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Systemic sclerosis is a chronic autoimmune connective tissue disease characterized by vascular injury and fibrosis and by an
impaired angiogenesis which cannot ensure an efficient vascular recovery. Vascular injury is responsible for hypoxia and tissual
ischemia which are the primary triggers for angiogenesis and are not able to induce a compensatory angiogenesis. This review
article is focused on current knowledge on the mechanisms responsible for angiogenesis dysregulation in systemic sclerosis.

1. Introduction

Systemic sclerosis (SSc) is a chronic autoimmune connective
tissue disease characterized bymultisystem involvement with
inflammation, vasculopathy, fibrosis of the skin, and internal
organs. Vascular injury is an early event in SSc pathogenesis
and may be evident before the onset of fibrosis. It plays a
central role in promoting Raynaud’s phenomenon, digital
ulcers, renal damage, and pulmonary arterial hypertension
[1–6].

The interaction between autoimmunity, vascular injury,
and fibrosis promotes the progressive tissue damage. Among
these factors, autoimmunity and vascular injury characterize
the earliest phases of the disease and contribute to the
progression of fibrosis [7–9].

Angiogenesis, the formation of newly formed capillaries
from preexisting vessels via a well-programmed cascade of
events, is dysregulated in SSc and cannot ensure an efficient
vascular recovery. Vascular injury induces hypoxia and tis-
sual ischemiawhich are the primary triggers for angiogenesis,
but are not able to induce a compensatory angiogenesis.

2. Vascular Involvement in SSc

In early stages of SSc endothelial cell injury is followed
by vascular remodeling, which is characterized by capillary
enlargement, intimal proliferation, telangiectasia, and accu-
mulation of proteoglycans in the arterioles. Later, during the
course of the disease, loss of capillaries and small arterioles
induces the formation of avascular areas [10, 11]. In larger
size vessels, there is vascular occlusion and thrombosis due to
endothelial proliferation, fibrotic intimal proliferation, fibrin
deposition, and smooth muscle cell hypertrophy [10–12].

A typical clinical feature of SSc is the Raynaud’s phe-
nomenon, which is characterized by persistent vasospasm of
digital arteries with alternation of ischemia and reperfusion
and an increased expression of junctional adhesionmolecules
(JAMs) [11]. The increase expression of JAMs promotes
neutrophils and platelets attachment to endothelial cells.
Neutrophils and platelets, in turn, induce the production of
superoxide radicals which are responsible for endothelial cell
injury [10].

Thus, in SSc an endothelial cell damage has been observed
already in early phases of the disease, which probably together
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with neural dysfunctions, and other intravascular alterations,
is in turn involved in inducing vascular injury [3, 4, 10].
Even if etiopathogenesis of endothelial cell damage is still
unclear, autoimmunity seems to be responsible for endothe-
lial production of cytokines and adhesion molecules, leading
to apoptosis of the endothelial cell [10, 13–15].

Moreover, an imbalance between vasodilator agents,
such as nitric oxide, and vasoconstrictor agents, such as
endothelin-1 (ET-1), has been observed in SSc and is involved
in altered vascular permeability [15]. In fact, increased ET-1
expression is involved in inflammation, vascular fibrosis, and
increased smoothmuscle cell proliferation [4]. Moreover, the
expression of ET-1 receptor type B, called ETB receptor, is
reduced in SSc on endothelial cell surface but overexpressed
on smoothmuscle cells where it is responsible for fibrosis and
vasoconstriction [16, 17].

Cipriani et al. [18] have demonstrated that endothelial
cells in SSc, under the synergistic effect of transforming
growth factor-𝛽 (TGF-𝛽) and ET-1, may transdifferenti-
ate toward myofibroblasts in a process called endothelial-
to-mesenchymal transition (EndoMT) by which endothe-
lial cells change their morphological features and assume
myofibroblast-like features. By using skin sections obtained
by SSc patients, Manetti et al. [19] have recently observed that
EndoMT has a key role in inducing endothelial dysfunction
and dermal fibrosis in SSc. Macitentan, an ET-1 receptor
antagonist, has demonstrated an inhibitory effect in vitro on
EndoMT and on fibroblast activation, suggesting its potential
role as new therapeutic strategy against fibrosis in SSc [18, 20].

Transdifferentiation of pericytes to myofibroblasts has
also been hypothesized in SSc [21]. By considering that
pericytes are cells that reside on the wall of the blood vessels
and their primary function is to maintain the vessel integrity,
their transdifferentiation to myofibroblasts may contribute to
vessel instability.

Vascular damage may induce the onset of avascular
areas and/or morphologic changes in vessel wall, such as
fibrosis. These alterations play a central role in inducing
tissual hypoxia which may induce digital ulcers, gangrene
and amputation of the extremities, and dysfunction in several
internal organs [22–26].

3. Vascular Implications and Fibrosis

Angiogenic cytokines, responsible for vessel formation and
stabilization, such as vascular endothelial growth factor
(VEGF), TGF-𝛽, and platelet derived growth factor (PDGF),
are also involved in fibrosis. An impaired cross-talk between
endothelial cells and perivascular cells, such as pericytes, may
induce an abnormal expression of these angiogenic factors in
SSc [27]. This is responsible for subsequent vessel instability
and perivascular-myofibroblast phenotypic transdifferentia-
tion, which contribute to fibrosis in the skin and internal
organs and to the loss of peripheral vascularization [27].

4. The Role of Imbalance between Angiogenic
and Antiangiogenic Factors

An imbalance between angiogenic and antiangiogenic factors
has been observed in several autoimmune diseases [28–30].

Table 1: Angiogenic and antiangiogenic agents involved in SSc:
imbalance between these factors is responsible for impaired angio-
genesis.

Angiogenic factors in SSC
Stimulators Inhibitors
VEGF(165) VEGF(165)b
FGF-2 TSP-1
PDGF PF4/CXCL4
TGF-𝛽 PTX3
MCP-1 Endostatin
SDF-1/CXCL12 Angiostatin
IL-8 Ang-2
ET-1
uPAR
Ang-1
Kallikrein 9
Kallikrein 11
Kallikrein 12
Gro-𝛾/CXCL3
gGCP-2/CXCL6
Fli1
Fra-2
𝛼-Klotho
(VEGF: vascular endothelial growth factor; FGF-2: fibroblast growth facor-2;
PDGF: platelet derived growth factor; TGF-𝛽: transforming growth factor-
𝛽; MCP-1: monocyte chemoattractant protein-1; SDF-1: stromal cell-derived
factor 1; IL-8: interleukin-8; ET-1: endothelin-1; uPAR: urokinase type plas-
minogen activator receptors; Ang: Angiopoietin; Gro-𝛾: growth-regulated
protein-𝛾; gGCP-2: granulocyte chemotactic protein 2; Fli1: Friend leukemia
integration-1; Fra-2: Fos-related antigen 2; TSP-1: thrombospondin-1; PF4:
platelet factor 4; PTX3: pentraxin 3).

In SSc a dysregulation of some angiogenic factors, such
as VEGF, fibroblast growth factor-2 (FGF-2), PDGF, TGF-
𝛽, monocyte chemoattractant protein-1 (MCP-1), stromal
cell-derived factor 1 (SDF-1/CXCL12), interleukin (IL)-8,
ET-1, and urokinase type plasminogen activator receptors
(uPAR), and some antiangiogenic factors, such as angio-
statin, thrombospondin-1 (TSP-1), endostatin, platelet factor
4 (PF4/CXCL4), IL-4, and pentraxin 3 (PTX3), has been
described (Table 1) [10, 11, 30–36].

High levels of VEGF have been demonstrated in SSc,
in spite of an inadequate angiogenesis [37, 38]. Neverthe-
less, by considering that previous studies did not distin-
guish between proangiogenic VEGF(165) and antiangiogenic
VEGF(165)b isoforms, originated by alternative splicing in
the terminal exon of VEGF pre-RNA, Manetti et al. [39]
have observed that a switch from proangiogenic to antiangio-
genic VEGF isoforms may be responsible for the inefficient
angiogenic response in SSc. Recently, increased production
of VEGF(165)b has been found in platelets isolated from
SSc patients, suggesting a role for platelets in insufficient
angiogenesis [40].

Even if numerous angiogenic factors are overexpressed
in SSc, reduced levels of Angiopoietin-1 (Ang-1) have been
observed in sera of patients with SSc, whereas Ang-2, an
antagonist of Ang-1, was upregulated. Moreover, reduced
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levels of Kallikreins 9, 11, and 12, three serine proteases with
angiogenic activity, have been observed in SSc endothelial cell
[41, 42].

An increased production of antiangiogenic factors, such
as endostatin and angiostatin, has been observed in SSc.
Recent evidence shows that endostatin levels are increased
in all phases of the disease while angiostatin levels are
significantly elevated in late disease and are correlated to lung
disease severity [43].

5. Reduced Expression of Receptors for
Angiogenic Factors

A possible role in the lack of response to angiogenic factors
in SSc, despite their overexpression, has been suggested for
the reduced expression of some receptors on cell membrane.
In fact, a reduced expression of stromal cell-derived factor
1 (SDF1), an angiogenic factor also known as CXC motif
chemokine 12 (CXCL12), and its receptor CXCR4 has been
found in later stages of disease skin biopsy samples from SSc
patients, while they were upregulated in the skin of patients
with early SSc, playing probably a role in the inadequate
angiogenic response [44]. Nevertheless, contrasting results
for VEGF receptor-1 (VEGFR-1) and VEGFR-2 expression
have been described in SSc endothelial cells [45–49]. More-
over, overexpression of VEGFR-3 and chemokine receptors,
such as CXCR2 (receptor of IL-8) and CXCR6 (receptor of
CXCL6), has been found in endothelial cells and dermal
fibroblasts isolated from SSc patients [44, 50, 51]. Recently,
Tsou et al. [52] have found that increased expression of
angiogenic chemokines, such as growth-regulated protein-
𝛾 (Gro-𝛾/CXCL3) and granulocyte chemotactic protein 2
(GCP-2/CXCL6) in serum and endothelial cells obtained
from SSc patients, was unable to induce angiogenesis.

6. Impaired Expression of Angiogenic
Transcription Factors

Another hypothesis to explain the lack of response to
angiogenic factors in SSc is the impaired expression of
angiogenic transcription factors, such as Friend leukemia
integration-1 (Fli1) and Fos-related antigen 2 (Fra-2). Fli1 acts
as a suppressor of collagen transcription in human skin as
demonstrated in vivo. The persistent reduced expression of
Fli1 in SSc fibroblast cultures has been correlated to abnormal
matrix deposition in scleroderma skin. Low Fli1 levels have
been correlated to the detachment of preexisting pericytes,
extracellular matrix degradation by endothelial proteinases,
enhanced migration, proliferation, and cell survival. On
the contrary, Fli1 deficiency plays a role in inhibiting tube
formation of endothelial cells, suggesting that Fli1 deficiency
is probably a consequence of both proliferative obliterative
vasculopathy, characterized by occlusion of arterioles and
small arteries, and destructive vasculopathy, characterized by
loss of small vessels, which are the typical alterations in SSc
vasculopathy [53]. On the other hand, high levels of Fra-2
have been seen in SSc patients, and its overexpression has
been correlated to increased profibrotic effects of TGF-𝛽 and
PDGF [54–56].

7. JAM-A

The reduced expression of JAM-A on endothelial cells surface
decreases FGF-2 induced angiogenesis [57] and has been
correlated to an increased cleavage of IL-8 and uPAR, two
angiogenic factors which are responsible for endothelial cell
proliferation, extracellular matrix degradation, and the adhe-
sion of endothelial cells to the extracellular matrix, by MMPs
overexpression in fibroblast and endothelial cell [58–60].

8. Genetic Polymorphisms

Genetic polymorphisms may also be involved in SSc
pathogenesis. Gene polymorphism of uPAR, called UPAR
rs344781, has been associated with increased risk of vascular
injury in SSc, while gene polymorphism of MMP-12, named
MMP-12 rs2276109, has been correlated with diffuse cuta-
neous SSc and pulmonary fibrosis [61, 62]. Moreover, an
increased expression of histone deacetylases-5, an enzyme
involved in the control of genes associated with angiogenesis
regulation, has been observed in endothelial cells from SSc
patients, suggesting a potential role for epigenetic modifica-
tion in impaired angiogenesis [63].

9. 𝛼-Klotho

Recently, a role for 𝛼-klotho, a pleiotropic protein, originally
described as an antiaging factor, has been suggested in SSc
pathogenesis by acting as a powerful proangiogenic factor.
This factor plays important pleotropic effects on endothelial
cells, by interacting with VEGFR-2 and transient receptor
potential canonical-1 (TRPC-1) cation channel to control
cellular homeostasis [64].Mazzotta et al. [65] have found that
𝛼-klotho is significantly decreased in the microvasculature in
SSc skin and that its administration may efficiently improve
dermal microvascular endothelial cells from SSc patients
functions in vitro.

10. A Link between Vascular and
Nervous System

Emerging evidences underline the link between vascular and
nervous system. In fact, factors responsible for transmitting
axonal guidance cues, such members of class III semaphorin
(Sema3) family, play an antiangiogenic role in physiological
and pathological vascular development. These factors are
involved in reducing cell adhesion by disrupting integrin-
mediated adhesive structures, resulting in a filopodial retrac-
tion in endothelial cells. Recently, by using dermal microvas-
cular endothelial cell cultures from SSc patients, Mazzotta et
al. [66] have suggested that a member of Sema family, named
Sema3E, by binding to its receptor Plexin-D1 plays probably
a role in the dysregulation of angiogenesis and vascular tone
control by inducing neurovascular mechanism alterations
which are clinically evident above all in the early stage of the
disease. A low expression of neuropilin-1, a receptor for both
Sema3s and VEGF-A, has been observed in SSc, suggesting
a further additional factor involved in impaired angiogenesis
[67].
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11. The Role of Mesenchymal Stem
Cells (MSCs) in the Vascular Alteration
during SSc: Therapeutic Implications

In SSc patients, MSCs are characterized by senescence [68].
Nevertheless, MSCs may preserve immunomodulatory abil-
ity, which might have potential therapeutic implications in
SSc. In fact, Cipriani et al. [68] have found increased levels
of IL-6 and TGF-𝛽 in SSc-MSCs. On one hand, increased
levels of IL-6 have been considered as an adaptivemechanism
to senescence and are responsible for immunosuppressive
effects. On the other hand, increased levels of TGF-𝛽 may
be involved in determining both immunosuppressive effect
on lymphocyte proliferation and immunoregulatory effects,
via inducing expression of CD69 on T cells surface [68].
Moreover, MSCs may differentiate into endothelial cells [69],
suggesting a potential therapeutic role in vascular alteration
during SSc.

Different sclerotic conditions, including localized scle-
roderma, have been effectively treated with autologous fat
tissue grafting (AFTG). In patients affected by advanced SSc-
related perioral thickening and mouth opening limitation,
AFTG of the lips has demonstrated an improvement of
mouth opening [70]. The efficacy of this treatment has
been correlated to the presence of a stem cell population,
called adipose-derived MSCs (ATDMSCs) in the adipose
tissue. In fact, ATDMSCs may differentiate into endothelial
cells and produce angiogenic factors, suggesting a potential
role in promoting angiogenesis [71]. ATDMSCs exert also
several immunosuppressive and anti-inflammatory effects
by inhibiting both proliferation of T and B cells, and the
expression of numerous proinflammatory cytokines [72].
Furthermore, adiponectin expression from adipose tissue is
responsible for antifibrotic effects [73].

12. Concluding Remarks

SSc in the earliest stages is characterized by morphologic
alterations in vessel walls, such as fibrosis and capillary loss.
Endothelial cell injury plays a central role in promoting these
changes, which are responsible for inducing hypoxia. These
events lead to an increased angiogenesis. Nevertheless, in SSc
patients angiogenesis is not compensatory.The reason of this
inefficient angiogenesis in SSc is still unclear. Nevertheless,
an imbalance between angiogenic and antiangiogenic factors
and a reduced expression of some receptors or cofactors of
angiogenic agents has been suggested.

Even if further studies are needed to explain the role
of angiogenesis in the pathogenesis of SSc and to elucidate
the mechanism responsible for angiogenesis dysregulation,
endothelial cell injury and angiogenesis dysregulation seem
to play a central role in the pathogenesis of SSc. This may
provide a basis for a rational approach to the development
of new therapeutic strategy to ensure efficient angiogenesis.
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