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Interleukin (IL)-17A belongs to IL-17 superfamily and binds the heterodimeric IL-17 receptor (R)(IL-17RA/IL-17RC).
IL-17A promotes germinal center (GC) formation in mouse models of autoimmune or infectious diseases, but the role of
IL-17A/IL-17AR complex in human neoplastic GC is unknown. In this study, we investigated expression and function of
IL-17A/IL-17AR in the microenvironments of 44 B cell non-Hodgkin lymphomas (B-NHL) of GC origin (15 follicular
lymphomas, 17 diffuse large B cells lymphomas and 12 Burkitt lymphomas) and 12 human tonsil GC. Furthermore, we
investigated the role of IL-17A in two in vivomodels of GC B cell lymphoma, generated by s.c. injection of SU-DHL-4 and
OCI-Ly8 cell lines in Severe combined immunodeficiency (SCID)/Non Obese Diabetic (NOD) mice. We found that: (i) B-
NHL cell fractions and tonsil GC B cells expressed IL-17RA/IL-17RC, (ii) IL-17A signaled in both cell types through NF-
kBp65, but not p38, ERK-1/2, Akt or NF-kBp50/105, phosphorylation, (iii) IL-17A was expressed in T cells and mast cells
from neoplastic and normal GC microenvironments, (iv) IL-17A rendered tonsil GC B cells competent to migrate to
CXCL12 and CXCL13 by downregulating RGS16 expression; (v) IL-17A stimulated in vitro proliferation of primary B-NHL
cells; (vi) IL-17A (1 mg/mouse-per dose) stimulated B-NHL growth in two in vivo models by enhancing tumor cell
proliferation and neo-angiogenesis. This latter effect depended on IL-17A-mediated induction of pro-angiogenic gene
expression in tumor cells and direct stimulation of endothelial cells. These data define a previously unrecognized role of
human IL-17A in promoting growth of GC-derived B-NHL and modulating normal GC B cell trafficking.

Introduction

IL-17A belongs to the IL-17 cytokine superfamily together
with five additional structurally related cytokines, namely
IL-17B, IL-17C, IL-17D, IL-17E and IL-17F. IL-17A is synthe-
sized by Th17 cells, gamma-delta T cells, natural killer T cells,
lymphoid tissue-inducer like cells, Paneth cells and neutrophils.1

The biological effects of IL-17 family cytokines are medi-
ated by five different receptor (R) subunits (RA, RB, RC,
RD, RE), that are single transmembrane domain-containing

proteins which can heterodimerize or homodimerize in dif-
ferent combinations.2 The heterodimer formed by IL-17RA
and IL-17RC binds IL-17A, IL-17F and the heterodimeric
cytokine IL-17A/IL-17F. 2,3 IL-17RA is expressed ubiqui-
tously, with high levels in the hematopoietic cell compart-
ment.4,5 IL-17RC is highly expressed in epithelial cells of
prostate, kidney and joints, and at lower levels in hemato-
poietic cells.6

The main physiological function of IL-17A is protection from
bacterial and fungal infections through recruitment of
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neutrophils to the site of inflammation.4,7 In addition, IL-17A
stimulates the production of other cytokines and chemokines
such as G-CSF, IL-6 and IL-8.2 Th17 cell-derived IL-17A enhan-
ces isotype switching in mouse and human B cells 8 and is
involved in the pathogenesis of several autoimmune and allergic
diseases. 4 In this respect, IL-17A was found to promote GC for-
mation in different mouse models of human autoimmune or
infectious diseases 8-11 via specific signaling pathways.12

In this study, we have addressed IL-17AR expression and IL-
17A activity on malignant B cells isolated from lymph node
biopsies of patients with B-NHL of GC origin, namely follicular
lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and
Burkitt lymphoma (BL). In addition, we have investigated
expression and function of IL-17AR on human tonsil GC B cells
and of IL-17A in the GC microenvironment.

BL and DLBCL are tumors with predominant centroblastic
morphology, while FL contains centrocytic and centroblastic
components in different ratios depending on tumor grade.13,14

BL and DLBCL are highly proliferating tumors that invade the
GC and quickly replace the physiological microenvironment. In
contrast, FL displays a follicular growth pattern that is partially
retained for a long time over the natural history of the dis-
ease.13,14 Both DLBCL and FL occur commonly in adults and
rarely in children or adolescents.15 DLBCL is the most frequent
B-NHL subtype, with approximately one third of cases originat-
ing from the transformation of FL.14 BL affects predominantly
children or young adults, with frequent intra-abdominal or extra-
nodal involvement.15

We show that IL-17A promotes the growth of B-NHL both
in vitro and in vivo by stimulating tumor cell proliferation and
neo-angiogenesis. In contrast, IL-17A does not affect prolifera-
tion or survival of freshly isolated normal GC B cells, but renders
them competent to migrate to CXCL12 and CXCL13 through
an NF-kBp65-dependent mechanism, thus contributing to regu-
late the trafficking of these cells within the GC.

Results

Expression of IL-17AR in human B-NHL lymph node and
tonsil germinal center

Both IL-17RA and IL-17RC mRNAs were detected at com-
parable levels in FL, DLBCL and BL samples (Fig. 1A). Expres-
sion of IL-17RA and IL-17RC on the surface of primary
neoplastic cells was detected by flow cytometry in 24 lymph node
samples of GC-derived B cell lymphoma. In particular, Fig. 1B
shows the results obtained with 9 FL, 11 DLCBL and 4 BL cases.
The insets in Fig. 1B show a representative staining for IL-17RA
and IL-17RC in a FL, BL and DLBCL case, respectively (Mean
Relative Fluorescence Intensity (MRFI) § SD for FL: IL17RA D
3.1 § 1.5 and IL-17RC D 2.5 § 0.5; MRFI § SD for DLBCL:
IL17RA D 2.5 § 1.2 and IL-17RC D 2.2 § 1.5; MRFI § SD
for BL: IL17RA D 2.8 § 0.8 and IL-17RC D 2.3 § 1.5).

IL-17RA and IL-17RC expression was next assessed by flow
cytometry in different GC B cell subsets freshly isolated from six
tonsils. GC B cells (CD38high, CD39¡ IgD¡), were found to

express IL-17RA and IL-17RC (Fig. 1C). The insets in Fig. 1C
show a representative staining of GC B cells for IL-17RA and IL-
17RC (MRFI § SD for GC B cells: IL17RA D 3.7 § 1.7 and
IL-17RCD2.5 § 0.9). Moreover, both centrocytes (CC,
CD38dim CD77¡ B cells) and centroblasts (CB, CD38high

CD77C B cells) were found to express IL-17RA and IL-17RC
(MRFI § SD for CB : IL-17RAD 3.2 § 1.4 and IL-17RCD 2.4
§ 0.6; MRFI § SD for CC: IL-17RA D 3.4 § 1.6 and
IL-17RCD 2.1 § 0.7).

IL-17AR function in human normal and malignant
GC B cells

IL-17A activates the canonical NF-kB signaling pathway in
different cell types.12 As shown in Fig. 2A (upper panel), IL-
17A upregulated significantly phosphorylated (p)NF-kBp65,
but not NF-kBp65 (similar levels of about 95 § 3% of expres-
sion in treated and untreated cells), in primary B-NHL cells
upon incubation for 1 to 30 min with recombinant human (rh)
IL-17A, with a peak at 1 min (p D 0,003 for three FL and three
DLBCL samples). Likewise, a significant upregulation of pNF-
kBp65, but not NF-kBp65 (similar levels of about 93 § 2% of
expression in treated and untreated cells), was observed in four
tonsil GC B cell suspensions after 10 and 30 min culture with
IL-17A (p D 0,01 and D 0,002, respectively), as assessed by flow
cytometry (Fig. 2A, lower panels). The faster kinetics of NF-
kBp65 phosphorylation in malignant B cells vs. their normal
counterparts may depend on intrinsic characteristics of the for-
mer cells due to their transformed state. In contrast, IL-17A did
not induce phosphorylation of NF-kB p50/105, 12 or of p-38,
ERK1/2, AKT, JNK in either malignant or normal GC B
cells.12,16

IL-17A, as well as CD40L tested as positive control, 17 signifi-
cantly increased proliferation of tumor cells over background lev-
els: p D 0,01 and p D 0.009 for five FL samples (Fig. 2B left
panel) and p D 0, 009 and p D 0.01 for four DLBCL samples
(Fig. 2B right panel), respectively. No direct effect of IL-17A on
survival or migration of B-NHL cells was observed following co-
stimulation with CD40L or anti-IgM/IgG tested alone or in
combination (data not shown). For in vitro functional experi-
ments, we tested FL and DLBCL as model of GC-derived
B-NHL since the number of cases of these lymphomas was much
higher than that of BL.

In contrast, IL-17A did not rescue normal GC B cells from
apoptosis nor did it increase the rate of survival induced by
rhCD40L stimulation at any time tested (Fig. S1A). Likewise,
IL-17A did not affect proliferation of GC B cells either in the
presence or absence of rhCD40L (Fig. S1B),18 nor was chemo-
tactic for the latter cells (Fig. S1C).

IL-17A confers migratory competence to CXCL12 and
CXCL13 on tonsil GC B cells

We next asked whether IL-17A could modulate CXCR4 and
CXCR5 expression and/or function in tonsil GC B cells, thus
impacting on their migration within the GC.19 The latter cells,
freshly isolated from eight different tonsil samples were pre-incu-
bated for 3 or 6 h with or without 20 ng/mL rhIL-17A, and
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subjected to chemotaxis in response to CXCL12 or CXCL13.
The proportions of apoptotic GC B cells after 3 and 6 h culture
were on average 12 and 22%, respectively, as assessed by Annexin
V staining, irrespective of they had been exposed or not to IL-
17A. The poor viability of GC B cells is a well-known feature of
this cell population.20

Treatment of GC B cells with IL-17A for 3 or 6 h induced
their de novo chemotaxis to 300 ng/mL CXCL12 or CXCL13 (p
D 0.0005 and p D 0.0007, respectively at both times tested),
whereas GC B cells pre-incubated with medium alone never
migrated to either chemokine (Fig. 3A).21 Likewise, GC B cells

pre-incubated with rhCD40L were attracted by CXCL1222 or
CXCL13 (Fig. 3A). The ratio between CB and CC in migrated
cells upon stimulation with IL-17A or CD40L was similar to
that detected in the same cell fractions before being tested, indi-
cating that CB and CC were equally attracted by both chemo-
kines. Incubation of GC B cells with either rhIL-17A or
rhCD40L did not change the MRFI (Fig. 3B) or the percentage
of CXCR4C or CXCR5C GC B cells (median for CXCR4 of 89
§ 5 % and for CXCR5 of 92 § 7 % with or without the treat-
ment with rhIL-17A or rhCD40L). Therefore, we tested whether
IL-17A driven acquisition of migratory competence to CXCL12

Figure 1. Expression of IL-17A receptor in primary tumor cells from patients with FL, DLBCL or BL and in their normal counterpart. (A) Expression levels of
IL-17RA and IL-17RC in FL, DLBCL and BL, as measured using the Affymetrix GeneChip U133 array. Data obtained from the GSE16131 (FL) 48 and GSE4475
(DLBCL, BL) 47 datasets, both produced using the Affymetrix U133A. The line in the middle of the box-plot represents the median and the box extends
from the 25th to the 75th percentile (interquartile range, IQ); the whiskers extend to the upper and lower adjacent values (i.e., §1.5 IQ); outside values
are individually plotted. Y-axis, expression values (RMA, Robust Multiarray Average). (B) Neoplastic B cells were stained with anti-k or anti-lmAbs in com-
bination with anti-IL-17RA or anti-IL-17RC mAbs and analyzed by flow cytometry. Results for 9 FL, 11 DLCBL and 4 BL are shown in box plot, as median %
positive cells, maximum, minimum and first and third quartile. Insets. A representative staining for IL-17RA and IL-17RC in FL, DLBCL and BL is shown, as
assessed by flow cytometry. Dark gray histogram: isotype control. Gray histogram: receptor staining. In the plot mean of mean relative fluorescence
intensity (MRFI) § SD is reported. (C) Freshly isolated tonsil MNC were stained with CD38, CD39 or anti-IgD mAbs in combination with anti-IL-17RA or
anti-IL-17RC mAbs and analyzed by flow cytometry. Results are mean % positive cells C SD in GC B cells subset (N D 6). Insets. A representative staining
for IL-17RA and IL-17RC in tonsil GC is shown, as assessed by flow cytometry. Gray histogram: isotype control. Dark gray histogram: receptor staining. In
the plot mean of MRFI § SD is reported.
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and CXCL13 by tonsil GC B cells was related to downregulation
of RGS16, a negative controller of signaling through these che-
mokine receptors. 23 Indeed, treatment of GC B cells with rhIL-
17A or rhCD40L, but not with IFNg tested as negative
control, caused significant downregulation of RGS16 expression
(p D 0 .005 for rhIL-17A and p D 0.002 for rhCD40L)
(Fig. 3C).

Consistent with previous studies, freshly isolated B-NHL cells
of GC origin (five FL and four DLCBL samples) expressed
CXCR4 and CXCR5 at levels comparable to those detected in
normal GC B cells and migrated to CXCL12 and CXCL13.22

Treatment of B-NHL cells with 20–50 ng/mL rhIL-17A in com-
bination or not with CD40L and/or anti-IgM/IgG did not
enhance chemotaxis to either chemokine or expression of the
respective receptors CXCR4 and CXCR5 (not shown) nor mod-
ulated RGS16 expression (not shown).

IL-17RA blocking
abrogates IL-17-mediated
signaling and related
functional activities

We next performed
functional experiments on
neoplastic and normal GC
B cells after IL-17RA
blocking with a specific
monoclonal antibody
(mAb). NF-kBp65 phos-
phorylation was inhibited
in both cell types following
blocking with IL-17RA
mAb, but not with control
mAb (Figs. 4A and 5A).
Accordingly, IL-17A
induced proliferation of
primary B-NHL cells (two
FL and three DLCBL) was
abrogated by pre-treatment
of cells with the former,
but not the latter, mAb
(Fig. 4B). Finally, blocking
of IL-17RA abolished IL-
17A-induced chemotaxis of
tonsil GC B cells to
CXCL12 and CXCL13
(Fig. 5B) and downregula-
tion of RGS16 expression
in the same cells (Fig. 5C).
In contrast, RGS16 down-
regulation induced by cul-
ture of tonsil GC B cells
with CD40L was unaf-
fected by IL-17AR blocking
(Fig. 5C).

These results demon-
strate unambiguously the
involvement of IL-17A/IL-

17AR in the functional activities of the cytokine in malignant
and tonsil GC B cells here reported.

IL-17A expression in normal and neoplastic germinal
center microenvironments

Immunofluorescence analysis of tonsil tissue sections revealed
that IL-17A was predominantly expressed within para-follicular
T cell-rich areas where it marked scattered cells with a monocy-
toid morphology consistent with activated T cells and/or myeloid
cells. Double-marker immunofluorescence analysis showed that
most IL-17A-positive cells were CD3C T cells admixed with rare
TryptaseC mast cells (Fig. 6A, B). No CD20C B cells expressing
IL-17A were detected. In B-NHL samples the expression of IL-
17A was restricted to scattered reactive CD3C T cells and occa-
sional TryptaseC mast cells (Fig. 6C–H).

Figure 2. IL-17A signaling and function in tonsil and neoplastic GC (B)cells. (A) Upper panel: Flow cytometric analy-
sis of pNF-kBp65 in neoplastic cells from three FL (left panel) or three DLBCL (right panel) treated for 0, 1, 10, 30 or
60 min with IL-17A. Results are shown as mean % positive cells C SD. White histograms: medium alone. Gray histo-
grams: cells stimulated with rhIL-17A. Lower panel: analysis of pNF-kBp65 in isolated GC B cells stimulated for 0, 1,
10, 30 and 60 min with rhIL-17A, as assessed by flow cytometry. Results are mean % positive cells C SD of four sam-
ple tested. White histograms: medium alone. Gray histograms: cells stimulated with rhIL-17A. (B) Primary neoplastic
cells from patients with five FL (left panel) and four DLBCL (right panel) were cultured without (Med) or with rhIL-
17A or rhCD40L and tested for proliferation by 3H-TdR incorporation. The results shown refer to experiments per-
formed with 20 ng/mL IL-17A, but stimulation of lymphoma cell proliferation was significant also at 10 and
50 ng/mL IL-17A. Results are expressed in box plot, as median % positive cells, maximum, minimum and first and
third quartile.
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Expression and function
of IL-17AR in GC derived
B-NHL cell lines

Five different malignant
cell lines derived from GC B-
NHL, i.e., SU-DHL-4,
DoHH2, OCI-Ly8, Raji and
Ramos, were next tested for
IL-17AR expression and
functionality. As shown in
Fig. S2A, all cell lines
expressed both IL-17AR sub-
units, as assessed by flow
cytometry. Similarly to pri-
mary lymphoma cells, a
significantly increased pNF-
kBp65 was detected in all cell
lines incubated with 20 ng/
mL rhIL-17A compared to
cells incubated with medium
alone. Fig. S2D shows
experiments performed with
the SU-DHL-4 and OCI-
Ly8 cell lines, in which pNF-
kBp65 increased significantly
over background levels at 10

and remain significant at 600.
These cell lines were selected
for the following in vivo
experiments.

In vivo effects of IL-
17A on B-NHL growth

The tumorigenicity of
SU-DHL-4 and Oci-Ly8
cells injected in SCID-
NOD mice by different
routes of inoculation (i.p.,
i.v. and s.c.) was tested in
order to develop a model
suitable for the investiga-
tion of the in vivo effects of
hrIL-17A. The best rate of
growth was observed when
neoplastic cells were
injected s.c., allowing for-
mation of masses easy to
isolate and analyze. Thus,
we inoculated 5 £ 106 SU-
DHL-4 or Oci-Ly8 cells
s.c. into 30 NOD/SCID
mice. The mice were sepa-
rated in two groups and
treated with 3 weekly doses
of rhIL-17A (1 mg/doses),
or PBS (controls) for 20 d

Figure 3. Effects of IL-17A receptor triggering in human freshly isolated tonsil (B)cells. (A) 5 £ 106 freshly isolated
GC B cells were treated for 6 h without (Med) or with rhIL-17A or rhCD40L and subjected to chemotaxis to 300 ng/
mL CXCL12 or CXCL13. Results are shown as mean number of migrated cells C SD of eight sample analyzed. (B)
Expression of CXCR4 and CXCR5 in GC B cells treated for 6 h without (Med) or with rhIL-17A or rhCD40L. Results are
MRFI C SD of eight sample tested. (C) Intracellular expression of RGS-16 in freshly isolated GC B cells treated for 6 h
with or without (Med) rhIL-17A, rhCD40L or IFNg, as assessed by flow cytometry. Results are mean percent positive
cells C SD of eight sample tested.

Figure 4. Effects of IL-17RA blocking on IL-17 mediated signaling in neoplastic cells and related functional activities.
(A) Flow cytometric analysis of pNFkBp65 in neoplastic cells from neoplastic GC B cells (two FL and three DLCBL) pre-
incubated with IL-17RA blocking mAb, or control mAb, and treated for 0, 10 or 30 min with rhIL-17A. Results are
shown as mean % positive cells C SD. (B) Primary neoplastic cells (two FL and three DLCBL) were pre-incubated with
IL-17RA blocking mAb, or control mAb, cultured without (Med) or with rhIL-17A and tested for proliferation by 3H-
TdR incorporation. Results are expressed in box plot, as median % positive cells, maximum, minimum and first and
third quartile.
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The size of tumors formed by SU-DHL-4 cells (Fig. 7A) or Oci-
Ly8 cells (Fig. S3) was significantly increased in IL-17A treated
vs. untreated mice (p D 0, 0131 and 0.04, respectively), indicat-
ing that the cytokine stimulated B-NHL growth. The animals
did not show any evidence for increased size of internal organs
(spleen, liver, lymph nodes, lung, kidney, brain), irrespective of
whether they had received IL-17A or PBS, making it unlikely
that IL-17A could promote tumor metastasis.

Histological and immunohistochemical studies carried out on
lymphoid tumor masses formed by SU-DHL-4 (Fig. 7B) or
Oci-Ly8 cells (not shown) provided similar results. Tumors from
PBS treated SCID/NOD mice showed a few, but clearly detect-
able, apoptotic events (as assessed by TUNEL assay) and a dis-
tinct microvascular supply (as assessed by laminin and CD31
staining) (Fig. 7B, panels A–D, and Table 1). Treatment with
rhIL-17A reduced the frequency of apoptotic events and clearly
increased microvascular network development (Fig. 7B, panels
E–H). Flow cytometric analysis of cell suspensions from
explanted tumors revealed significantly (p D 0,0087) increased

proportions of Ki-67C pro-
liferating cells in mice
treated with IL-17A vs. PBS
(Fig. 7C).

Human angiogenesis
PCR array experiments per-
formed with SU-DHL-4
tumors from 4 rhIL-17A
treated mice in comparison
to tumors from four PBS-
treated mice showed that
17A treatment upregulated
mRNA expression of the
pro-angiogenic genes Hep-
aran sulfate proteoglycan
(HPSE), inhibitor of differ-
entiation/DNA binding 1
(ID1), leukocyte cell derived
chemotaxin (LECT1), IL-
1B, and Laminin-a 5
(LAMA5) and downregu-
lated expression of two addi-
tional pro-angiogenic genes,
namely Insulin-like growth
factor 1 (IGF-1) and trans-
forming growth factor b
receptor 1 (TGFb-R1)
(Fig. 7D).

Chorioallantoic mem-
brane (CAM) incubation
with rhIL-17A for 12 d
resulted in a significant
angiogenic response in the
form of numerous allantoic
neovessels developing radi-
ally toward the implant
in a ‘spoked-wheel’ pattern

(mean number of vessels D 26 § 2 for hrIL-17A) (Fig. 7E, panel
B). Such response was comparable to that induced by vascular
growth factor (VEGF)-A tested as positive control (mean number
of vesselsD 24§ 3) (Fig. 7E, panel C). Negative control incubated
with PBS was devoid of any pro-angiogenic activity (mean number
of vessels D 7 § 1) (Fig. 7E, panel A). These results provide dem-
onstration of the direct pro-angiogenic activity of IL-17A.

Discussion

The GC is a specialized microenvironment formed by prolifer-
ating B cells in the follicles of secondary lymphoid organs during
T cell-dependent antibody responses to exogenous antigens.24

The GC dark zone is enriched in proliferating CB that undergo
somatic hypermutation of the Ig V region genes resulting into
diversification of the IgV repertoire. Thereafter, CB migrate to
the light zone where they transform into CC, a minority of which
is selected to survive, undergoes Ig isotype switch and

Figure 5. Effects of IL-17RA blocking on IL-17 mediated signaling in normal GC (B)cells and related functional activi-
ties. (A) Flow cytometric analysis of pNFkBp65 in tonsil GC B cells (n D 5) pre-incubated with IL-17RA blocking mAb,
or control mAb, and treated for 0, 10 or 30 min with rhIL-17A. Results are shown as mean % positive cells C SD. (B)
Freshly isolated tonsil GC B cells were pre-incubated with IL-17RA blocking mAb, or control mAb, and then treated
for 6 h without (Med) or with rhIL-17A and subjected to chemotaxis to 300 ng/mL CXCL12 or CXCL13. Results are
shown as mean number of migrated cells C SD. (C) Intracellular expression of RGS-16 in freshly isolated tonsil GC B
cells pre-incubated with IL-17RA blocking mAb and treated for 6 h with or without (Med) rhIL-17A or rhCD40L, as
assessed by flow cytometry. Results are mean percent positive cells C SD.
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Figure 6. Expression of IL-17A in normal and neoplastic GC microenvironment. (A–H) Double-marker immunofluorescence analysis of IL-17AC cells
within reactive tonsil tissue, and in the neoplastic infiltrates of FL, DLBCL, and BL samples. Most of the IL-17AC (green) cells co-express (yellow) the T-cell
marker CD3 (red) (panel A–C–E–G), which indicates their T-cell nature. In the same cases, scanty IL-17A-expressing (green) tryptaseC (red) mast cells are
also found (yellow, panel B–D–F–H). Pictures are relative to full sections of 4 representative cases out of the 26 analyzed. Original magnification, £400.
Double-staining yellow cells are highlighted in an inset present in all panels (A–H) of the Figure. Magnification, £630. Data were analyzed under a Leica
DM3000 optical microscope and captions were collected using a Leica DFC320 digital camera (Leica).
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differentiates extrafollicularly into memory B cells or long-lived
plasma cells.24 CB express CXCR4 and are attracted to the dark
zone by CXCL12 produced by stromal cells, CC express CXCR5
and are recruited to the light zone along a gradient of CXCL13
produced by FDC.19 Therefore, CXCL12 and CXCL13 play
crucial roles in the regulation of GC B cell trafficking.

Many molecules are involved in GC formation.13,19 IL-17A
represents a recent addition to such list since it promoted GC

formation in a few mouse models of human autoimmune or
infectious diseases.8–12 Furthermore, IL-17A was found to induce
Ig class switching in vitro in mouse and human B cells.25,26 So
far, little is known on IL-17A in relation to human normal or
malignant GC B cell microenvironments.27,28

Variable IL-17A expression was previously detected in lymph
nodes and spleen from CLL patients, where IL-17A producing
cells were identified as Th17 cells, mastocytes and immature

Figure 7. Role of IL-17A on in
vivo tumor growth and angio-
genesis. (A) Volume of tumors
grown s.c. in PBS or IL-17A
treated mice 20 d after SU-
DHL-4 cell injection. Results are
expressed in box plot, as
median % positive cells, maxi-
mum, minimum and first and
third quartile (N D 30). (B)
Tumors developed after s.c.
injection of SU-DHL-4 cells in
PBS-treated SCID/NOD mice
are formed by a mixture of
small and large lymphoid cells
with centrocytes and centro-
blasts morphology (A). These
tumors display some apoptotic
events (tunel assay (B)) and a
distinct microvascular network
(laminin immunostaining (C)
and CD31 staining (D)). The his-
tologic features of SU-DHL-4
tumors are not substantially
altered by rhIL-17-A treatment
(E), while apoptotic events
appears less frequent (F) and
the microvascular supply is
clearly more developed (G–H),
particularly at the tumor edge,
in comparison with control
tumors. (C) Flow cytometric
analysis of cell proliferation in
cell suspensions from
explanted SU-DHL-4 cell
tumors, as assessed by Ki67
staining. Results for eight PBS
and eight IL-17A-treated mice
are expressed as mean % posi-
tive cells C SD. (D) Gene
expression profiling of human
angiogenesis related genes in
SU-DHL-4 tumors explanted
from SCID/NOD mice as
assessed by PCR Array. Results
represent fold differences in
individual mRNA expression
between IL-17A or PBS treated
mice. Pooled results from four
different experiments are
shown. (E) Angiogenic activity
of IL-17A (B), as assessed CAM
assay. PBS (A) and VEGF (C)
were used as negative or posi-
tive control, respectively.
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myeloid cells.27 In another study, in vitro expanded T cells from
lymph nodes of B-NHL patients were found to contain scanty
Th17 cells.27,28

The role of IL-17A and of Th17 cells in tumor growth is con-
troversial. IL-17A is released in the tumor microenvironment of
human cervical malignancies, non-small cell lung carcinoma,
hepatocellular carcinoma and multiple myeloma, for which the
cytokine was found to enhance tumor growth.29-33 In contrast,
IL-17A was shown to inhibit indirectly the growth of mouse mas-
tocytoma and plasmocytoma through T-cell-dependent mecha-
nisms.34 Th17 related IL-21 may counteract tumor progression
in primary B-NHL with ocular localization.35 Moreover, elevated
levels of circulating Th17 cells in CLL correlated with better
prognosis and longer survival. 27

In this study, we have investigated the effects of IL-17A on B
cells from B-NHL of GC origin and their normal counterparts, i.e.,
GC B cells. We demonstrated that IL-17RA and IL-17RC were
expressed in normal and neoplastic GC B cells, and the heterodi-
meric IL-17AR signaled exclusively through the canonical NF-kB
pathway by phosphorylating NF-kBp65 in both cell types, as previ-
ously shown in other cellular models.12,16,36 Neoplastic B cells
from FL, DLBCL and BL proliferated in vitro in response to IL-
17A, suggesting a tumor promoting function of the cytokine. IL-
17A-driven cell signaling and proliferation of B-NHL lymphoma
cells were abrogated by blocking of IL-17AR with a specific mAb.

Since IL-17A expression was detected in CD3C T cells and
occasional tryptase-positive mast cells present in B-NHL micro-
environment, 27 we next investigated the in vivo effects of IL-17A
on the growth of human SU-DHL-4 and Oci-Ly8 DLBCL cells,
tested as models of B-NHL cells. IL-17A increased tumor growth
in SCID/NOD mice by enhancing significantly malignant cell
proliferation and neo-angiogenesis. Human angiogenesis PCR
array analyses revealed upregulation of different pro-angiogenic
genes in explanted tumors from IL-17A vs. PBS-treated mice,
including: HPSE, associated with metastatic cancer;37 ID-1, pro-
moting angiogenesis in normal and cancer cells;38 IL-1B, encod-
ing a pro-inflammatory cytokine broadly involved in the
pathogenesis of cancers;39 LECT1 and LAMA-5, two pro-angio-
genic genes with a poorly understood role in cancer. In contrast
IGF1 and TGFBR1, two additional pro-angiogenic genes, were

downregulated in IL-17A-treated mice, possibly witnessing an
attempt of malignant cells to limit up-regulation of pro-angio-
genic molecule expression. We also performed experiments (not
shown) in which tumors explanted from mice were subjected to
mouse angiogenesis PCR array analysis. In these experiments, no
modulation of gene expression was detected in tumors from IL-
17A treated vs. control mice, indicating that the stimulation of
tumor angiogenesis observed in the former mice depended on
the direct activity of the cytokine on human lymphoma cells.

Different studies have demonstrated the importance of neo-
angiogenesis among the pro-tumoral effects of IL-17A,29,30

highlighting the ability of the cytokine to promote neo-vessel for-
mation through direct and indirect mechanisms. Thus, IL-17A
stimulated migration of vascular endothelial cells 29 and induced
fibroblasts and tumor cells to produce pro-angiogenic growth fac-
tors and cytokines, such as prostaglandin (PGE)1, PGE2, VEGF,
keratinocyte-derived chemokine or macrophage inflammatory
protein-2.29 In a human non-small cell lung cancer model,
IL-17A increased in vivo tumor growth and angiogenesis via a
CXCR2-dependent mechanism.30

Here we show that hrIL-17A had an intrinsic direct pro-angio-
genic activity, as assessed by the ability of the cytokine to stimu-
late new vessel formation in the CAM assay. It is conceivable that
in our experiments the intrinsic pro-angiogenic activity of IL-17A
was a major player in the enhancement of tumor angiogenesis
since expression of a relatively limited number of pro-angiogenic
genes was disclosed in tumor masses by PCR-array experiments.

At variance with that observed with B-NHL cells, IL-17A did
not influence proliferation of normal tonsil GC B cells, possibly
due to intrinsic proneness of these cells to apoptosis and the
inability of IL-17A to counteract this latter process.

We have previously shown that freshly isolated human GC B
cells do not migrate to CXCL12 although they express CXCR4. 40

Nonetheless, incubation of the latter cells with CD40L was found
to render them competent to migrate to CXCL12.40 In the present
study, pre-incubation of human GC B cells with IL-17A conferred
on the latter cells the capacity to migrate to CXCL12 and CXCL13
in the absence of CD40L stimulation. The mechanism underlying
such effects was found to be related to downregulation of RGS16
expression operated by both IL-17A or CD40L, highlighting a
commonmechanism for these molecules.

Detection of IL-17A expressing cells with a predominant
localization in the para-follicular T cell-rich areas of tonsil GC,
expression of IL-17A receptor by GC B cells, and IL-17A-medi-
ated induction of migratory competence to CXCL12 and
CXCL13 in GC B cells all point to IL-17A as a previously
unknown regulator of B cell trafficking in the GC of secondary
lymphoid organs. Our results are consistent with the demonstra-
tion of a role of IL-17A in the development of GC in an autoim-
mune mouse model.10,12 Although RGS16 was found also in the
latter studies to be target of IL-17A activity, the final result of
this molecular interaction was an increased spontaneous GC for-
mation mediated by abolished B cell chemotaxis to CXCL12 and
enhanced retention of GC B cells in the GC.10,12 The reasons for
the discrepancy between the latter results and our findings may
be related to the different experimental models (man vs. mouse

Table 1. Immunohistochemical assessment of microvessels and apoptotic
cells in tumors developed after SU-DHL-4 cell injection in PBS or hrIL-17A
treated mice

SU-DHL-4

PBS hrIL-17A
Microvessels 8.4 § 2.5 14.9 § 3.0*

Apoptotic index % 15.7 § 5.0 6.2 § 3.2*

Apoptotic cell and microvessel count was performed as reported in Meth-
ods. Eight fields were examined for each tumor section and three sections
per tumor (three cytokine treated vs. three PBS treated) were evaluated.
Results are expressed as mean § SD of TUNEL positive cells/number of total
cells (£600) or, CD31 positive vessels per field (£400) evaluated on forma-
lin-fixed sections by immunohistochemistry.
*Values significantly different (p <0.05) from corresponding values in
tumors developed in PBS-treated mice.

www.tandfonline.com e1030560-9OncoImmunology



and in vitro vs. in vivo studies) and to the strong inflammatory
environment associated with mouse autoimmunity compared
that of human tonsil.

In conclusion, this study delineates previously unrecognized
roles of IL-17A in neoplastic and normal GC. In the latter con-
text, IL-17A unambiguously promotes the growth of human
B-NHL by enhancing tumor cell proliferation and neo-angiogen-
esis, paving the way to future studies addressing the IL-17A/IL-
17AR complex as potential therapeutic target. On the other
hand, IL-17A appears to participate in the regulation of GC B
cell chemotaxis in the normal GC microenvironment.

Materials and Methods

Patients and controls
Heavily infiltrated lymph nodes from patients with FL (n D

15; 9 males and 6 females, age range: 46–61), DLBCL (nD17, 9
males and 8 females, age range: 49–65) and BL (n D 12, 8 males
and 4 female, age range: 7–18), biopsied for diagnostic purposes,
were obtained after informed consent in accordance with the
Declaration of Helsinki. Diagnosis of FL, DLBCL and BL was
established according to the criteria of the Revised European–
American Classification of Lymphoid Neoplasms.15,34 All
patients were studied at diagnosis and were untreated. Twelve
tonsils, surgically removed due to localized inflammation, were
obtained after informed consent. The study was approved by
the Institutional Review Board of Istituto Giannina Gaslini,
Genova, Italy on October 27th, 2005.

Cell isolation and culture
Tonsil B cells (>95 % CD19C cells) were isolated as

reported 41 and enriched for GC B cells ( > 95% CD19C,
CD38high, CD10C, CD44¡ cells) by centrifugation on a dis-
continuous (60–30%) Percoll (Pharmacia) density gradient 41

followed by depletion of CD39C na€ıve and memory B cells.
For in vitro experiments, we used either freshly isolated or fro-
zen tonsil B cells obtaining superimposable results. The latter
cells were cryopreserved in freezing solution containing 50%
RPMI 1640 (Sigma Chemical Company), 40% FBS (Sigma),
and 10% DMSO (Sigma).

Malignant B cell suspensions ( >80–85% CD19C cells) were
first isolated from lymph nodes as reported,22 then cryopreserved
in freezing solution and further enriched (at least 96%) after
thawing by removing (i) residual normal B cells according to the
expression of the Immunoglobulin light chain not expressed by
the malignant clone and (ii) other contaminant cell types (i.e.,
CD3C, CD56C and CD14C cells), through immunomagnetic
bead manipulation (Miltenyi, Miltenyi Biotec). The human SU-
DHL-4 (of DLBCL origin),42 DoHH2 (of FL origin)43 and Raji
and Ramos (of BL origin)44 were used, together with the Oci-
Ly8 cell line that is considered with a DLCBL origin. All cell
lines were provided 2 yr ago by Interlab Cell Line Collection
(Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy) that
certifies their origin by multiplex short tandem repeat profiling.
These cell lines, that were revalidated 4 months ago by Interlab

using the same assay, were cultured in RPMI 1640 medium
(Sigma) supplemented with 10% FBS (Sigma).

Antibodies and flow cytometry
The following mAbs were used: Phycoerythrin (PE)-conju-

gated anti-IL-17RA, Alexa Fluor 488 anti-IL-17RC (R&D Sys-
tem Inc.); PE or Fluorescein Isothiocyanate (FITC) anti-k and
anti-l Ig light chains, PE-CD10 (R&D System); unconjugated-
CD39 (Immunotech); PC7-CD19, PC5-CD38, FITC-CD44,
PC5 and FITC-CD3 (Beckman Coulter); FITC-anti human
Ki67 (DAKO); PE or FITC anti-IgD (Biolegend). PeCy7-CD39
and FITC-CD68 were from eBiosciences (eBiosciences). Anti-
human RGS-16 unconjugated mAb was from Abcam (Abcam).
For intracellular flow cytometry detection, cells were stained with
anti-Ki67 or anti-RGS16 using cytofix/cytoperm kit (Becton-
Dickinson). Cells were stained with fluorochrome-conjugated
mAbs, or unconjugated mAbs followed by fluorochrome-conju-
gated secondary reagents, or with isotype- and fluorochrome-
matched control antibodies. Cells were run on a Gallios
instrument (Beckman Coulter) and data were analyzed using the
Kaluza software (Beckman Coulter). Data were expressed as per-
centage of positive cells or MRFI, calculated as follows: fluores-
cence intensity obtained with specific mAb/fluorescence intensity
obtained with irrelevant isotype-matched mAb. For cytofluori-
metric analysis of tonsil mononuclear cells, we first gated the
lymphocyte population based upon physical parameters and then
gated lymphocytes stained with a specific mAb, e.g., CD19.

Cell signaling
NF-kBp65 (Ser536) phosphorylation was investigated by flow

cytometry.45 Cells were treated for 0–1–5–10–30–60 min with
or without (medium) 20 ng/ml rhIL-17A and stained with an
Alexa 488-conjugated anti-pNF-kBp65 mAb (Cell Signaling
Technology) and an unconjugated anti-NF-kBp65 polyclonal
Ab (Cell Signaling Technology) according to the instructions of
the manufacturer. In brief, cultured cells were collected, fixed
with 2% paraformaldeheyde for 10 min at 37�C, incubated with
90% ice-cold methanol for 30 min to permeabilize the cells, and
subsequently stained with the specific Ab for 1h at room temper-
ature. The same protocol was used to investigate the phosphory-
lation of NF-kBp105, ERK1/2, Akt, JNK (Cell Signaling
Technology). Cells were washed and run on Gallios cytometer.
Data were analyzed using the Kaluza software.

Cell proliferation, apoptosis and chemotaxis
Normal and neoplastic cells were analyzed for proliferation

and apoptosis in presence or absence of 10–20–50-ng/mL
rhIL-17A (see the Supplemental Methods). Chemotaxis was
investigated using 5 mm pore-size transwell plates (Costar) as
reported 41 (see the Supplemental Methods).

Blocking experiments
Normal and neoplastic B cells were pre-incubated for 20 min

with 2 mg/mL of an IgG1 blocking mouse mAb to human
IL-17RA (R&D System, clone#133617) or of mouse IgG1 con-
trol mAb (R&D System) at 37�C. Thereafter, cells were cultured
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with 50 ng/mL rhIL-17A for different times and subjected to
functional tests.

Immunofluorescence
Tissue samples selected for immunofluorescent analyses were

retrieved from the archives of the Human Pathology Section,
Department of Health Sciences, University of Palermo. Formalin-
fixed and paraffin-embedded tissue sections from six FL, six
DLBCL and eight BL lymph nodes, as well as from six tonsils with
reactive follicular hyperplasia were tested. The immunofluores-
cence techniques are detailed in the Supplemental Methods online.

Gene expression profiling
Raw expression profiles (CEL files) were downloaded from

three publicly available data-sets (GSE2350,46 GSE4475,47

GSE16131)48 and individually imported and normalized using
RMA (Robust Multiarray Average) algorithm in Partek Geno-
mics Suite 6.4 (Partek, St. Louis, MO, USA). Box-plots were cre-
ated with Stata/SE v.12.1 (StataCorp, College Station, TX, USA)
and differential expression among groups was evaluated with the
Wilcoxon rank-sum test. A p value lower than 0.05 was
considered statistically significant.

In vivo studies
Four–six week old SCID-NOD mice (Harlan Laboratories)

were housed under specific pathogen-free conditions. All proce-
dures involving animals were performed in accordance with
national and international current regulations (D.l.vo 27/01/1992,
n.116, European Economic Community Council Directive 86/
609, OJL 358, December 1, 1987). Thirty animals were injected s.
c. in the left flank with 5 £ 106 SU-DHL-4 cells and separated in
two groups of 15 mice each. The same protocol was applied to
30 SCID/NOD mice injected s.c. in the left flank with 2.5 £ 106

Oci-Ly8 cells. The first group of mice was treated with 3 weekly
doses of rhIL-17A (1 mg/mouse per dose) starting one day after
injection of tumor cells. The second group was treated with PBS
(controls) following the same time schedule. The concentration of
IL-17A to be injected in vivo was chosen on the basis of previous
studies.1 Twenty days after tumor cell inoculation, mice were killed
since signs of poor health such as enlarging tumor masses and pres-
ence of ruffled fur, became evident and autopsies were carried out.
Tumor masses were explanted, measured as described 49 and used
for following ex vivo analyses.

Morphologic and immunohistochemical analyses on mouse
tissue

Tumor masses formed by SU-DHL-4 cells were subjected to
morphological and immunohistochemical analyses, as
described.49,50 Formalin-fixed, paraffin-embedded sections were
incubated for 30 min with rabbit anti-human/mouse laminin
(Biogenex) Abs or with rat anti-mouse CD31 (clone SZ31; Dia-
nova). CD31 positive vessels were counted in eight randomly
chosen fields under a microscope £400 field (£40 objective and
£10 ocular lens; 0.180 mm2 per field). The rates of apoptotic
cells were determined by counting the number of TUNEL

positive cells/number of total cells in the viable neoplastic tissue
under a microscope £600 field (£60 objective and £10 ocular
lens; 0.120 mm2 per field).

Immunocomplexes were detected using the BondTM Polymer
Refine Detection Kit according to the manufacturer’s protocol
(Leica), then sections were counterstained with hematoxylin and
eosin. DNA fragmentation was detected in 4 mm tissue sections
by TUNEL staining with the ApopTag� Plus Peroxidase In Situ
Apoptosis Kit (Millipore, Billerica, MA, USA), according to the
manufacturer’s protocol.

Angiogenesis PCR-Array
RNA was extracted from mouse tumors using Qiagen (Hil-

den) kit, reverse transcribed and processed using human or
mouse Angiogenesis RT2 PCR Array (SABioscience), as
described. 49 PCR was performed on ABI Prism 7700 Sequence
Detector (Applied Biosystems).

CAM assay
CAM assay was carried out as previously reported 49 to inves-

tigate the angiogenic activity of IL-17A. The technique is detailed
in the Supplemental Methods online.

Statistical analysis
Differences in tumor volume, chemotaxis, RGS16 expression,

apoptotic and proliferating cells and NF-kBp65 phosphorylation
were calculated using Mann–Whitney test comparing two indepen-
dent samples, with 99% confidence interval (GraphPad Prism 3).
All statistical tests were two tailed. A p value lower than 0.05 was
considered statistically significant. Quantitative studies of stained
sections were performed independently by two pathologists in a
blind fashion. Differences in the number of apoptotic cells and
tumor microvessels in immunohistological studies were evaluated
by Student’s t test. All statistical tests were two-tailed and a p value
lower than 0.05 was considered statistically significant.

Disclosure of Potential Conflicts of Interest

The samples used for this study were obtained from patients
after informed consent in accordance with the Declaration of
Helsinki. The study was approved by the Institutional Review
Board of Istituto Giannina Gaslini, Genova, Italy on October
27th, 2005.

Acknowledgments

The authors thank Dr. Francesco Annunziato for reading the
manuscript and providing insightful criticism and suggestion and
Dr. Sarah Gaffen for helpful suggestions.

Supplemental Material

Supplemental data for this article can be accessed on the
publisher’s website.

www.tandfonline.com e1030560-11OncoImmunology

http://dx.doi.org/10.1080/2162402X.2015.1030560
http://dx.doi.org/10.1080/2162402X.2015.1030560


References

1. Gaffen SL. An overview of IL-17 function and signal-
ing. Cytokine 2008; 43:402-7; PMID:18701318;
http://dx.doi.org/10.1016/j.cyto.2008.07.017

2. Gaffen SL. Structure and signalling in the IL-17 recep-
tor family. Nat Rev Immunol 2009; 9:556-67;
PMID:19575028; http://dx.doi.org/10.1038/nri2586

3. Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel
J, Derry J, Tocker J, Peschon J. Cutting edge: interleu-
kin 17 signals through a heteromeric receptor complex.
J Immunol 2006; 177:36-9; PMID:16785495; http://
dx.doi.org/10.4049/jimmunol.177.1.36

4. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A,
Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A,
Kotaki H et al. Differential roles of interleukin-17A
and -17F in host defense against mucoepithelial bacte-
rial infection and allergic responses. Immunity 2009;
30:108-19; PMID:19144317; http://dx.doi.org/
10.1016/j.immuni.2008.11.009

5. Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff
BM, Spriggs MK, Armitage RJ. Human IL-17: a novel
cytokine derived from T cells. J Immunol 1995;
155:5483-6; PMID:7499828.

6. Ho AW, Gaffen SL. IL-17RC: a partner in IL-17 sig-
naling and beyond. Semin Immunopathol 2010;
32:33-42; PMID:20012905; http://dx.doi.org/
10.1007/s00281-009-0185-0

7. Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional
specialization of interleukin-17 family members.
Immunity 2011; 34:149-62; PMID:21349428; http://
dx.doi.org/10.1016/j.immuni.2011.02.012

8. Blaho VA, Buczynski MW, Dennis EA, Brown CR.
Cyclooxygenase-1 orchestrates germinal center forma-
tion and antibody class-switch via regulation of IL-17. J
Immunol 2009; 183:5644-53; PMID:19843949;
http://dx.doi.org/10.4049/jimmunol.0901499

9. Algood HM, Allen SS, Washington MK, Peek RM, Jr.,
Miller GG, Cover TL. Regulation of gastric B cell
recruitment is dependent on IL-17 receptor A signaling
in a model of chronic bacterial infection. J Immunol
2009; 183:5837-46; PMID:19812196; http://dx.doi.
org/10.4049/jimmunol.0901206

10. Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, Yi
J, Guentert T, Tousson A, Stanus AL et al. Interleukin
17-producing T helper cells and interleukin 17 orches-
trate autoreactive germinal center development in auto-
immune BXD2 mice. Nat Immunol 2008; 9:166-75;
PMID:18157131; http://dx.doi.org/10.1038/ni1552

11. Peters A, Pitcher LA, Sullivan JM,Mitsdoerffer M, Acton
SE, Franz B, Wucherpfennig K, Turley S, Carroll MC,
Sobel RA et al. Th17 cells induce ectopic lymphoid fol-
licles in central nervous system tissue inflammation.
Immunity 2011; 35:986-96; PMID:22177922; http://
dx.doi.org/10.1016/j.immuni.2011.10.015

12. Xie S, Li J, Wang JH, Wu Q, Yang P, Hsu HC,
Smythies LE, Mountz JD. IL-17 activates the canonical
NF-kappaB signaling pathway in autoimmune B cells
of BXD2 mice to upregulate the expression of regula-
tors of G-protein signaling 16. J Immunol 2010;
184:2289-96; PMID:20139273; http://dx.doi.org/
10.4049/jimmunol.0903133

13. Allen CD, Okada T, Cyster JG. Germinal-center orga-
nization and cellular dynamics. Immunity 2007;
27:190-202; PMID:17723214; http://dx.doi.org/
10.1016/j.immuni.2007.07.009

14. Carbone A, Gloghini A, Cabras A, Elia G. The Germi-
nal centre-derived lymphomas seen through their cellu-
lar microenvironment. Br J Haematol 2009; 145:468-
80; PMID:19344401; http://dx.doi.org/10.1111/
j.1365-2141.2009.07651.x

15. Swerdlow SH CE, Harris NL, et al. WHO Classifica-
tion of Tumours of Haematopoietic and Lymphoid
Tissues. IARC Press 2008; 2.

16. Hata K, Andoh A, Shimada M, Fujino S, Bamba S,
Araki Y, Okuno T, Fujiyama Y, Bamba T. IL-17 stimu-
lates inflammatory responses via NF-kappaB and MAP
kinase pathways in human colonic myofibroblasts. Am
J Physiol Gastrointest Liver Physiol 2002; 282:G1035-

44; PMID:12016129; http://dx.doi.org/10.1152/ajpgi.
00494.2001

17. Johnson PW, Watt SM, Betts DR, Davies D, Jordan S,
Norton AJ, Lister TA. Isolated follicular lymphoma
cells are resistant to apoptosis and can be grown in vitro
in the CD40/stromal cell system. Blood 1993;
82:1848-57; PMID:7691240

18. Garrone P, Neidhardt EM, Garcia E, Galibert L, van
Kooten C, Banchereau J. Fas ligation induces apoptosis
of CD40-activated human B lymphocytes. J Exp Med
1995; 182:1265-73; PMID:7595197; http://dx.doi.
org/10.1084/jem.182.5.1265

19. Allen CD, Ansel KM, Low C, Lesley R, Tamamura H,
Fujii N, Cyster JG. Germinal center dark and light
zone organization is mediated by CXCR4 and CXCR5.
Nat Immunol 2004; 5:943-52; PMID:15300245;
http://dx.doi.org/10.1038/ni1100

20. MacLennan IC. Germinal centers. Annu Rev Immunol
1994; 12:117-39; PMID:8011279; http://dx.doi.org/
10.1146/annurev.iy.12.040194.001001

21. Bleul CC, Schultze JL, Springer TA. B lymphocyte che-
motaxis regulated in association with microanatomic
localization, differentiation state, and B cell receptor
engagement. J Exp Med 1998; 187:753-62;
PMID:9480985; http://dx.doi.org/10.1084/jem.187.
5.753

22. Corcione A, Ottonello L, Tortolina G, Facchetti P, Air-
oldi I, Guglielmino R, Dadati P, Truini M, Sozzani S,
Dallegri F et al. Stromal cell-derived factor-1 as a che-
moattractant for follicular center lymphoma B cells. J
Natl Cancer Inst 2000; 92:628-35; PMID:10772680;
http://dx.doi.org/10.1093/jnci/92.8.628

23. Agenes F, Bosco N, Mascarell L, Fritah S, Ceredig R.
Differential expression of regulator of G-protein signal-
ling transcripts and in vivo migration of CD4C naive
and regulatory T cells. Immunology 2005; 115:179-88;
PMID:15885123; http://dx.doi.org/10.1111/j.1365-
2567.2005.02146.x

24. Victora GD, Nussenzweig MC. Germinal centers. Annu
Rev Immunol 2012; 30:429-57; PMID:22224772;
http://dx.doi.org/10.1146/annurev-immunol-020711-
075032

25. Milovanovic M, Drozdenko G, Weise C, Babina M,
Worm M. Interleukin-17A promotes IgE production
in human B cells. J Invest Dermatol 2010; 130:2621-8;
PMID:20596087; http://dx.doi.org/10.1038/jid.
2010.175

26. Mitsdoerffer M, Lee Y, Jager A, Kim HJ, Korn T, Kolls
JK, Cantor H, Bettelli E, Kuchroo VK. Proinflamma-
tory T helper type 17 cells are effective B-cell helpers.
Proc Natl Acad Sci U S A 2010; 107:14292-7;
PMID:20660725; http://dx.doi.org/10.1073/pnas.
1009234107

27. Jain P, Javdan M, Feger FK, Chiu PY, Sison C, Damle
RN, Bhuiya TA, Sen F, Abruzzo LV, Burger JA et al.
Th17 and non-Th17 interleukin-17-expressing cells in
chronic lymphocytic leukemia: delineation, distribu-
tion, and clinical relevance. Haematologica 2012;
97:599-607; PMID:22058222; http://dx.doi.org/
10.3324/haematol.2011.047316

28. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM.
Malignant B cells skew the balance of regulatory T cells
and TH17 cells in B-cell non-Hodgkin’s lymphoma.
Cancer Res 2009; 69:5522-30; PMID:19509224; http://
dx.doi.org/10.1158/0008-5472.CAN-09-0266

29. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny
PJ, Kudo T, Robbins PD, Tahara H, Lotze MT. Inter-
leukin-17 promotes angiogenesis and tumor growth.
Blood 2003; 101:2620-7; PMID:12411307; http://dx.
doi.org/10.1182/blood-2002-05-1461

30. Numasaki M, Watanabe M, Suzuki T, Takahashi H,
Nakamura A, McAllister F, Hishinuma T, Goto J,
Lotze MT, Kolls JK et al. IL-17 enhances the net
angiogenic activity and in vivo growth of human non-
small cell lung cancer in SCID mice through promot-
ing CXCR-2-dependent angiogenesis. J Immunol
2005; 175:6177-89; PMID:16237115; http://dx.doi.
org/10.4049/jimmunol.175.9.6177

31. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK,
Nanjappa P, Song W, Pai C, Amin S, Tai YT, Richard-
son PG et al. Elevated IL-17 produced by TH17 cells
promotes myeloma cell growth and inhibits immune
function in multiple myeloma. Blood 2010; 115:5385-
92; PMID:20395418; http://dx.doi.org/10.1182/
blood-2009-10-246660

32. Tartour E, Fossiez F, Joyeux I, Galinha A, Gey A,
Claret E, Sastre-Garau X, Couturier J, Mosseri V, Vives
V et al. Interleukin 17, a T-cell-derived cytokine, pro-
motes tumorigenicity of human cervical tumors in
nude mice. Cancer Res 1999; 59:3698-704;
PMID:10446984.

33. Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, Wu
C, Li SP, Zheng L. Increased intratumoral IL-17-pro-
ducing cells correlate with poor survival in hepatocellu-
lar carcinoma patients. J Hepatol 2009; 50:980-9;
PMID:19329213; http://dx.doi.org/10.1016/j.jhep.
2008.12.033

34. Benchetrit F, Ciree A, Vives V, Warnier G, Gey A,
Sautes-Fridman C, Fossiez F, Haicheur N, Fridman
WH, Tartour E. Interleukin-17 inhibits tumor cell
growth by means of a T-cell-dependent mechanism.
Blood 2002; 99:2114-21; PMID:11877287; http://dx.
doi.org/10.1182/blood.V99.6.2114

35. Galand C, Donnou S, Crozet L, Brunet S, Touitou V,
Ouakrim H, Fridman WH, Sautes-Fridman C, Fisson
S. Th17 cells are involved in the local control of tumor
progression in primary intraocular lymphoma. PLoS
One 2011; 6:e24622; PMID:21949734; http://dx.doi.
org/10.1371/journal.pone.0024622

36. Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont
MC, Ranchin B, Fabien N, Cochat P, Pouteil-Noble
C, Trolliet P et al. Interleukin 17 acts in synergy with
B cell-activating factor to influence B cell biology and
the pathophysiology of systemic lupus erythematosus.
Nat Immunol 2009; 10:778-85; PMID:19483719;
http://dx.doi.org/10.1038/ni.1741

37. Reiland J, Sanderson RD, Waguespack M, Barker SA,
Long R, Carson DD, Marchetti D. Heparanase
degrades syndecan-1 and perlecan heparan sulfate:
functional implications for tumor cell invasion. J Biol
Chem 2004; 279:8047-55; PMID:14630925; http://
dx.doi.org/10.1074/jbc.M304872200

38. Ling MT, Wang X, Zhang X, Wong YC. The multiple
roles of Id-1 in cancer progression. Differentiation
2006; 74:481-7; PMID:17177845; http://dx.doi.org/
10.1111/j.1432-0436.2006.00083.x

39. Vangsted AJ, Klausen TW, Abildgaard N, Andersen
NF, Gimsing P, Gregersen H, Nexo BA, Vogel U. Sin-
gle nucleotide polymorphisms in the promoter region
of the IL1B gene influence outcome in multiple mye-
loma patients treated with high-dose chemotherapy
independently of relapse treatment with thalidomide
and bortezomib. Ann Hematol 2011; 90:1173-81;
PMID:21347685; http://dx.doi.org/10.1007/s00277-
011-1194-3

40. Corcione A, Baldi L, Zupo S, Dono M, Rinaldi GB,
Roncella S, Taborelli G, Truini M, Ferrarini M, Pistoia
V. Spontaneous production of granulocyte colony-
stimulating factor in vitro by human B-lineage lympho-
cytes is a distinctive marker of germinal center cells. J
Immunol 1994; 153:2868-77; PMID:7522243.

41. Corcione A, Ferretti E, Bertolotto M, Fais F, Raffa-
ghello L, Gregorio A, Tenca C, Ottonello L, Gambini
C, Furtado G et al. CX3CR1 is expressed by human B
lymphocytes and mediates [corrected] CX3CL1 driven
chemotaxis of tonsil centrocytes. PLoS One 2009; 4:
e8485; PMID:20041188; http://dx.doi.org/10.1371/
journal.pone.0008485

42. Epstein AL, Kaplan HS. Feeder layer and nutritional
requirements for the establishment and cloning of
human malignant lymphoma cell lines. Cancer Res
1979; 39:1748-59; PMID:371794.

43. Kluin-Nelemans HC, Limpens J, Meerabux J, Bever-
stock GC, Jansen JH, de Jong D, Kluin PM. A new
non-Hodgkin’s B-cell line (DoHH2) with a chromo-
somal translocation t(14;18)(q32;q21). Leukemia
1991; 5:221-4; PMID:1849602.

e1030560-12 Volume 4 Issue 10OncoImmunology



44. Benjamin D, Magrath IT, Maguire R, Janus C, Todd
HD, Parsons RG. Immunoglobulin secretion by cell
lines derived from African and American undifferenti-
ated lymphomas of Burkitt’s and non-Burkitt’s type. J
Immunol 1982; 129:1336-42; PMID:6286763

45. Lafarge S, Hamzeh-Cognasse H, Chavarin P, Genin C,
Garraud O, Cognasse F. A flow cytometry technique to
study intracellular signals NF-kappaB and STAT3 in
peripheral blood mononuclear cells. BMC Mol Biol
2007; 8:64; PMID:17663801; http://dx.doi.org/
10.1186/1471-2199-8-64

46. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-
Favera R, Califano A. Reverse engineering of regulatory
networks in human B cells. Nat Genet 2005; 37:382-

90; PMID:15778709; http://dx.doi.org/10.1038/
ng1532

47. Hummel M, Bentink S, Berger H, Klapper W, Wessen-
dorf S, Barth TF, Bernd HW, Cogliatti SB, Dierlamm
J, Feller AC et al. A biologic definition of Burkitt’s
lymphoma from transcriptional and genomic profiling.
N Engl J Med 2006; 354:2419-30; PMID:16760442;
http://dx.doi.org/10.1056/NEJMoa055351

48. Leich E, Salaverria I, Bea S, Zettl A, Wright G, Moreno
V, Gascoyne RD, Chan WC, Braziel RM, Rimsza LM
et al. Follicular lymphomas with and without transloca-
tion t(14;18) differ in gene expression profiles and
genetic alterations. Blood 2009; 114:826-34;
PMID:19471018; http://dx.doi.org/10.1182/blood-
2009-01-198580

49. Ferretti E, Di Carlo E, Cocco C, Ribatti D, Sorrentino
C, Ognio E, Montagna D, Pistoia V, Airoldi I. Direct
inhibition of human acute myeloid leukemia cell
growth by IL-12. Immunol Lett 2010; 133:99-105;
PMID:20705102; http://dx.doi.org/10.1016/j.imlet.
2010.08.002

50. Ferretti E, Montagna D, Di Carlo E, Cocco C, Ribatti
D, Ognio E, Sorrentino C, Lisini D, Bertaina A, Loca-
telli F et al. Absence of IL-12Rbeta2 in CD33(C)
CD38(C) pediatric acute myeloid leukemia cells
favours progression in NOD/SCID/IL2RgammaC-
deficient mice. Leukemia 2012; 26:225-35;
PMID:21844875; http://dx.doi.org/10.1038/
leu.2011.213

www.tandfonline.com e1030560-13OncoImmunology


