D’Este et al. Ecological Processes (2020) 9:54 H
https://doi.org/10.1186/s13717-020-00263-4 E co | Og ICa | P rocesses

RESEARCH Open Access

Modeling fire ignition probability and ")
frequency using Hurdle models: a cross-
regional study in Southern Europe

Marina D'Este’ @, Antonio Ganga', Mario Elia', Raffaella Lovreglio?, Vincenzo Giannico', Giuseppina Spano’,
Giuseppe Colangelo', Raffaele Lafortezza'* and Giovanni Sanesi'

Abstract

Background: Wildfires play a key role in shaping Mediterranean landscapes and ecosystems and in impacting
species dynamics. Numerous studies have investigated the wildfire occurrences and the influence of their drivers in
many countries of the Mediterranean Basin. However, in this regard, no studies have attempted to compare
different Mediterranean regions, which may appear similar under many aspects. In response to this gap, climatic,
topographic, anthropic, and landscape drivers were analyzed and compared to assess the patterns of fire ignition
points in terms of fire occurrence and frequency in Catalonia (Spain), Sardinia, and Apulia (ltaly). Therefore, the
objectives of the study were to (1) assess fire ignition occurrence in terms of probability and frequency, (2) compare
the main drivers affecting fire occurrence, and (3) produce fire probability and frequency maps for each region.

Results: In pursuit of the above, the probability of fire ignition occurrence and frequency was mapped using
Negative Binomial Hurdle models, while the models’ performances were evaluated using several metrics (AUC,
prediction accuracy, RMSE, and the Pearson correlation coefficient). The results showed an inverse correlation
between distance from infrastructures (i.e, urban roads and areas) and the occurrence of fires in all three study
regions. This relationship became more significant when the frequency of fire ignition points was assessed.
Moreover, a positive correlation was found between fire occurrence and landscape drivers according to region. The
land cover classes more significantly affected were forest, agriculture, and grassland for Catalonia, Sardinia, and
Apulia, respectively.

Conclusions: Compared to the climatic, topographic, and landscape drivers, anthropic activity significantly influences
fire ignition and frequency in all three regions. When the distance from urban roads and areas decreases, the
probability of fire ignition occurrence and frequency increases. Consequently, it is essential to implement long- to
medium-term intervention plans to reduce the proximity between potential ignition points and fuels. In this
perspective, the present study provides an applicable decision-making tool to improve wildfire prevention strategies at
the European level in an area like the Mediterranean Basin where a profuse number of wildfires take place.
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Background

The Mediterranean Basin represents a hotspot in terms
of fire occurrence (Pausas et al. 2008). In the last four
decades, nearly 2 million fire events occurred in the
Mediterranean regions of Southern Europe, i.e., Portugal,
Spain, France, Italy, and Greece, altogether affecting
more than 15 million hectares (ha). In 2018, more than
10,000 fires covering an area of 44,643 ha have been
recorded in Italy and Spain (San-Miguel-Ayanz et al.
2018). The mounting spread of megafires across Southern
Europe (San-Miguel-Ayanz et al. 2013a) has spurred the
European Commission to implement large-scale strategies
aimed at preventing fire ignition probability and frequency
(Elia et al. 2016; Lafortezza et al. 2013; Alcasena et al.
2019). To this end, the role of the scientific community is
crucial for the transmission of knowledge to the operative
world (e.g., Civil Protection, Forest Service). More accur-
ate predictive models can help land management agencies
understand where fires are more likely to ignite in a given
landscape (Oliveira et al. 2012; Lafortezza et al. 2015).

A large body of literature exists on the estimation of fire
ignition probability and frequency at different global,
continental, and regional scales (Miranda et al. 2012;
Ganteaume et al. 2013; Guo et al. 2016; Costafreda-
Aumedes et al. 2017; Oliveira et al. 2017; Viedma et al.
2018). In particular, a variety of studies have estimated the
probability of fire ignition in the Mediterranean Basin using
logistic regression (Gonzédlez-Olabarria et al. 2007; Catry
et al. 2009; Martinez et al. 2009; Vilar del Hoyo et al. 2011),
geographically weighted logistic regression (Koutsias et al.
2010; Oliveira et al. 2014; Rodrigues et al. 2014), and ma-
chine learning techniques (Oliveira et al. 2012; Martin et al.
2019). Fire ignition frequency has mainly been investigated
by applying counting models, such as Poisson regression
(Faivre et al. 2014; Boubeta et al. 2015; Rodrigues et al.
2016) and negative binomial regressions (Quintanilha and
Ho 2006). Despite human manipulation, the estimation of
fire ignition probability and frequency is characterized by a
high degree of stochasticity (Elia et al. 2019). For this rea-
son, a deeper understanding of wildfire ignition occurrence
requires increasingly innovative approaches. We believe
that in this field, there is much room for improvement
which can be enhanced by exploring models used in other
areas of research.

In this regard, the use of Hurdle models could substan-
tially improve the understanding of fire ignition
probability and frequency. In comparison with simpler
models, Hurdle models have the ability to account for dis-
tributions deviating from normality, such as ignition
points, where the number of zero values (i.e., absence of
ignition) is considerably larger than the number of non-
zero values (i.e., presence of ignition). Therefore, the use
of these models distinctly results in improved accuracy
(Xiao et al. 2015).
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Currently, the literature does not provide a large
number of studies where Hurdle models are employed
in estimating fire ignition probability and frequency. Of
those found, for example, Serra et al. (2014) used the
Poisson Hurdle model to analyze the occurrence of
megafires (> 50 ha) and their potential causes in Spain.
Elia et al. (2020) investigated the likelihood and fre-
quency of fire recurrence using a Negative Binomial Hur-
dle models in South Italy, while Xiao et al. (2015)
employed several count models, including Hurdle models,
to analyze fire occurrences in China.

Our study was intended to fill this gap; therefore, we
developed a cross-regional study to estimate fire ignition
probability and frequency employing a Hurdle model in
three regions of the Mediterranean Basin: Catalonia
(Spain), Sardinia, and Apulia (Italy). Within these geo-
graphical regions, we specifically aimed to (1) assess the
soundness of Hurdle models in estimating fire ignition
occurrence in terms of probability and frequency, (2)
compare the most influential drivers of wildfires among
the three study regions, and (3) produce fire probability
and frequency maps.

Innovative approaches are crucial for identifying the
similarities and differences between the drivers of fires
and their environmental impacts across European re-
gions (San-Miguel-Ayanz et al. 2013b). This study also
intends to corroborate prior researches and provide new
insight for implementing cross-regional fire management
strategies in Mediterranean ecosystems, particularly in
the broader context of European wildfire management

policy.

Materials and methods

Study areas

This study focuses on three regions of the Mediterranean
Basin: Catalonia (Spain), Sardinia, and Apulia (Italy)
(Fig. 1). Catalonia is located between the geographic co-
ordinates 40° 31" 22.5” N, 0° 09’ 58.9” E and 42° 51°
40.5" N, 3° 19" 14.3” E in northeastern Spain. Along
its coasts, the climate is typically Mediterranean with
mild winters and hot summers and continental in hin-
terland areas characterized by warm and dry summers
and cold winters. The average annual rainfall varies
from 500 mm in the coastal zone to 1000 mm in the
Pyrenees mountain range bordering with France.

The mean annual temperatures range from 17 to 0°C
while the altitude ranges from sea level to greater than
3000 m. More than half of Catalonia’s territory is covered
by shrubland (38%) and forest (23%) (Gonzilez-Olabarria
et al. 2007). In the Pyrenees and Pre-Pyrenees, where the
climate is more of the continental type, forests comprise
Pinus uncinate Mill,, Fagus sylvatica L., and P. sylvestris L.,
whereas in the Mediterranean areas, the main tree species
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Fig. 1 Location of the study regions: Apulia, Italy (top right); Sardinia, ltaly (bottom right); and Catalonia, Spain (bottom left)
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are P. halepensis Mill.,, Quercus ilex L., P. nigra, Q. suber L.,
Q. humilis Mill., and P. pinea L. (Saura and Piqué 2006).
The regions of Sardinia and Apulia are located in
Southern Italy between 38° 51" 553" N, 8 08" 11" E
and 41° 18" 28" N, 9° 49" 40" E, and 39° 47" 29.8" N,
14° 56’ 02.8" E and 42° 08" 25.5” N, 18> 31" 09.5" E,
respectively. Sardinia is a hilly region with high topo-
graphical variability while Apulia is a predominantly flat
region with small hills in the northwest. The average
elevation is 338 m and 565 m asl, respectively. Both
Mediterranean regions are characterized by hot and dry
summers and mild winters. Most of the annual rainfall
occurs during the fall and winter, with an average
varying between 400 and 1000 mm in Sardinia and 450
and 650 mm in Apulia. In Apulia, the mean annual
temperature ranges from 12.0 °C inland to 19.0 °C along
the coasts while in Sardinia, it varies from 11.6 to

18.0°C (Canu et al. 2015). Furthermore, Sardinia is a
wooded region with 24% of forest cover (583,472 ha)
compared to Apulia, which is one of the least wooded
regions in Italy with only 7% of forest cover (145,889 ha)
(Gasparini et al. 2013). In both regions, vegetation is
typically Mediterranean, and most forests are represented
by deciduous species belonging to the Quercus genus. The
main species found in Apulia are Q. ilex L., Q. pubescens
Willd., Q. cerris L., and Q. coccifera L. Another important
component of the woodland in these regions is the
Mediterranean maquis, which consists of Phyllirea spp.,
Ruscus aculeatus L., Pistacia lentiscus L., Asparagus acutifo-
lius L., Paliurus spina-christi Mill., Cistus monspeliensis L.,
C. incanus L., and C. salviifolius L. Maquis and woodlands
(mainly Q. ilex L., Q. suber L., and Q. pubescens Willd.
stands) combined with pastures dominate Sardinia’s hinter-
land, while agricultural areas cover about 45% of the island
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along the coasts and in the plains (Bachetta et al. 2009;
Farris et al. 2013; Bajocco et al. 2019). Demographically
speaking, Catalonia and Apulia are characterized by
high population density compared to Sardinia. In 2017,
Catalonia counted more than 7 million inhabitants,
becoming the second most populated region in Spain
with a share of 16.0% over the total population. Instead,
Sardinia is the third largest region in Italy (24,106 km?),
but one of the least populated with nearly 70 inhabi-
tants per square kilometer. Although Apulia’s surface
area is smaller (19,354 km?) compared to Sardinia’s, it
has a denser population with approximately 4 million
inhabitants per square kilometer (Eurostat 2018).

Data acquisition
Independent variables
The drivers that affect the occurrence of fire ignition
points (FIPs) depend on climatic, topographic, and landscape
conditions as well as anthropic effects (Costafreda-Aumedes
et al. 2018; Bajocco et al. 2019). In this study, 15 predictors
were identified and selected as independent variables
(Table 1). For each of the three regions, climatic and
topographical data were drawn from European databases.
Specifically, climatic data consisting of maximum tem-
peratures and dry days for the 2000-2012 time period
were selected from the E-OBS dataset of the EU-FP6
UERRA project (Cornes et al. 2018), while topographical
data were obtained from the 30-m Digital Elevation
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Model (DEM) of the European Environmental Agency.
Land cover data were extracted from different sources
made available by the regional agencies of Catalonia,
Sardinia, and Apulia. For each region, land cover (percent-
age) was divided into eight classes: agriculture, forest,
grassland, other lands, shrubland, urban, waterland, and
wetland. Population density and distance from urban
roads and areas were selected as anthropic drivers. For
each region, the population density was acquired from the
GEOSTAT 2011 grid dataset provided by the European
Commission. The land cover dataset was used as the start-
ing point for calculating the distances from urban roads
and areas. Lastly, a 1-km?® grid was created to extract the
mean values of all predictors with geographic information
systems (GIS) tools (QGIS and ESRI ArcMap).

Dependent variables
For each of the three study regions, FIPs were acquired
for the 2000-2012 time period. These data represent the
most similar and harmonized datasets of fire ignition
among the regions within the considered period of
study. FIPs were derived from different sources accord-
ing to region. Fire ignition datasets were obtained from
the Ministerio de Agricultura Alimentacién y Medio
Ambiente (Catalonia), Regional Forestry Corps (Sardinia),
and Civil Protection Department (Apulia).

The bar chart in Fig. 2 illustrates the FIP trends for
the period of reference for each region. Compared to

Table 1 Independent climatic, topographic, anthropic, and landscape variables used for the Hurdle models and as a source for each

variable for the three study areas

Variable Input Data Source
category
Climatic Maximum temperature Mean max. temperature http://www.uerra.eu, https.//www.ecad.eu
map (°0)
Mean dry days map Dry days (dd) http://www.uerra.eu, https://www.ecad.eu
Topographic Digital Elevation Model Elevation (m) http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem/eu-
(DEMY) dem-v1.1/view
Slope Slope map (%) Raster layer starting from EU-DEM, 2019 (elaboration release)
Anthropic Population density Mean population density map https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-
distribution-demography (2011)
Road distance Euclidean distance map from  Chttps.//www.creaf.uab.es/mcsc/usa/index.htm (2010)
urban roads and areas (m) S:http://webgis2.regione.sardegna.it/catalogodati/card jsp?uuid=R_
Ahttp://www.sit.puglia.it/portal/portale_cartografie_tecniche_tematiche/
Cartografie%20Tematiche/UDS (2010)
Urban area distance Chttps://www.creaf.uab.es/mcsc/usa/index.htm (2010)
Sthttp//webgis2.regione.sardegna.it/catalogodati/card.jsp?uuid=R_
SARDEG:11111111-2222-1111-1111-111111116048 (2011)
Ahttp//www.sit.puglia.it/portal/portale_cartografie_tecniche_tematiche/
Cartografie%20Tematiche/UDS (2011)
Landscape Land cover 8 Classes of land cover (%) Chttps://www.creaf.uab.es/mcsc/usa/index.htm (2010)

S:http://www.sardegnageoportale.it/index.php?xsl=2420&s=40&v=9&c=14480
&es=6603&na=1&n=100&esp=18&tb=14401 (2008)

Ahttp://www sit.puglia.it/portal/portale_cartografie_tecniche_tematiche/
Cartografie%20Tematiche/UDS (2011)
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Catalonia and Apulia, Sardinia shows the highest num-
ber of FIPs, which is never below 2000; the region peaks
in 2010 exceeding 3500 ignitions. In the 2000 to 2006
time period, Catalonia registers a higher number of FIPs
than does Apulia, but in 2007 and 2008, the number
decreases below that of Apulia. In 2010 and 2011, the
number of FIPs in Apulia is almost identical to that in
Catalonia, but decreases in 2012.

Table 2 provides some descriptive FIP statistics (sum,
mean, max, min, standard deviation) for each study re-
gion during the 2000-2012 time period. The occurrence
(presence/absence of ignitions) and frequency of FIPs
(i.e., number of ignitions per cell) were extracted with a
1-km? grid as dependent variables (Zhang et al. 2016).
In each region, FIP frequency is unevenly distributed
(Fig. 3) because it is affected by the high presence of
zero values (number of ignitions = 0) and low presence
of positive counts (number of ignitions >1). These
features led us to choose the Hurdle models to investi-
gate fire ignition occurrence and frequency in the study
regions, given its capacity to analyze the presence or
absence of FIPs and their frequency.
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Negative Binomial Hurdle model

According to the Poisson assumption, the dependent
variable is characterized by overdispersion when the
variance exceeds the mean. For this reason, the Negative
Binomial Hurdle model built by Mullahy (1986) was
chosen for this study. Hurdle models are a class of statis-
tical models that shape count data with a preponderance
of zeros. The distribution of dependent variables was
simultaneously analyzed by the model in two different
parts: hurdle (Eq. 1) and count (Eq. 2).

P(Yi = 0) = Faero (1)

Fcount (2)

P(Y;>0)=(1- Fpero) T_F
— £ count

P is a probability mass function, and Y; represents
FIPs. In the hurdle part, logistic regression was chosen
to determine the presence (Y = 1) or absence (Y = 0) of
FIPs (Fjeror Eq. 3),

1
1 P - (d0+ﬁlx1+ﬂ2x2+“.+ﬁnxn)

erro = (3)

Number of fire ignition points

20‘00 20‘01 20‘02 20‘03 20‘04 ZObS 20‘06

il

Year

Fig. 2 Distribution of fire ignition points in Catalonia, Sardinia, and Apulia during the 2000-2012 time period
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Table 2 Statistics of FIPs distribution in the three study regions
Catalonia, Sardinia, and Apulia for the 2000-2012 time period

Sum Mean Max Min Std. Dev.
Catalonia 8021 0.245 27 0 0.783
Sardinia 36,596 1461 68 0 3.162
Apulia 5221 0234 26 0 0.868

FIPs fire ignition points, Sum total number of FIPs, Mean mean number of FIPs
per square kilometer, Max maximum number of FIPs per square kilometer, Min
minimum number of FIPs per square kilometer, Std. Dev. standard deviation

where e is Euler’'s number, a, is the intercept, and
Bi...5,, are the correlation coefficients for each independ-
ent variable (x;...x,). Meanwhile, the negative binomial
regression is a function of probability for the count part
(Feount EQ. 4) used to determine FIP frequency (Y > 0).
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The Negative Binomial Hurdle model is recommended
when the observed outcome has an average lower than
its variance (Spano et al. 2019),

r(;€y1;2;21) (1 +1@)L)971 (1?@A)y (4)

where I'is the gamma function, and © and A represent
function parameters (Li et al. 2020). The hurdle() func-
tion from the R “pscl” package (Jackman 2017) was used
for the analysis. The same explanatory variables were
used for the hurdle and count parts, and a separate
model was created for each of the three regions. For
each part (hurdle and count), the predictions were
extracted and used to calculate fire ignition maps.

Feount =
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Fig. 3 Spatial distribution of fire ignition points (red dots) across Catalonia (a), Sardinia (b), and Apulia (c). Fire ignition point frequency for the
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Model validation

To validate the Negative Binomial Hurdle models for
Catalonia, Sardinia, and Apulia, the databases were split
into two parts: training and test sets. In the first step,
the training set, formed by 70% of the data, was used to
develop the model. The test set, 30% of the remaining
data, was applied to validate the models’ results. To
evaluate the performance of the models, the receiver
operating characteristic (ROC) curve and area under the
curve (AUC) were calculated for the hurdle part, while
the Pearson correlation coefficient and root mean square
error (RMSE) were calculated for the count part. This
process was repeated five times with different samples of
training and test sets to assess the stability of the
models. In addition, metrics over the entire dataset were
calculated.

Results

Fire ignition probability and frequency

Table 3 shows the coefficients of independent variables
estimated by the Negative Binomial Hurdle model for
Catalonia, Sardinia, and Apulia. The effect of independ-
ent variables on FIP occurrence was analyzed in the
Hurdle part, whereas the influence of these variables on
FIP frequency was evaluated in the count part.

Fire ignition probability
A negative relationship between anthropic variables and
FIP occurrence was shown in the hurdle part of the
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models. However, while the relationship between the
occurrence of FIPs and the distance from urban areas is
stronger than in the count part for Apulia (- 0.48) and
Sardinia (- 0.54), the correlation with distance from
roads is less strong. Compared to the count part, the
landscape variables in the hurdle part were more signifi-
cant in determining fire occurrence.

In all three regions, a positive correlation was found
between FIP occurrence and different land cover classes
according to region. The most significant classes of land
cover recorded were forest (13.7), agriculture (5.81), and
grassland (0.50) for Catalonia, Sardinia, and Apulia,
respectively. In general, landscape variables are good
predictors, but the coefficient values of Catalonia were
higher and more significant than those of Apulia and
Sardinia. In addition, a negative correlation was found be-
tween FIP occurrence and DEM for Apulia and Catalonia,
whereas in Sardinia, this correlation was positive. In the
case of climatic data, there was a positive correlation
between FIP occurrence and maximum temperature only
for Sardinia; in particular, when the dry days (0.25) and
temperature (0.11) increased, the occurrence of FIPs also
increased.

Fire ignition frequency

FIP frequency was significantly linked to anthropic data.
In all three regions, an inverse correlation was found
between the number of FIPs and distance from roads.
Therefore, when the distance from roads decreased, the

Table 3 Coefficients of the Negative Binomial Hurdle model (hurdle and count parts) for each independent variable across the

three study regions

Hurdle part Count part

Catalonia Sardinia Apulia Catalonia Sardinia Apulia
DEM —0.90%** 0.14%%* —0.23%%* —1.00%%* 0.19%%* —0.21%*
Slope —0.12%* -0.05 0.29%%* -037% 0.18%* -001
Dry days 0.08 0.25%%* 0.08** —-0.20% 0.17%%% —0.01
Max_temp —0.37%%* 0.17%%* —0.66"** -0.07 0.20%%* —0.18***
Pop_density —0.05* 0.04 -0.02 0.15%%* 0.02 -0.09
Urb. area_dist —0.17%%* —0.54*** —048%** —0.36"** —0471%%* -0.05
Road_dist —0.52%%* —0.77%%* —0.58%** —0.30%%* —0.86"** —0.82%**
Agric 12.79%%% 581% 0.14* 6.02 0.86 —0.08
Forest 13.69%** 3.83% 044 6.59 0.34 0.23%%*
Grassland 5.04%%* 2.10% 0.50%** 2.70 0.23 0.16%*
Other lands 3.85%%* 1.07 0.127%%% 231 -0.12 -0.03
Shrubland 7.80%** 4.34* 049 3.80 0.30 0.15%%*
Urban 5.74%%% 1.80% -0.004 2.83 0.32 -0.10
Waterland 1.77%%% 0.95* 0.18%** 0.91 0.10 -0.10
Wetland 1.34%%% 0.77* 0.13 0.62 0.10 0.15

DEM Digital Elevation Model, Max_temp maximum temperature, Pop_density population density, Urb. Area_dist distance from urban areas, Road_dist distance from

roads, Agric agriculture
***p < 0.001, **p < 0.005, *p < 0.05
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number of FIPs increased. This correlation was more
significant for Sardinia (- 0.86) and Apulia (- 0.82) than
for Catalonia (-0.30) (Table 3). In addition, FIP fre-
quency was less inversely correlated to distance from
urban areas; however, this variable was significant only
for Sardinia (- 0.41) and Catalonia (- 0.36). The popula-
tion density was not significant for Apulia and Sardinia,
whereas for Catalonia, it was positively correlated with
FIPs (0.15). Consequently, the frequency of FIPs in-
creased where population density was high (only for the
region of Catalonia). The climatic and topographic data
demonstrated contrasting effects among the regions. A
negative correlation was shown between FIP frequency
and topographical data (DEM and slope) for Apulia and
Catalonia, whereas in Sardinia, this correlation was
positive. The landscape variables were not significant for
Sardinia and Catalonia, whereas a positive correlation
was found between FIP frequency and the presence of
forest, grassland, and shrubland in the Apulia region.

Validation

After calibrating the Hurdle models, we used the test set
(30% of data) to evaluate their performances. For each
region, cross-validations were carried out on five sub-
samples of training and test sets to assess potential over-
fitting. Table 4 shows the performance metrics calculated
for the overall model and five subsamples. The results show
that no overfitting was observed, as demonstrated by the
similar metrics values among the subsamples.

Cross-regional comparison of fire drivers

We estimated the probability density function of fire ig-
nition occurrence in relation to the six main explanatory
variables (in the climatic, anthropic, and topographic
categories) to compare the magnitude of each driver
across the three study regions (Fig. 4). We found similar
trends among the regions for the following four explana-
tory variables: mean maximum temperature, distance
from roads, population density, and DEM. For example,
Fig. 4a illustrates that the trend of fire ignition
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probability was similar among the regions and reached
high values when the mean maximum temperature was
in the 32 to 38 °C range. When the distance from roads
decreased, the fire ignition probability increased (Fig.
4c¢).

We observed a similar trend among the regions for
the mean distance from roads, population density, and
elevation (DEM) (Fig. 4d—f). In particular, the curves
suggest that fire ignition probability was high when
elevation reached the values between 0 and 500 m. In
the case of Sardinia and Catalonia, the highest fire igni-
tion probability occurred around 250 m, while in Apulia,
two peaks were found at 0 and 500 m. Furthermore, fire
ignition probability peaked when the mean distance
from roads was approximately 300 m (Fig. 4c). Lastly,
the population density trend was similar among the
three regions, as high values of fire ignition probability
occurred in the range between 0 and 100 inhabitants per
square kilometer (Fig. 4e).

Different trends were observed for the two drivers
related to climatic and anthropic systems: the amount of
dry days and mean distance from urban areas (Fig. 4b, d,
respectively). For example, in Apulia and Sardinia, fire
ignition probability reached high values when the average
number of dry days ranged between 65 and 80, while in
Catalonia, this range decreased (40-50 dry days, Fig. 4b).
Moreover, Fig. 4d suggests a difference between fire igni-
tion probability trends in relation to distance from urban
areas. In Apulia and Sardinia, the highest values of fire
ignition probability corresponded to a distance between 0
and 500 m from urban areas compared to Catalonia where
the highest values were recorded at a distance of 1000 m.

Fire ignition maps

One of the objectives of this study was to create a
fire ignition probability map and fire frequency map
for each of the three regions. Maps a—c are the out-
put of the hurdle part, while maps d—f represent the
output of the count part of the Negative Binomial Hur-
dle models (Fig. 5).

Table 4 Performances of the Negative Binomial Hurdle models (hurdle and count parts) evaluated for the three study regions and

each of the five subsamples

Hurdle part Count part

AUC value Prediction accuracy (%) Pearson correlation coefficient RMSE

c) s) a) c) s) a) c) s) a) c) s) a)
S1 0.72 0.80 0.81 0.67 0.73 0.78 0.23 041 0.35 0.73 2.99 0.90
S2 0.71 0.81 0.83 0.66 0.74 0.71 0.13 040 032 082 3.1 0.83
S3 0.71 0.79 0.84 0.66 0.72 0.79 0.15 043 039 0.77 285 0.79
S4 0.72 0.81 0.83 0.70 0.74 0.76 0.22 043 0.35 0.84 2.86 0.85
S5 0.72 0.80 0.83 0.62 0.72 0.76 0.20 043 033 0.74 2.85 0.81
ED 0.71 0.80 083 0.66 0.73 0.76 023 043 036 0.76 285 0.81

¢) Catalonia, s) Sardinia, a) Apulia, AUC area under the curve, S7-S5 subsamples, ED entire dataset, RMSE root mean square error
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According to the fire ignition probability maps pro-
duced, the region of Catalonia did not exhibit a high prob-
ability of fire ignition, although the east coast and central
hallow are characterized by a medium-high probability
(Fig. 5a). The lowest fire ignition probability was found in
north Catalonia on the border with France. In contrast,
the regions of Sardinia and Apulia presented high ignition
probabilities. Sardinia showed the highest probability of
fire ignition almost over the entire territory, especially on
the west coast from north to south (Fig. 5b). In this region,
the areas with low probability were scattered and mostly
found in the southwest and along the east coast in a frag-
mented pattern. In Apulia, however, areas such as the
Gargano Promontory, the Daunian Subappenines, and the
central region showed reduced high fire ignition probabil-
ities (Fig. 5c). In addition, this region has two very large
areas—the “Piana Salentina” and “Tavoliere delle Pug-
lie”—with very low fire ignition probabilities, which are
bound by the Daunian Pre-Appennines in the west and
the Adriatic Sea in the east.

Furthermore, maps containing the average fire frequency
predicted by the models were also produced based on three
frequency ranges: low (0-1), medium (1-2), and high (> 2).
A correspondence was observed between the frequency of
fires and probability of fire occurrence; specifically, areas

with high frequencies showed higher fire probability occur-
rences (Fig. 5d—f). This correspondence was more evident
for Sardinia, where more areas with high frequencies were
observed (Fig. 5e). On the contrary, the maps showed that
Catalonia and Apulia had fewer areas with a fire frequency
> 2 (Fig. 5d, f). In Catalonia, these areas are mainly located
around the center of Barcelona, whereas in Apulia, they
are located in the northeast and in the center of the region.

Discussion

In this study, the Negative Binomial Hurdle model, an
analytical tool rarely adopted in wildfire-related studies
to assess fire ignition occurrence (presence/absence and
frequency), was applied to three Mediterranean regions
of Southern Europe: Catalonia, Sardinia, and Apulia.
Our findings suggest that the model can be considered a
sound approach for the prediction of probability and fre-
quency of fire ignition points in all the three study areas.
Among the three regions, the differences in AUC values
and accuracies are quite small showing a robust good-
ness of fit. According to the literature, AUC values of
0.5 to 0.7 are considered low accuracy, values of 0.7 to
0.9 suggest useful applications, and values around 0.9 in-
dicate high accuracy (Swets 1988). Our results indicated
AUC values of 0.71, 0.80, and 0.83 for Catalonia,
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Sardinia, and Apulia, respectively, between predicted prob-
abilities and observed outcomes. These results are consist-
ent with those of Xiao et al. (2015) who explored the count
data mixed model to predict fire occurrence in China. The
authors found that when the data are dispersed, Hurdle
models might give a more satisfactory fit to the data.

Fires are triggered by various anthropic, climatic, topo-
graphical, and landscape drivers. The topographical
drivers employed in the study reveal a contrasting pat-
tern among the regions. Elevation (i.e., DEM) in all three
regions was highly significant and negatively correlated
with fire ignition occurrence and frequency in Apulia
and Catalonia, but positively correlated in Sardinia. Ac-
cording to the literature (Gonzalez-Olabarria et al. 2015;
Mancini et al. 2018b), evidence has been found for a
relationship between altitude and fire occurrence. Gonzélez-
Olabarria et al. (2015) in Catalonia observed that as eleva-
tion increases, ignition density decreases. Mancini et al.

(2018a) in Italy demonstrated that fire frequency decreases
as elevation increases. In Sardinia, elevation is positively
correlated with our response variables because the region is
mostly characterized by mountainous areas with flammable
vegetation rather than plains. Furthermore, the pastoral
economy is widespread in Sardinia’s hinterland, and pasture
renewal takes place thorough stubble burning. Slope was
significant with a negative correlation for both our variable
responses only in Catalonia where the geomorphology of
the landscape strictly affects flammable species, the microcli-
mate, and ignition sources (Syphard et al. 2008).

Although Catalonia, Sardinia, and Apulia are charac-
terized by different morphologies and landscapes, we
found drivers with the same predictive power in explain-
ing our dependent variables. For example, the anthropic
drivers (e.g., distance to roads, distance from urban
areas) suggest a negative relationship with fire ignition
probability (presence/absence). This relationship was
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also found to be significant for fire ignition frequency. In
the Mediterranean region, the strong influence of man-
made infrastructures renders the landscape prone to fire
ignition and spread (Martinez et al. 2009; Miranda et al.
2012; Martin et al. 2019). In landscapes with a predom-
inance of anthropic activity, such as the Mediterranean
countries of Southern Europe, such sources generate the
majority of fires (Costa et al. 2011; Oliveira et al. 2014;
Pavlek et al. 2016). In this geographical context, the
main causes of fires are arson and negligence, which
account for 98% of the total number of recorded events.
The closer the distance to roads, the greater the fire
probability (Zambon et al. 2019). For instance, in all
three regions, road distance showed the highest predict-
ive power representing one of the main drivers of fire
occurrence. These results are in line with previous stud-
ies (Guo et al. 2016; Elia et al. 2020).

Elia et al. (2019) showed that in Southern Italy, the
number of fire ignitions increases as the distance to
main roads decreases. This trend is particularly evident
in Catalonia where the landscape, covered by a dense
road network, is affected by elevated fire occurrence and
frequency. In Sardinia as well, the highest fire ignition
probability in terms of occurrence and frequency is
recorded in correspondence with major roads. In Apulia,
the situation is similar to that described above, where
fire probability and frequency increase as urban inter-
faces increase (Badia et al. 2019; Ager et al. 2019). In our
model, population density unexpectedly showed limited
predictive power for all three regions; in Apulia and
Sardinia, it was not significant. This is probably due to
the fact that most fires are found in rural areas character-
ized by low population density, and fire ignition is trig-
gered by pastoral activity and stubble burning (Lovreglio
et al. 2010). Population density is higher in Catalonia than
in the other two regions (Eurostat 2018). Fire ignition
probability is concentrated along the coast where popula-
tion density is higher and human pressure generates a
greater amount of ignition sources (Badia et al. 2011; Serra
et al. 2014). On the contrary, in the north of the region
bordering France, the ignition probability and frequency
of these events are considerably reduced. This is perhaps
the result of low population density and the climatic
factors in the Pyrenees mountains, which do not easily
trigger fire ignition and spread (Faerber 2009).

Our study shows that among the land cover/uses,
forest and shrubland represent the main drivers of fire
probability in Apulia and Catalonia, while in Sardinia,
agriculture detains the highest predictive power. Accord-
ing to the Third Spanish National Forest Inventory
(Alberdi et al. 2017), forests and other natural areas (e.g.,
shrublands, grasslands) cover almost 60% of Catalonia’s
territory. We found a positive relationship between the
presence of forest and fire occurrence in this region; i.e.,
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fire ignition probability increases with a high percentage
of forests. The Joint Research Centre (JRC) Technical
report (San-Miguel-Ayanz et al. 2018) supports our find-
ing, according to which 68% of fires in 2018 occurred in
the woodlands of Spain. Although Apulia has the fewest
number of forests in Italy, we found the maximum
values of fire ignition probability and frequency in areas
covered by woodlands. A previous study by Elia et al.
(2019) suggests that the probability of ignition occur-
rence is relevant along the coast in the northern and
southern parts of Apulia, especially in urban interfaces
with a strong presence of shrubland and Mediterranean
magquis. In addition, Sebastidn-Lépez et al. (2008) sug-
gest that shrubs represent the main drivers of fire occur-
rence in their model for Southern Europe. Other studies
(Nunes et al. 2005; Moreira et al. 2011) have demon-
strated that the presence of shrubs is usually correlated
with fire-prone Mediterranean ecosystems.

On the contrary, croplands, vineyards, and olive groves
cover most of the northern Apulian region where fires
are less likely to ignite and spread. In comparison with
Apulia and Catalonia, agriculture is the main driver of
fire occurrence and frequency in Sardinia. In this
region’s hinterland where forest stands dominate, fire
ignition probability decreases, whereas along the coast
where agricultural activity is predominant, fire ignition
probability increases. The effect of agriculture on expected
fire ignition probability has previously been reported by
Bajocco and Ricotta (2008), who observed a positive rela-
tionship between pastoral practices, grazing pressure, and
fire frequency and occurrence.

The prediction maps developed by the Hurdle models
highlight the spatial effect of anthropic, climatic, and
landscape drivers in detecting the most fire-prone areas
in Apulia, Sardinia, and Catalonia. Forest managers and
decision-makers can use these maps as tools for plan-
ning management interventions in a broader fire risk
analysis. Although the objectives of this research were to
estimate fire ignition probability and frequency by com-
paring the drivers that generate these patterns in three
different regions of the Mediterranean Basin, potential
limitations can be observed. To properly manage these
events, which are becoming increasingly frequent and
severe, building databases with similar acquisition
methods at the European level is indispensable to study
fire probability and frequency. Further, we intentionally
avoided the inclusion of socioeconomic drivers of the
three regions, since in Italy, these data are difficult to
obtain, especially at the local scale. Nevertheless, this
study represents the first approach to comparing fire oc-
currence and frequency and related drivers in different
regions of the Mediterranean Basin. Future efforts are
warranted to improve our understanding of fire occur-
rence and its drivers by comparing homogeneous
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regions (Giannico et al. 2018). Such efforts could sup-
port the European Commission in promoting good prac-
tice policies for monitoring and management as well as
post-fire resilience activities.

Conclusions

In recent decades, the fire regime has changed becoming
more frequent and severe due to climate change. In this
regard, awareness of the similarities and differences that
trigger fires in different regions of Europe is fundamen-
tal for the implementation of a standard intervention
protocol. To meet this requirement, it is urgent to
understand which main drivers influence fire occurrence
and its frequency. Our study shows that all drivers (i.e.,
climatic, topographic, landscape, and anthropic) contrib-
ute to contrasting results in terms of fire probability and
frequency. However, of these drivers, anthropic activity
strongly influences fire ignition and its frequency across
landscapes. Consequently, it is essential to monitor areas
which are close to urban settlements by implementing
long- to medium-term intervention plans. In this perspec-
tive, our study represents a potential decision-making tool
for land management agencies in the three regions to iden-
tify the most vulnerable areas where major interventions
are needed. Additionally, this new approach can introduce
different applications in the field of wildfire research. In-
novative future studies could focus on comparing multiple
count data models (Hurdle models, zero-inflated models,
Poisson model, negative binomial model) to understand
which of these is the most representative in describing
wildfire occurrences.
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