62], which has been

suitably modified by us in order to introduce the relevant observables. Indeed, the use of

the MILC code permits to carry out simulations on lattices with considerable spatial and

temporal extensions.

From previous studies, it is known that, at zero temperature, the chromoelectric field

generated by a static quark-antiquark pair can be described within the dual superconductor

mechanism for confinement. In particular, it has been shown that the transverse profile of

the longitudinal chromoelectric field can be accurately accounted for by the phenomeno-

logical functional form given in eq. (2.8). Remarkably, in the present study we found that

this last result extends also at finite temperatures. Moreover, we found that the flux tube

structure survives to the deconfinement transition. However, the behavior of the flux-tube

chromoelectric field across the deconfinement transition does not match the dual version

of the effective Ginzburg-Landau description of ordinary type-II superconductors. In par-

ticular, the Ginzburg-Landau parameter κ is seen to be κ� 1 at zero temperature, while

κ ' 1 near the deconfinement critical temperature. Indeed, we found that as the tem-

perature is increased towards and above the deconfinement temperature Tc, the amplitude

of the field inside the flux tube gets smaller, while the shape of the flux tube does not

vary appreciably across the deconfinement temperature, thus leading to a scenario which

resembles an “evaporation” of the flux tube.

Since our results are quite surprising, some comments are in order here:

• To exclude the possibility of contamination of our Monte Carlo ensembles above Tc
from configurations belonging to the confined phase (and vice versa), we looked at

histograms of the measured values for the longitudinal chromoelectric field, configu-

ration by configuration, at fixed distance xt = 0 (i.e. on the axis connecting the static

sources) and at zero smearing steps; the distribution of our measurements showed a

Gaussian shape in all temperature regimes (T = 0.8Tc, T = Tc, T = 1.2Tc).
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• In our continuum scaling analysis we performed simulations, at fixed temperature,

on lattices of spatial size 24, 32, 40, 48, 64 (results for Ls = 40 and 64 are explicitly

shown in the manuscript), thus providing with a check of the stability of our results

in the thermodynamic limit.

• Our investigation relies to a large extent on the smearing procedure and it would

be advisable to check the stability of our results under changes of the smoothing

procedure, which we plan to do in future studies. We stress, however, that the

behavior under smearing of the parameter φ, shown in figure 4, is just as expected:

after a number of smearing steps which scales in accordance with the diffusive nature

of the process, φ reaches a broad maximum or stabilizes, thus signalling the complete

washing out of fluctuations at the level of lattice spacing, before fluctuations at

physical length scales are affected. Moreover, even admitting that the smearing

procedure introduces some alteration in the shape of the flux tube, it would be quite

unlikely that it would do that in such a clever way to get profiles of the chromoelectric

field in so nice an agreement with the function given in eq. (2.8) (see figure 6) and

with the continuum scaling (see figure 5). As a matter of fact, we have monitored the

shape of the chromoelectric field during the whole smearing procedure, and always

found that the field profile changes very mildly, in an interval of smearing steps

ranging from 10 up to numbers of order 100.

• The attenuation of the flux we observe above Tc could be explained by screening

effects; we have fixed the physical distance between the two static sources at ∆ =

0.76 fm and, according to ref. [93], such distance is compatible with the screening

length from the lattice at the deconfining temperature.

• A direct comparison between our results and those of refs. [91, 92] is not possible, since

in these works the distance between the sources is not specified. There is, however,

a reasonable qualitative agreement. Indeed, both works agree on the persistence

beyond the critical temperature of the longitudinal component of the chromoelectric

field. Namely, the rightmost panels in figures 3 and 4 of ref. [91] show that the

chromoelectric field, though attenuated in amplitude, survives at values of β as large

as 6.30, corresponding, on a 243 × 6 lattice, to temperatures of about 1.93Tc, much

larger than those considered in our work.

We also investigated the chromomagnetic sector which is relevant for the QCD effec-

tive theory at high temperatures. We focused on the chromomagnetic flux tube which is

responsible for the nonzero spatial string tension. Even in the chromomagnetic sector we

found that the flux tube is built mainly from the longitudinal chromomagnetic field. Our

results showed that the strength and the size of the chromomagnetic flux tube increase

with the temperature, consistently with the temperature behavior of the spatial string ten-

sion. Our findings confirm the importance of long-range chromomagnetic correlations in

high-temperature QCD.

Finally, it is worthwhile to stress that our results could have important phenomeno-

logical applications in hadron physics. In particular, we believe that they are relevant to
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clarify the nature of the initial state of the quark-gluon plasma in heavy-ion collisions.

However, before attempting phenomenological applications, it is important to extend the

present study to full QCD, i.e. to the SU(3) lattice gauge theory with improved gauge

action and dynamical quarks with masses at (almost) the physical point.
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