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The seahorse Hippocampus guttulatus reaches its highest abundance in confined environments, where it has unique 
biological and ecological traits that suggest significant genetic differentiation among populations. In the present study, 
we aimed to reveal the genetic structure of this species by analysing eight microsatellite loci and a mitochondrial 
DNA region (cytochrome b) of eight populations from the Central–Western Mediterranean Sea, including lagoon 
sites. Levels of genetic diversity, as measured by the total number of alleles, number of private alleles, allelic richness 
and heterozygosity, ranged from low to moderate. The overall value of inbreeding was high, indicating a deficiency in 
heterozygotes. The haplotype network had a star-like construction, with the most common haplotype present in all 
populations. Data from the two molecular markers congruently displayed a similar pattern and revealed low genetic 
differentiation, notwithstanding predictions based on species traits. The observed genetic structure is probably the 
result of both historical population demographic events and current gene flow. The investigated lagoons, however, 
revealed a unique genetic profile, which is especially highlighted by the Taranto population. At this site, the results 
also showed altered values of observed/expected heterozygosity and allelic richness, a characteristic of marginal 
populations. Our study suggests that lagoon populations should be managed as distinct genetic units.
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INTRODUCTION

The management and conservation strategies of 
endangered species require comprehensive knowledge 
of genetic diversity and the degree of connectivity 
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among populations, which are important for 
determining species evolutionary potential across 
spatial and temporal scales (Frankham et al., 2010; 
Cooke et al., 2016). In the marine environment, genetic 
homogeneity is expected across vast areas due to the 
lack of obvious physical barriers to dispersal and the 
existence of planktonic larvae in many species (Cowen 
et al., 2007). Although dispersal capacity is considered 
one of the principal factors in shaping population 
genetic structure, it may not always be the only 
driver of diversification (Rossi et al., 2019). Indeed, 
population structure is often the result of a complex 
interaction between environmental, historical and 
individual or species-specific characteristics, including 
local adaptation (Gentili et  al., 2018), historical 
vicariance (Nascimento et al., 2018), past bottleneck 
events (Shama et al., 2011), oceanic currents (Rossi 
et al., 2019), habitat discontinuities (Barber et al., 
2002), isolation by distance (Mims et al., 2016), limited 
dispersal abilities (Ferreira et al., 2015), behaviour 
and life history strategies (Nathan et al., 2008).

Signif icant genetic  di f ferentiation among 
populations can be found in marine species with high 
dispersal potential (DeWoody & Avise, 2000), while 
other species may display genetic homogeneity despite 
predictions of the substantial population structure 
resulting from their biological and ecological traits, 
such as sedentary behaviour, monogamy and high site 
fidelity (e.g. Porrini et al., 2015).

The European long-snouted seahorse Hippocampus 
guttulatus Cuvier, 1829, a relatively sedentary species 
that inhabits the North-Eastern Atlantic Ocean, the 
Mediterranean and the Black Sea (Lourie et al., 1999, 
2016), raises many conservation concerns because 
of the severe population declines in recent decades 
(Pollom, 2016). This has led to the species inclusion 
on the International Union for Conservation of 
Nature (IUCN) Red List of Threatened Species, in 
which it is listed as Data Deficient at a global level 
(Pollom, 2017), whereas in the Mediterranean basin 
and along the Italian coast, it is considered as Near 
Threatened (Pollom, 2016; Relini et al., 2017). As with 
other congeneric species, the long-snouted seahorse 
is characterized by sedentary behaviour with low 
swimming capabilities, small home-ranges and high 
site fidelity (Curtis & Vincent, 2006). Furthermore, 
H. guttulatus exhibits high mate fidelity (Foster & 
Vincent, 2004; Woodall, 2009) and a short planktonic 
juvenile phase (Boisseau, 1967), while reproductive 
rates of adults are limited by low fecundity and small 
brood sizes. Although these particular traits may imply 
restricted migration and thus genetically structured 
populations, the genetic homogeneity of seahorse 
populations has been shown at large geographical 
scales (Woodall et al., 2015; Riquet et al., 2019a).

Hippocampus guttulatus can be found in different 
shallow coastal habitats, but it seems to reach the 
highest abundances in marine lagoons (Curtis & 
Vincent, 2005; Louisy, 2011; Caldwell & Vincent, 
2012; Gristina et al., 2015; Lazic et al., 2018). These 
habitats, however, are frequently exposed to a wide 
range of environmental conditions, including changes 
in salinity and temperature (Gonzalez-Wanguemert 
et al., 2006). Such variations, together with the typical 
isolation of confined environments, may exert strong 
selective pressures and thus could drive modifications 
of a species genetic pattern (e.g. Sanford & Morgan, 
2011). Indeed, significant genetic differences between 
populations from coastal lagoons and the open sea 
have been established in many aquatic species 
(Allegrucci et al., 1997; Gonzalez-Wanguemert et al., 
2006; Bisol et al., 2007; Marko & Barr, 2007; Gonzalez-
Wanguemert et al., 2009). Past studies of the genetic 
structure of H. guttulatus have demonstrated the 
existence of four cryptic lineages across the entire 
species distributional range, where one of them is 
considered to be exclusive of the Mediterranean 
lagoons (Woodall et al., 2015; Riquet et al., 2019a). 
Along the Italian coast, the presence of multiple 
populations has only recently been highlighted, 
comprising the dense and important population in the 
marine lagoon of Taranto in southern Italy (Gristina 
et al., 2015, 2017a; Lazic et al., 2018). Demographic 
abundance values of this population are among the 
highest in the Mediterranean (Gristina et al., 2015) 
and comparable to those of the Atlantic lagoons 
(Curtis & Vincent, 2005; Caldwell & Vincent, 2012). 
The present study addresses the question of a finer-
scale genetic structure of threatened H. guttulatus in 
a poorly studied area, which with its numerous, and in 
the case of Taranto lagoon, dense seahorse populations 
could complement existing knowledge while providing 
valuable information for seahorse conservation. In 
the present study, a combination of microsatellite 
and mitochondrial (cytochrome b) markers was used 
to investigate the genetic structure and degree of 
differentiation of H. guttulatus in the Central–Western 
Mediterranean Sea with a particular emphasis on 
heterogeneous lagoon environments.

MATERIAL AND METHODS

Sample collection

A total of 119 H.  guttulatus individuals were 
collected at eight locations in the Central–Western 
Mediterranean Sea (Fig. 1). Small pieces of skin 
filament tissue were removed in situ underwater with 
the non-lethal (Gristina et al., 2017b) skin filament 
clipping procedure. After sample collection, all animals 
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were released at the same point from which they were 
collected. All samples were preserved in 96% ethanol 
at 4 °C for subsequent genetic analysis.

Cytochrome B analysis

Total genomic DNA was extracted from skin filaments 
using the standard cetyltrimethylammonium bromide 

Figure 1.  A, Analysis of cytb. Minimum spanning network for cytb haplotypes constructed from sequence data. B, 
microsatellite analysis. Population membership probability on the basis of their genotypic profiles according to DAPC. C, 
geographical distribution of microsatellite clusters. The pie diagrams show the frequency distribution of each cluster among 
populations: CH, Chioggia; MT, Mattinata; MV, Mazara del Vallo; NAP, Naples; PC, Porto Cesareo; T, Taranto; THA – Thau; 
and TOS, Tossa del Mar. An asterisk near the name of the sampling site indicates the lagoon site.
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protocol (Doyle & Doyle, 1987). A fragment of the 
mitochondrial DNA (mtDNA) cytochrome b gene 
was amplified using the primers GUTTCYTB_F and 
GUTTCYTB_R (Woodall, 2009). The PCR conditions for 
cytochrome b were as follows: an initial denaturation 
for 2 min at 95 °C, followed by 35 cycles of 95 °C (30 s), 
60 °C (30 s) and 72 °C (60 s), and a final extension 
at 72 °C for 10 min. PCR products were purified and 
sequenced by Macrogen (www.macrogen.com).

Electropherograms were checked using FinchTV 
(Geospiza, Inc., Seattle, WA, USA; http://www.geospiza.
com) and minor changes were made by eye. A final 
consensus alignment was computed with MEGA 5.0 
(Tamura et al., 2011). After the final alignments were 
obtained, the number of haplotypes (n), and nucleotide 
(π) and haplotype (h) diversities for the entire dataset 
and across regions were estimated using DnaSP 
v.5.1 (Librado & Rozas, 2009). Finally, to infer gene-
genealogies among H.  guttulatus populations, a 
Minimum Spanning Network (MSN) was computed 
using the software PopART (Bandelt et al., 1995).

Microsatellite analysis

All samples were amplified at 12 microsatellite loci 
(Pardo et al., 2007). However, four microsatellite loci 
exhibited reaction inconsistency in most samples and 
were omitted from subsequent analyses. Thus, the final 
dataset consisted of eight genotyped microsatellite 
loci (Hgu-USC2, Hgu-USC4, Hgu-USC5, Hgu-USC7, 
Hgu-USC9, Hgu-USC11, Hgu-USC12, Hgu-USC13). 
Microsatellite primers were synthesized commercially, 
with the 5′ end of the forward primer labelled with one 
of the following fluorescent dyes: 6FAM, VIC, NED or 
PET (Applied Biosystems, Foster City, CA, USA). The 
following PCR amplification conditions were used: an 
initial denaturation for 3 min at 94 °C, followed by 35 
cycles of 94 °C (30 s), 54–56 °C (30 s) and 72 °C (60 s), 
and a final extension at 72 °C for 10 min. PCR products 
were genotyped by Macrogen, using an ABI 3130xl 
Genetic Analyzer with the GS500 LIZ size standard 
control. Allele sizes were scored using the R package 
Fragman (Covarrubias-Pazaran et al., 2016).

Allele frequencies, expected and observed 
heterozygosity (Hexp and Hobs), average number 
of alleles (A), number of private alleles (Np) and 
allelic richness (Ar) were estimated for each locus 
and sampling location using the R package hierfstat 
(Goudet, 2005). Deviations from Hardy–Weinberg 
equilibrium (HWE) were tested for each locus, pairs 
of loci and sampling location using the R package 
Pegas (Paradis, 2010). Sequential false discovery 
rate (FDR) correction for multiple tests was applied 
for HWE tests of significance because of the large 
number of tests involved (Benjamini & Hochberg, 
1995). The occurrence of putative null alleles was 

evaluated using the R package PopGenReport 
(Adamack & Gruber, 2014).

Population structure was investigated by spatial 
principal component analysis (sPCA), which allows 
cryptic spatial patterns of genetic variability to be 
investigated. The sPCA yields scores summarizing 
genetic variability and spatial structure among 
individuals (or populations). Given genetic data 
and spatial coordinates, it maximizes the product of 
variance and spatial autocorrelation (Moran’s I index), 
which allows for a distinction of global from local 
structures and random noise (Jombart, 2008). Spatial 
information in sPCA was modelled through a connection 
network based on the Delaunay triangulation criteria. 
Successively, population membership probability was 
evaluated using discriminant analysis of principal 
components (DAPC). sPCA scores were used in 
DAPC to evaluate a posteriori correct assignment of 
individuals to each sampled population.

Finally, Bayesian cluster analysis was performed 
using the software Structure 2.3.4. (Pritchard et al., 
2000) to detect the number of genetic clusters (K) 
and admixture within the dataset. Structure analysis 
allowed the search of a best cluster ranging from 
2 to 8, assuming an ‘admixture model’ in which 
every individual has ancestry from one or more K 
genetically distinct sources. The Markov chain Monte 
Carlo (MCMC) search was performed using 100 000 
repetitions after a burn-in (set to 10 000), replicated 10 
times for each K value. CLUMPAK (Kopelman et al., 
2015) was used to post-process the Structure output 
to visualize the population structure of each K tested.

RESULTS

A 518-bp fragment was obtained from sequencing of 
the cytochrome b (cytb) gene. All cytb sequences were 
deposited at GenBank (accession numbers: MT276601, 
MT311875–MT311957, MT386084–MT386091). 
Overall haplotype diversity (Hd) was moderate, with 
an average value of 0.675 ± 0.035, while nucleotide 
diversity was low (π = 0.00226 ± 0.00029). Although 
haplotype diversity ranged from 0.286 ± 0.196 at 
Tossa del Mar to 0.800 ± 0.172 at Mattinata, most 
of the investigated populations displayed low values. 
Nucleotide diversity (π) ranged from 0.00083 ± 0.00049 
at Naples to 0.00341 ± 0.00129 at Mattinata (Table 1).

A total of 16 haplotypes were found. The MSN 
presented a star-like pattern (Fig. 1A). For most cases, 
only a one-step mutation was found between the most 
common and the other haplotypes. The most common 
haplotype, H3, found in 42 individuals, occupied a 
central position and was shared by all populations. 
Haplotype H6 was shared by three populations, while 
other haplotypes were private to each population 
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(Supporting Information, Table S1). Haplotype H2, 
the largest exclusive haplotype found in the Taranto 
population, had 31 individuals (Fig. 1A; Table S1).

The microsatellite loci displayed low to moderate 
levels of genetic variability (Table 2). A total of 206 
alleles over eight microsatellite loci were observed. 
Total number of private alleles was 22 (mean 
Pa = 2.75). The Taranto population had the highest 
number of private alleles (Np = 7), while Mattinata 
and Thau had none. Allelic richness across all 
populations was low (mean Ar = 1.39), ranging from 
1.32 at Taranto to 1.42 at Chioggia, Mattinata and 
Tossa del Mar. The level of observed heterozygosity 
(Table 2) across all populations was low to moderate 
(mean Hobs = 0.35; range from 0.23 at Porto Cesareo 
to 0.44 at Mattinata and Mazara del Vallo), and lower 
than the expected heterozygosity (Table 3) (mean 
Hexp = 0.41; range from 0.3 at Porto Cesareo to 0.54 
at Mazara del Vallo). The loci were in equilibrium in 
all populations, except for Hgu-USC7 and Hgu-USC13 
that deviated significantly from HWE in the Taranto 
population (Supporting Information, Table S2). The 
inbreeding coefficient Fis displayed positive values in 
all populations (mean Fis = 0.16), ranging from 0.11 
at Chioggia to 0.23 at Taranto (Table 3). The same 
coefficient also had positive values for at least one locus 
in all populations (Supporting Information, Table S3). 
A significant, but low, global Fst value (mean Fst = 0.04) 
was found. However, pairwise Fst values ranged from 
0.030 to 0.11 (Table S4).

The sPCA scatterplot, based on the first two spatial 
principal components (λ 1 and λ 2; Fig. 2A,B), explained 
an important fraction of the variance and spatial 
autocorrelation and clearly discriminated against 

three main groups. The Taranto population appeared 
as the most separated. Populations from Naples, 
Chioggia and Mattinata largely overlapped and 
constituted a distinct group, whereas Tossa del Mar, 
Mazara del Vallo, Porto Cesareo and Thau formed the 
third population group. The Thau population showed 
a certain degree of separation on λ 2 and λ 3 (Fig. 2C). 
A posteriori attribution by DAPC showed that only 
individuals from Taranto and Thau demonstrate a 
high percentage of attribution of individuals based on 
their genotyping profile (Fig. 1B, C).

Results from sPCA and DAPC (Figs 1B, C, 2) were 
in agreement with the Bayesian clustering (Fig. 3; 
Supporting Information, Fig. S1), which identified 
the same clusters at K = 3. Taranto demonstrated 
low admixture of a few individuals that appeared 
genetically closer to the Western Mediterranean 
cluster. At K = 4, Thau and Tossa de Mar were split into 
two separate clusters. Taranto showed a certain level 
of admixture with Thau, but still maintained a clear 
genetic separation. With increasing K, Taranto was 
the only population that maintained a clear distinction 
and lower admixture level (Fig. S2).

DISCUSSION

The present study provides insights into the genetic 
structure and diversity of H. guttulatus in the Central–
Western Mediterranean part of the species range while 
providing a further step towards our understanding 
of genetic differentiation in lagoon populations. In 
accordance with previous studies on large spatial 
scales (Woodall et al., 2015; Riquet et al., 2019a),  

Table 1.  Description of sampling sites and cytochrome b sequence diversity: sampling sites, site code, site description 
(open water/lagoon), number of samples used for mtDNA analysis (N), number of polymorphic sites (Np), number of 
haplotypes (H), haplotype (Hd) and nucleotide diversity (π) (SD, standard deviation)

Site Site 
code

Site  
description

Latitude Longitude N Np H Hd ± SD π ± SD

Chioggia CH Open 
water

45°22′87.6″ 12°30′53.6″ 13 5 4 0.423 ± 0.164 0.00184 ± 0.00100

Mattinata MT Open 
water

41°73′15.4″ 16°11′05.4″ 6 5 4 0.800 ± 0.172 0.00341 ± 0.00129

Porto 
Cesareo

PC Open 
water

40°25′68.9″ 17°89′07.2″ 8 5 5 0.786 ± 0.151 0.00262 ± 0.00081

Taranto T Lagoon 40°48′50.8″ 17°26′02.1″ 40 3 4 0.383 ± 0.088 0.00097 ± 0.00025
Mazara 

del Vallo
MV Open 

water
37°64′22.2″ 12°59′03.3″ 5 1 2 0.400 ± 0.237 0.00090 ± 0.00053

Naples NAP Open 
water

40°82′57.6″ 14°23′46.8″ 7 1 2 0.400 ± 0.237 0.00083 ± 0.00049

Thau THA Lagoon 43°39′25.7″ 3°60′32.8″ 8 1 2 0.476 ± 0.171 0.00097 ± 0.00035
Tossa del 

Mar
TOS Open 

water
41°71′89.2″ 2°93′47.6″ 7 2 2 0.286 ± 0.196 0.00117 ± 0.00080
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the results suggest homogeneity of seahorse 
populations, with the exception of the unique genetic 
profiles of lagoons.

The overall value of genetic diversity across all 
populations, for microsatellite loci, was low (global 
Hobs = 0.35). An explanation can be found in some 
characteristics of the seahorses, such as monogamy, 
sedentary behaviour and high site fidelity, linking 
genetic diversity to behaviour. However, previous 

studies have reported higher values in other populations 
of H. guttulatus (Pardo et al., 2007), as well as in other 
congeneric species (e.g. H. abdominalis in Nickel & 
Cursons, 2012; H. hippocampus in Lòpez et al., 2010; 
H. capensis in Galbusera et al., 2007). Low observed 
heterozygosity points to high heterozygosity deficiency 
and high levels of inbreeding (global Fis  =  0.16). 
Inbreeding is predicted to be more problematic in 
small populations where closely related individuals 

Table 2.  Genetic diversity indices for eight microsatellites loci at sampling sites: total number of alleles (NA), number of 
private alleles (Np), allelic richness (Ar), observed heterozygosity (Hobs) and expected heterozygosity (Hexp)

Locus Chioggia Mattinata Mazara 
del Vallo

Naples Porto 
Cesareo

Taranto Thau Tossa 
del Mar

Hgu-USC2 NA 3 3 2 2 2 3 2 2
Np 1 0 0 0 0 0 0 0
Ar 1.51 1.46 1.43 1.5 1.46 1.33 1.44 1.35
Hobs 0.71 0.57 0.50 0.29 0.22 0.20 0.38 0.43
Hexp 0.52 0.46 0.50 0.55 0.49 0.33 0.46 0.36

Hgu-USC4 NA 5 3 3 2 2 3 3 4
Np 0 0 0 0 0 1 0 0
Ar 1.32 1.56 1.71 1.35 1.23 1.43 1.55 1.53
Hobs 0.35 0.86 1.00 0.43 0.25 0.44 0.50 0.33
Hexp 0.32 0.56 0.75 0.36 0.23 0.43 0.57 0.56

Hgu-USC5 NA 4 4 1 4 3 4 2 4
Np 1 0 0 0 0 0 0 1
Ar 1.47 1.55 1 1.55 1.33 1.27 1.29 1.65
Hobs 0.24 0.43 0 0.57 0.38 0.30 0.33 0.67
Hexp 0.48 0.58 NA 0.57 0.34 0.27 0.30 0.67

Hgu-USC7 NA 13 8 2 6 6 11 7 8
Np 3 0 2 0 0 3 0 2
Ar 1.88 1.84 1.67 1.79 1.74 1.78 1.82 1.84
Hobs 0.82 0.71 1 0.57 0.56 0.59 0.75 0.67
Hexp 0.90 0.88 NA 0.85 0.78 0.79 0.86 0.88

Hgu-USC9 NA 3 3 2 4 3 3 3 4
Np 0 0 1 1 1 1 0 0
Ar 1.39 1.30 1.57 1.38 1.21 1.07 1.42 1.39
Hobs 0.44 0.17 0 0.29 0.22 0.08 0.25 0.22
Hexp 0.40 0.33 1 0.40 0.22 0.08 0.45 0.41

Hgu-USC11 NA 2 2 1 2 1 2 1 2
Np 0 0 0 0 0 1 0 0
Ar 1.48 1.25 1.00 1.25 1 1.43 1 1.30
Hobs 0.29 0.29 0 0.29 0 0.32 0 0.11
Hexp 0.49 0.26 0 0.26 0 0.43 0 0.32

Hgu-USC12 NA 2 2 2 2 3 3 3 3
Np 0 0 0 0 1 0 0 0
Ar 1.21 1.16 1.43 1.14 1.44 1.07 1.49 1.30
Hobs 0.12 0.17 0.50 0.14 0.11 0.02 0.38 0.33
Hexp 0.22 0.17 0.50 0.14 0.47 0.07 0.52 0.31

Hgu-USC13 NA 3 2 2 2 2 4 1 1
Np 1 0 0 0 0 1 0 0
Ar 1.11 1.25 1.43 1.25 1.12 1.18 1 1
Hobs 0.12 0.29 0.50 0.29 0.12 0.10 0 0
Hexp 0.12 0.26 0.50 0.26 0.12 0.19 0 0

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article/130/4/771/5865778 by  jaa@

soton.ac.uk on 14 August 2020



POPULATION GENETICS OF HIPPOCAMPUS GUTTULATUS  777

© 2020 The Linnean Society of London, Biological Journal of the Linnean Society, 2020, 130, 771–782

are more likely to breed together (Lienert, 2004) and 
can cause a decrease in abundance (Frankham, 2003). 
This is a possible scenario for H. guttulatus which, in 
the past, was a common species along the Italian coast, 
but is now declining (Lazic et al., 2018).

Observed heterozygosity was lower than expected 
(Hexp = 0.41), with a departure from HWE. Significant 
deviations from HWE were observed at two loci in 
one population (Taranto). Heterozygosity deficiency 
observed at these loci can have various causes 
(Rosewich et al., 1999), and although distinguishing 
among them is difficult (Christiansen & Frydenberg, 
1974), the most likely explanation involves inbreeding 
and the presence of null alleles in one of the loci.

Both mitochondrial and microsatellite markers 
congruently showed a similar genetic pattern, 
revealing overall low genetic structuring among 
H. guttulatus populations, in accordance with previous 
observations on other populations of the same species 
(Lopez et  al., 2015; Woodall et  al., 2015; Riquet 
et al., 2019a), but also on sympatric H. hippocampus 
(Woodall et al., 2011). Low levels of differentiation 
could indicate the existence of gene flow among 
populations. If so, it could be caused by the dispersion 
of juveniles in the first few weeks of their life while 
still part of the pelagic zooplankton (Boisseau, 1967; 
Curtis & Vincent, 2006; Morgan & Vincent, 2007), 
although occasional long-distance dispersal of adults, 
autonomously or by rafting, is also possible (Lourie 
et al., 2005; Teske et al., 2007; Luzzatto et al., 2013). 
Another explanation for the observed shallow genetic 
structure includes insufficient time elapsed for the 
occurrence of the genetic signature after a bottleneck 
during the Pleistocene and affected all Mediterranean 
populations. Bottleneck events commonly lead to a 
decrease in genetic diversity as a result of population 
size reduction (Landergott et al., 2001). During the 
Pleistocene glacial periods, H. guttulatus contracted 
to at least one refugial population, after which the 
species again expanded, although the recolonization 
process was influenced by oceanic currents and the 

species’ low dispersal potential (Woodall et al., 2015). 
The hypothesis of historical dispersal events among 
populations, followed by population expansion, is 
consistent with the analysis of cytb sequences. In fact, 
mitochondrial data indicate that the species exhibits a 
star-like phylogeny, with a common ancestral haplotype 

Table 3.  Total number of individuals (n) used for 
microsatellite analysis, expected (Hexp) heterozygosity and 
coefficient of inbreeding (Fis) for each sampled population

SITE n Hexp Fis

Chioggia 17 0.46 0.11
Mattinata 7 0.45 0.003
Mazara del Vallo 2 0.54 0.13
Naples 7 0.39 0.09
Porto Cesareo 9 0.3 0.2
Taranto 41 0.31 0.23
Thau 8 0.39 0.17
Tossa del Mar 9 0.45 0.21

Figure 2.  Spatial principal component analysis (sPCA). 
A, variance and spatial autocorrelation explained by each 
sPCA axis. B, sPCA plot based on λ 1 (horizontal) and λ 2 
(vertical). C, sPCA plot based on λ 1 (horizontal) and λ 3 
(vertical).
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that radiated to numerous closely related haplotypes, 
as already observed in many other marine fishes 
(e.g. Aboim et al., 2005; D’Amato & Carvalho, 2005). 
Low differentiation among populations has also been 
suggested by nuclear markers. Despite the occurrence 
of significant genetic differentiation between some 
population pairs, Fst values were generally low, and 
in half of the compared population pairs, the Fst value 
was lower than 0.05 (Supporting Information, Table 
S4). However, sPCA (Fig. 2) indicated the existence 
of three population groups. The Taranto population 
formed a separate group, while the rest of the Italian 
populations were divided into two genetic groups 
that were not fully consistent with their geographical 
distribution. Thau, another Mediterranean lagoon, 
also exhibited a certain degree of differentiation.

DAPC suggested that the genotypic profile of 
Taranto and Thau, followed by Porto Cesareo and 
Chioggia, have good discriminatory power, allowing 
the correct reclassification of many individuals, 
whereas the genotypic profile of other populations 
was not sufficiently diagnostic for a good percentage 
of correct reclassification (Fig. 1B). This result was 
fully congruent with Bayesian clustering (Fig. 3), 
which depicted the identical scenario. According 
to this analysis, Taranto and Thau were the most 
differentiated populations, while Taranto had 
the lowest level of admixture. Thus, all analyses 
congruently demonstrated the lack of a strong genetic 
structure, but highlighted the occurrence of unique 
genetic profiles in the Mediterranean lagoons, in 
agreement with a previous study (Riquet et al., 2019a).

Lagoon environments are considered potential sites 
for the emergence of different genetic constituencies 
because they can cause genetic divergence among 
populations, as already observed in several sedentary 
species of invertebrates (Gonzalez-Wanguemert et al., 
2009; Vergara-Chen et al., 2010; Marino et al., 2010). 
The genetic divergence of seahorse populations in 
lagoons may result from variable influences of both 
evolutionary and environmental factors. Indeed, 
geographical barriers and particular environmental 
conditions of lagoon systems might hinder dispersal 
mechanisms (Vergara-Chen et al., 2010) , that together 
with high site fidelity and small brood size of seahorses 
could promote the population genetic differentiation. 
Lagoons are characterized by variability of physical 
and chemical parameters, and in fact, it has been 
hypothesized that populations exposed to wide 
environmental fluctuations in temperature and 
salinity (Veliz et al., 2004) may differentiate due to 
genetic drift or natural selection (Cimmaruta et al., 
2003). Indeed, lagoons are frequently exposed to heavy 
bottlenecks and strong evolutionary pressures (Bamber 
& Henderson, 1985). For the Taranto population, in 
particular, the dominance of exclusive haplotypes, 
as well as low haplotype and nucleotide diversities, 
could indicate that the population has passed through 
a severe or long bottleneck. Although seahorses can 
survive extreme environmental conditions (Teske 
et al., 2003), the relatively low genetic diversity of 
H. guttulatus in heterogeneous lagoon systems should 
be considered as indicating the extinction risk in 
a threatened species. Nevertheless, a recent study, 

Figure 3.  Bayesian cluster analysis (from K = 2 to K = 4) using data from eight microsatellite loci.
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mostly in agreement with the present data, suggested 
the Thau H. guttulatus population was in a good genetic 
state (Riquet et al., 2019b). By contrast, the most 
separated Taranto population has characteristics of a 
distressed marginal population, including low levels of 
expected/observed heterozygosity and allelic richness, 
reduced genetic diversity, and altered phenotypic and 
life-history traits (Michalski & Durka, 2007; Lazic 
et al., 2018).

Seahorses are considered as flagship species of 
conservation efforts, and while numerous and abundant 
in the past, populations are now in decline (Lazic et al., 
2018). The present study has demonstrated a shallow 
genetic structure of H. guttulatus, probably as the result 
of both population demographic events and current 
gene flow. The study has also demonstrated that more 
isolated populations of H. guttulatus are likely to have 
a particular genetic structure not shared with those 
from the rest of the basin. This is particularly relevant 
for the Taranto lagoon seahorses, whose private 
alleles and genotypes, together with a high density 
of individuals, may represent a significant proportion 
of the species diversity. Nonetheless, not just at this 
site (Lazic et al., 2018), but also at many other sites 
of H. guttulatus occurrence, there are no particular 
measures for the protection of this species (Pollom, 
2017). This study suggests that specific regional and 
international initiatives should be put in place to 
protect the species, perhaps in the form of a network 
of protected areas (Woodall et al., 2018), whereas 
lagoons should be considered as separate genetic 
units. Although lagoons do not seem to contribute to 
the genetic diversity within the basin, these particular 
environments, with their suitable habitats and rich 
seahorse populations (Curtis & Vincent, 2005; Louisy, 
2011; Caldwell & Vincent, 2012; Gristina et al., 2015; 
Lazic et al., 2018; Ape et al., 2019), need to be protected 
because they may be important for maintaining the 
diversity of H. guttulatus throughout its distribution 
range.
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