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Abstract: Georeferenced archival aerial images are key elements for the study of landscape evolution
in the scope of territorial planning and management. The georeferencing process proceeds by
applying to photographs advanced digital photogrammetric techniques integrated along with a set of
ground truths termed ground control points (GCPs). At the end of that stage, the accuracy of the
final orthomosaic is assessed by means of root mean square error (RMSE) computation. If the value
of that index is deemed to be unsatisfactory, the process is re-run after increasing the GCP number.
Unfortunately, the search for GCPs is a costly operation, even when it is visually carried out from recent
digital images. Therefore, an open issue is that of achieving the desired accuracy of the orthomosaic
with a minimal number of GCPs. The present paper proposes a geostatistically-based methodology
that involves performing the spatialization of the GCP errors obtained from a first gross version of
the georeferenced orthomosaic in order to produce an error map. Then, the placement of a small
number of new GCPs within the sub-areas characterized by the highest local errors enables a finer
georeferencing to be achieved. The proposed methodology was applied to 67 historical photographs
taken on a geo-morphologically complex study area, located in Southern Italy, which covers a total
surface of approximately 55,000 ha. The case study showed that 75 GCPs were sufficient to garner
an orthomosaic with coordinate errors below the chosen threshold of 10 m. The study results were
compared with similar works on georeferenced images and demonstrated better performance for
achieving a final orthomosaic with the same RMSE at a lower information rate expressed in terms
of nGCPs/km2.

Keywords: archival aerial photos; georeferencing process; geostatistical analysis; local accuracy
mapping and assessment; ground control points

1. Introduction

The study of the evolutionary dynamics of environmental landscapes is typically performed by
means of archival aerial image analysis. From such photographs, a large range of details can be grasped
about areas of interest at different times that can provide support to many study fields, such as analyses
of land-use [1–5], urban area [6], glacier volume and lake surface [7], and landslide evolution [8–10]
changes. Despite AAPs’ (archival aerial photos) informative potential, so far, their usage has been
scarce owing to the processing difficulty related to the lack of some key information (e.g., external and
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internal camera parameters [11]). Fortunately, a recently introduced technology (structure from motion)
has been demonstrated to be able to overcome the limitations of classic photogrammetry [7], opening
possibilities to a larger exploitation of this kind of informative support. In general, AAPs, in order to
be compared with current images [12], must be (i) converted from analog to digital; (ii) georeferenced;
and then (iii) imported into some kind of geographic information system (GIS).

The key stage of the above process is georeferencing, which consists of producing an absolute
image orientation in a specific geographic system. However, to successfully carry out that stage, the
treatment of the digital image must be supervised by means of a set of ground-referenced information.
The most common method for finding suitable ground references is by seeking ground control points
(GCPs), namely points whose coordinates are measured with maximal accuracy. According to the
technical literature, GCPs can be detected directly in the field by means of ground positioning systems
(GPS) or manually (visually) using ancillary orthoimages or digital terrain model (DTM) in GIS
environments [13–15]. GCPs are then introduced into the structure from motion (SfM) process, at the
stage termed block bundle adjustment (BBA).

At present, there are some open issues concerning the georeferencing stage outcomes: (i) the
definition of an effective accuracy descriptor of the generated orthophoto [16]; (ii) determining the
optimal amount of GCPs in relationship to the study area size or, alternatively, to the number of images
available [17]; and (iii) assessing the relationship, if any, between the spatial distribution of GCPs and
georeferencing accuracy [18].

The accuracy of the georeferencing is typically assessed by computing the root mean square
error (RMSE) [4,7,19–21]. That index is an average measure of the difference between the GCPs’
in-field caught coordinates and those garnered after georeferencing [6]. Criticisms have been raised
against such an index, for instance, by [22] and [23]; they highlighted that, owing to the averaging
effect, RMSE could mask relevant local errors. In this manner, a georeferenced orthophoto could be
characterized by sub-areas with different degrees of reliability. Such a consideration suggests that a
theoretical framework able to manage local errors could be more appropriate for assessing reliably the
accuracy of a georeferenced orthophoto rather than a single global index.

The literature indications regarding the correct number of GCPs required for achieving a given
accuracy do not provide a univocal answer [4,7,14,24]. According to the desired accuracy, the resolution
of the final orthophotograph, and the size of the study area, that number can range from few units to
hundreds, as reported in Table 11 [21,25,26]. In addition, during the digitalization stage of AAPs [24],
deformations and noise can be introduced into the image, an issue that can increase the difficulty of
finding a large number of reliable GCPs visually [17,26]. Therefore, a parsimonious approach in GCP
searching should be considered.

Although there exists a large body of literature about the GCP number and its relationship with
final orthophoto accuracy, few studies can be found about their ideal spatial placement to achieve a
fine georeferencing with a minimal number of GCPs [18,27]. Nevertheless, studies comparing the
accuracy performances of georeferencing supported by GCP sets characterized by different sizes and
spatial distributions showed that, considering configurations of the same sizes, changes in the spatial
distribution of the GCPs can have a significant impact on the georeferencing accuracy [17,18,26,27].

In summary, it emerges that the best strategy for GCP selection over the study area should be
related to the concepts of local accuracy improvement, GCP position exploitation, and parsimony in
their identification.

Considering the efforts devoted by researchers to the issue of optimizing the number and the
placement of GCPs over the study area, it appears that a methodology addressing such an issue could
be a valuable tool. To find an appropriate theoretical framework for modelling the involved concepts,
the following points should be clarified: (i) the conditions leading to low accuracy in georeferencing
and (ii) the main properties’ characteristics of georeferencing errors.

GCPs play a crucial role both for bringing the coordinates of the original orthoimage grid into the
desired coordinate system and for assessing the georeferencing final accuracy beside the check points
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(CPs). In fact, accuracy is assessed determining the mismatch between GCP coordinates before and after
the georeferencing stage. During that stage, misalignments propagate from GCPs to nearby locations,
favouring the onset of areas characterized by low accuracy (weak areas) [16]. The similarity of error
values at neighbouring locations makes evident the spatially auto-correlated nature of coordinate errors.
Hence, geostatistics [28,29] appear to be the most suitable theoretical framework to effectively model
those errors [30].

The rationale of the proposed methodology is as follows: at the first stage, a deliberately gross
version of the considered orthomosaic is produced by means of a small number of GCPs randomly
spread over the study area. GCPs (local) errors, assessed by means of Pix4D software, are then
spatialized by use of the kriging interpolator. An error raster map is thus produced, where sub-areas
characterized by high local errors can be easily identified. The initial set is then integrated by new GCPs
that are placed within or neighbouring such sub-areas. Therefore, the spatial distribution of GCPs is
stratified; the first stratum is random, and the second is preferential. The georeferencing procedure is
then re-run, and the accuracy of the resulting orthomosaic is assessed once more; if that accuracy is
deemed unsatisfactory, GCPs’ errors are re-modelled for re-defining weak areas where new GCPs are
placed. That procedure can be repeated as many times as desired until large errors are completely
filtered out [31]. In summary, the random distributed stratum is defined at the first stage, once for
all, whereas the second stratum can be recursively increased until the desired accuracy is obtained.
The effectiveness of the proposed error model is confirmed by [27]. In fact, that paper reports that
errors are not indefinitely compressible, but there is a threshold of the GCP number beyond which
there is no further improvement in the accuracy. That finding is not particularly surprising because
it is actually inherent to the considered theoretical framework. In conclusion, it was shown that the
proposed procedure addresses all three open issues mentioned above.

The presented case study concerns the georeferencing of 67 archival AAPs dating back to the 1950s
with a desired error threshold of 10 m, which is typical within the forestry scope for large-scale studies.
The study results, compared with similar works on archival photographic georeferencing, showed
better performance in achieving a final orthomosaic with the same RMSE at a lower information cost
computed in terms of nGCPs/km2 [18,27,32].

The present study is a follow-up of the QUALIGOUV project (IG-MED 08-392), financed by the
European Regional Development Fund, aimed at improving the governance and quality of forest
management in protected Mediterranean areas. The proposed methodology was also developed for
the ‘Alta Murgia’ National Park (Southern Italy) in order to study the evolution of the reforestations
owned by the Puglia region, managed by the A.R.I.F. (Regional Agency for Irrigation and Forestry).

2. Study Area and Data Description

The study area covers a surface of approximately 55,000 ha, and is located on the border between
two regions, Puglia and Basilicata, in Southern Italy. It is included in the ‘Murge’, a low limestone
plateau dominating the landscape of the central part of the Puglia region. The delineation of the study
area was carried out considering the hydrographic basin system of the streams crossing the western
part of the Regional Natural Park ‘Terra delle Gravine’.

The area can be divided into three different longitudinal strips that differ in terms of altitude,
morphology, land cover, and presence of forest vegetation (Figure 1a).

The northern zone, between 500 and 380 asl, is characterized by hills generally with south- and
south-east exposure, where there are forests of Quercus trojana Webb. The central area, between 400
and 220 asl, consists of a slightly wavy plain, used almost everywhere for agricultural crops [33].
The southern zone, between 350 and 160 asl, is morphologically more complex owing to the presence
of a series of deep incisions that appear similar to North American canyons [34], termed ‘gravine’
(Figure 1b). The vegetation mainly comprises forest communities characterized by an accentuated
physiognomic and compositional heterogeneity [33]. The transects reported in Figure 2 show the
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inhomogeneity of the study area and the different degrees of morphological complexity of the three
zones reported in Figure 1.Remote Sens. 2020, 12, 2232 4 of 23 

 

 
(a) (b) 

Figure 1. The study area localized in Southern Italy: (a) division of the area into three longitudinal strips. The 
red line indicates the edge of the study area; (b) Gravina of Laterza (Taranto, Southern Italy). 

The northern zone, between 500 and 380 asl, is characterized by hills generally with south- and 
south-east exposure, where there are forests of Quercus trojana Webb. The central area, between 400 
and 220 asl, consists of a slightly wavy plain, used almost everywhere for agricultural crops [33]. The 
southern zone, between 350 and 160 asl, is morphologically more complex owing to the presence of 
a series of deep incisions that appear similar to North American canyons [34], termed ‘gravine’ 
(Figure 1b). The vegetation mainly comprises forest communities characterized by an accentuated 
physiognomic and compositional heterogeneity [33]. The transects reported in Figure 2 show the 
inhomogeneity of the study area and the different degrees of morphological complexity of the three 
zones reported in Figure 1. 

Elevation Sections 

 

 
(a) 

 

 
(b) 

Figure 1. The study area localized in Southern Italy: (a) division of the area into three longitudinal
strips. The red line indicates the edge of the study area; (b) Gravina of Laterza (Taranto, Southern Italy).

Remote Sens. 2020, 12, 2232 4 of 23 

 

 
(a) (b) 

Figure 1. The study area localized in Southern Italy: (a) division of the area into three longitudinal strips. The 
red line indicates the edge of the study area; (b) Gravina of Laterza (Taranto, Southern Italy). 

The northern zone, between 500 and 380 asl, is characterized by hills generally with south- and 
south-east exposure, where there are forests of Quercus trojana Webb. The central area, between 400 
and 220 asl, consists of a slightly wavy plain, used almost everywhere for agricultural crops [33]. The 
southern zone, between 350 and 160 asl, is morphologically more complex owing to the presence of 
a series of deep incisions that appear similar to North American canyons [34], termed ‘gravine’ 
(Figure 1b). The vegetation mainly comprises forest communities characterized by an accentuated 
physiognomic and compositional heterogeneity [33]. The transects reported in Figure 2 show the 
inhomogeneity of the study area and the different degrees of morphological complexity of the three 
zones reported in Figure 1. 

Elevation Sections 

 

 
(a) 

 

 
(b) Remote Sens. 2020, 12, 2232 5 of 23 

 

 

 
(c) 
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The present study was based on 67 AAPs captured in black and white between 1954 and 1955
during the first Italian National Planimetric Survey. The photographs (23 cm × 23 cm) were taken with
metric cameras at a height of 6000 m with an acquisition scale of 1:34,000. The analogue AAPs were
digitalized by means of an Epson Expression 1640 XL nonphotogrammetric scanner with a resolution
of 800 dpi (or equivalently, 31.75 µm). AAPs were purchased already digitalized from the IAGO/IGM
retailer (Italian Army Geographical Office/Istituto Geografico Militare). Scanned images had different
orientations relative to the original images, and they had an overlap of approximately 60%.

Furthermore, a digital terrain model (DTM) was obtained by merging DTMs of Apulian and
Basilicata regions, which have a resolution of 8 m and 5 m, respectively. Digital orthoimages
of the 2016 flight for the Puglia region and that of 2013 for the Basilicata region were used.
The two orthophotographs have a scale of 1:5000 with a 50 cm pixel resolution.

3. Materials and Methods

3.1. Methodology

The proposed workflow can be divided into three main steps (Figure 3): (i) orthomosaic
production and GCP selection; (ii) absolute orthoimage orientation and GCPs’ coordinates error
assessment; and (iii) spatial analysis and error map production. Orthomosaic production is described
in Section 3.1.1, and GCP selection is outlined in Section 3.1.2. Variables considered for the improvement
of the final orthomosaic accuracy (Section 3.1.3) are the coordinate errors along the X and Y directions
that were subjected to spatial analysis (Section 3.1.4).
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In conclusion, by analyzing the obtained error maps, areas overcoming a given user-threshold
are sought (Section 3.1.4). If these areas are found, the GCP number is then increased (Section 3.1.5);
otherwise, the final fine georeferenced orthomosaic is gained.

3.1.1. SfM and Orthomosaic Production

The conventional stereo-approach requires information regarding interior and exterior camera
orientation, such as focal length, radial distortion, and fiducial marks [7] located at the four angles of
each image. In our case, scans lack the required information. The data characteristics resemble those
used in [7,20], and the authors of those contributions highlighted that such cases can be successfully
managed by means of the structure from motion–multi-view stereo (SfM–MVS) approach. The basic
difference between SfM–MVS and classical photogrammetry consists of three aspects: (i) features
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that can be automatically identified and matched in images at differing scales, viewing angles,
and orientations are considered; (ii) the equations used in the algorithm can be solved without
information of camera positions or GCPs, although both can be added and used; and (iii) camera
calibration can be automatically solved or refined during the process. The SfM–MVS workflow can be
summarized in a number of steps, as follows. During the initial processing, a binary descriptor of the
SIFT (scale-invariant feature transform) algorithm is used to extract and then match the features from
photographs. On the basis of these features and GCPs, (i) an iterative routine of camera self-calibration,
(ii) automatic aerial triangulation (AAT), and (iii) BBA to determine and optimize interior and exterior
parameters are performed. After initial processing, maximum point cloud densification is carried
out, based on multi-view stereo (MVS) [35–38]. The final processing steps concern the derivation of a
digital elevation model (DEM) and the orthomosaic.

The above-mentioned procedure has been implemented in the software Pix4Dmapper [39];
a commercial product that has a primary point of strength of processing large numbers of images
without any knowledge of the camera’s calibration parameters [40].

The procedure includes the following steps:

- Image matching

In each image, key points (points of interest characterized by high contrast or particular textures
in the images) are automatically recognized and tied together by the software in relation to their
neighbourhood characteristics [7], using SfM algorithms. The number of key points depends on the
following: (i) the size of the images and (ii) the visual content. At this step, the image size where the
key points were searched and extracted was set to 1

2 , whereas the minimum number of key points to
search in each image was set at 10,000 to provide more calibrated images.

- Performing bundle adjustment

Using these key points, the AAT and BBA algorithms were performed to recognize the position and
orientations of the camera [41]. During this step, the outputs of SfM–MVS are scaled and georeferenced
based on GCPs. The 3D point cloud was densified by setting in the software the point density to
optimal, which means that every 3D point was calculated for each 4/image scale pixel, and the minimum
number of matching among images was set to 2.

- Creation of final orthomosaic

At the end of the three stages of SfM–MVS, the mosaic of AAPs was orthorectified on the basis of
the DEM obtained from the photogrammetric process.

3.1.2. GCP Selection

The GCP selection was carried out considering, for the entire study area, initially 50 GCPs that
were easily identifiable, such as man-made structures [17], in order to balance the need to obtain an
initial gross georeferencing of the orthomosaic and a nearly sufficient points number for geostatistical
treatment. The amount of GCPs considered is a medium-low number with respect to that reported in
the scientific literature [42–46], because it is related to the local spatial variability of the considered
variable, which, for the case at hand, is not excessively large.

GCPs were found manually after a visual comparison between old scanned photographs and
present orthoimages, which returned a substantially random GCPs sampling [47] with an initial
ratio of 50/550 ~0.1 GCPs/km2. The planimetric coordinates of the GCPs (X and Y) were determined
in a geographical information system (GIS) using the digital orthophotos, whereas Z coordinates
were extrapolated from the DTMs. The reference system used for frame image georeferencing was
WGS84/UTM 33N. After the geostatistical analysis, the second stratum of GCPs is selected within the
areas characterized by high local errors. In conclusion, the set of GCPs is sampled in a stratified fashion
with a first random stratum and a second preferential stratum.
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3.1.3. Variables of Interest

The error value at each GCP coordinate (Error X and Error Y) was computed as the difference
between the coordinates estimated by Pix4Dmapper in the archival orthomosaic and the real ones
identified by the user in a more recent orthophotograph.

In more formal language, an error at a spatial point with coordinates x can be modelled as a sum
of two components (1):

E(x) = η(x) + ε(x), x ∈ D (1)

where η is the spatially auto-correlated component, ε is the pure random spatially un-correlated
component (white noise), and D is the study area [48]. The white noise component represents the
uncompressible error, whereas η (auto-correlated error) can be suitably modelled and reduced (filtered
out) by adding new GCPs.

Errors in the X and Y directions were selected as variables to be modelled. The variable error Z
was not considered during the geostatistical analysis because the study purpose, being oriented to
forestry scope, was to assess only the planimetric accuracy of the final orthomosaic. The maximum
error (in absolute value) allowed in terms of accuracy was set to 10 m for both the X and Y coordinates.
This threshold was considered appropriate by the authors for the purposes of the study.

3.1.4. Spatial Analysis

Spatial analysis scope includes the following:

• statistics for checking the spatial auto-correlation with Moran index;
• techniques to analyze and model (variography) the spatial heterogeneity of the variables of interest;
• methods to perform predictions of considered variables over the study area (kriging) [46].

- Moran Index
The predisposition of the considered variables to be spatialized is commonly checked using

Moran’s autocorrelation index (2), which is an extension of the Pearson product–moment correlation
coefficient [49]:

I =
N
S0

∑N
i=1

∑N
j=1 ωi, jziz j∑N
i=1 z2

i

(2)

where zi = (xi − x), z j =
(
x j − x

)
and S0 =

∑N
i=1

∑N
j=1 ωi, j

Moran’s index computes a weighted correlation of a variable against itself, where the weights are
related to the variable’s spatial arrangement [50].

- Geostatistics

The geostatistical analysis is applied for evaluating the spatial heterogeneity of the considered
variables (errors along the Cartesian axis) through the structural analysis (variography) and producing
maps by means of spatial prediction methods (kriging).

Variography is a two-stage approach, where a function derived from observations, namely the
experimental variogram (the grey dotted line in Figure 4), is used to derive a variogram model (the
solid line in Figure 4). This model is the mathematical law ruling the spatial heterogeneity of the
considered variable [48].
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- Variogram fitting

The computational process from experimental variogram to variogram model is referred to as
variogram fitting The selection of the best theoretical model is performed by means of an index of
goodness-of-fitting termed SSErr, which measures the difference between the discrete experimental
variogram and the fitted theoretical model at the same lag value (3):

SSErr =
N∑

i=1

Ni

h2i

(
γexp(hi) − γtheor(hi)

)2
(3)

where γtheor(i) is the variogram model value for the distance hi, γexp(hi) is the analogous value of the
experimental variogram, and Ni is the number of point pairs for lag i [51]. The selected model is that
having the lowest value of SSErr among all those analyzed during the optimization process.

- Kriging

Variography requires a complementary interpolation method to provide predictions of the
variables of interest at unsampled points. The main predictive method in the geostatistical framework
is kriging. It is substantially a weighted average, the weights of which are derived from the
variogram model. Formula (4) refers to ordinary kriging, which is the most commonly used predictive
geostatistical method:

ẑ(s0) =
N∑

i=1

λi·z(si) (4)

where s0 is the spatial location associated to the desired prediction, λi are kriging weights, and z(si) is
the observations at the generic location si. On the basis of its definition, kriging is a best linear unbiased
predictor (BLUP) [46]. Afterwards, a spatial map of predictions can be produced.

- Cross-validation and validation stages

Cross-validation and validation are two quite different processes used for model validation. In the
first, validation data are the same as those used previously to calibrate the variogram model; whereas
in the second case, validation data are different from those used for model calibration.
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(Leave-one-out) cross-validation is a procedure in which, given Z(si) a set of n observations at
spatial locations si, the method extracts one observation Z(si) at a time and makes the prediction of
that observation, referred to as Ẑ

(
s j
)
−i

, using the remaining observations (Figure 5).
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In the present study, the validation stage was performed using another 25 CPs, selected
independently from the GCPs used for the georeferencing. Finally, a scatterplot of the predictions
versus the observations can be drawn to determine whether they align along the first quadrant bisector,
which would indicate a good capability of the model for capturing the features of the spatial process [48].

- Lin’s concordance index

In general, the agreement between predictions and observations is carried out by means of Pearson
or Spearman indices. In the present paper, Lin’s concordance (agreement) coefficient is preferred
to quantify the goodness of model adaptation, checking the agreement between observed versus
predicted values. Lin’s concordance coefficient provides a measure of overall accuracy that takes into
account both bias correction (closeness of the prediction to the actual value) and precision (variability
in the predictions). Bias correction is calculated from two bias measures, constant (location-shift) and
systematic (scale-shift) bias [52]. The formula as follows (5):

ρ
c=

2·r·sX ·sY
s2
Y+s2

X+(mY −mX)2
(5)

where r is the Pearson’s coefficient; sX·sY are the standard deviations of the true and predicted values,
respectively; mX and mY are the means; and s2

Y and s2
X are the variances of the true and predicted

values, respectively.
The R [53,54] libraries used to perform the above mentioned computations were carried out using

{RGeostats} [55] and {automap} [51], {Hmisc} [56], and {spdep} [57].

3.1.5. GCP Increasing Strategy

If the local accuracy assessed by means of the kriging maps of error X and error Y shows values
above the given threshold, to improve that accuracy, a number of new GCPs will be introduced. The
applied strategy to increase the GCP number works as follows:

- the areas surrounding the worst local errors for error X and error Y maps are delineated;
- each area is multiplied by the ratio between the initial number of GCPs and the study area size to

obtain the number of GCPs to be introduced (0.1 for the case at hand);
- these new GCPs are located with priority within the weak areas where man-made structures are

recognizable, otherwise they are placed in the closest allowed positions.
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4. Results

4.1. Stage 1: 50 GCPs

According to the methodology described at the specific section, at the first stage, the orthomosaic
with a ground sampling distance (GSD) of 1.73 m. was generated, based on the technical characteristics
of the considered photographs (Figure 6).
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In the first step, 50 GCPs were randomly selected over the area of interest for georeferencing such
an orthomosaic.

4.1.1. Basic Statistics

At the end of the georeferencing process, an error matrix (50 × 3) was provided containing the
errors of each GCP (termed error X, error Y, and error Z, respectively) along the (X, Y, Z) axes and
three summary RMSE values (Table 1). As already mentioned, only the error X and error Y variables
were analyzed; nevertheless, for the sake of completeness, the statistics related to error Z will also be
reported at each process stage. From comparison between RMSE from GCPs and CPs, it emerges that
the differences are not particularly marked, even if the RMSEs of CPs are generally slightly larger,
as expected.

Table 1. Root mean square error (RMSE) values referring to the 50 ground control point (GCP) and 25
check point (CP) dataset.

Variables Error X Error Y Error Z

RMSE (m)—GCP 2.82 3.29 4.84

RMSE (m)—CP 3.56 2.50 6.31

It is noteworthy that all the RMSE values (Table 1) are far below the chosen threshold (10 m), but it
should be borne in mind that such an index, being based on an average value, hides possible large
local errors. According to such an index, the error Z value appears to be the most uncertain, in contrast
to error X. Conversely, the general analysis of GCP errors (Table 2) can be helpful in understanding the
spatial distribution of the large errors to ensure a final orthomosaic with the desired degree of accuracy
over the entire study area.
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Table 2. Basic statistic of the 50 GCP dataset.

Variables Minimum Maximum Mean Median Standard Deviation Skewness Kurtosis
(m) (m) (m) (m) (m)

Error X −6.23 11.35 0.21 −0.21 2.84 1.09 3.94
Error Y −3.84 14.74 0.69 0.41 3.25 2.52 9.21
Error Z −19.19 14.57 −0.22 −0.22 4.88 −0.93 5.10

In fact, from the observation of the extreme (maximum and minimum) values, it can be understood
if GCPs errors that overcome the given error threshold exist. In fact, all three maximum values of the
considered variables overcome the threshold.

4.1.2. Spatial Analysis

For assessing the extent of weak areas of such high error values, geostatistics provides an effective
working environment and tools capable of delineating such areas populated by values above the
given threshold.

Because geostatistics requires data Gaussianity, skewness and kurtosis were analyzed.
The skewness is always different from zero, indicating an asymmetric shape of the empirical
distributions, whereas the analysis of kurtosis values highlights that both the distributions (error X
and error Y) have high peaks compared with the normal one, particularly accentuated for the second
variable (Table 2). The errors along the Z-axis (error Z) were neglected in the following analysis,
as mentioned previously.

The quantile-quantile plots (QQ-plots) corresponding to the considered variables (Figure 7)
indicate the presence of some outliers, confirming that the distributions generally depart slightly from
Gaussianity; however, it was preferred not to transform the datasets to ease the interpretation of
the phenomenon.
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Before applying geostatistics, a correlation analysis was carried out to determine whether the
variables error X and error Y are correlated with the three coordinates (X, Y, Z). Because such a
correlation was found (Table 3), it is possible to apply as predictor the universal kriging rather than the
ordinary kriging, and consequently produce more accurate maps.



Remote Sens. 2020, 12, 2232 12 of 23

Table 3. Correlation matrix and p-value referring to the error values with 50 GCP dataset.

Variables Correlation p-Value
X Y Z X Y Z

Error X −0.42 −0.21 −0.08 0.0024 * 0.1349 0.5837
Error Y −0.41 0.22 0.20 0.0035 * 0.1201 0.1537
Error Z 0.13 −0.24 −0.27 0.3521 0.0989 0.0547

* symbol beside a p-value indicates that the corresponding correlation value is significantly different from zero.

Because the distributions were not Gaussian, the non-parametric Spearman correlation index was
computed. For the case at hand, a correlation was found, although not particularly strong, with the X
coordinate (Table 3).

Moran’s local autocorrelation index showed a significant predisposition of the errors to be
spatialized at different ranges. Error X showed a range of 2500 m (Moran’s index = 0.325), whereas error
Y showed a Moran’s index of 0.44 at a range of 3500 m. Therefore, the structural analysis (variography)
of these variables was performed, and the experimental and spherical variograms and its main
parameters are reported below (Figure 8a,b). The selection of the theoretical models was performed
using as the fitness function the lowest value of SSErr, which measures 6.3 × 10−6 for error X and
7.8 × 10−6 for error Y.
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The goodness of fit of the variogram models was checked using the cross-validation and the
successive validation stage. The validation was performed using a set of 25 CPs selected independently
from the 50 GCPs. The outcomes of this stage are also reported in Table 4.



Remote Sens. 2020, 12, 2232 13 of 23

Table 4. Cross validation and validation results with the 50 GCP dataset.

Variables Cross Validation p-Value Validation p-Value
Overall Accuracy (Lin) Overall Accuracy (Lin)

Error X 0.78 0.009 0.73 0.36
Error Y 0.90 5.47 × 10−5 0.90 0.84

The goodness-of-fit quality of cross-validations can be considered quite satisfactory. Conversely,
the validations are not equally good, not because of the value assumed by Lin’s coefficient, but, in fact,
owing to its non-significance. The reasons for the low performances of the validation stages can
be assumed to be related to different causes. Firstly, a cause can be found in the relatively large
extent of the nugget with respect to the sill. In fact, the nugget represents substantially a form of
spatially uncorrelated random error that, for the case at hand, impacts adversely on the validation
outcomes. Nonetheless, because a correlation structure, although weak, is evident from the variograms
(Figure 8a,b), the maps were taken into account, anyway. Secondly, from a purely statistical perspective,
the low performances of the validation stage can depend on the number of GCPs (50), which is,
probably, too low to be a statistically significant sample of the population. In the following, two maps
of errors along X and Y, respectively, are reported (Figure 9).
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error values.

The produced maps can be considered acceptable because a substantial correspondence can
be found between observations and predictions, confirming the overall accuracy of values reported
above (Table 4). A quick visual inspection of such maps highlights the presence of weak areas that
overcome the given error threshold (10 m). The percentage size of such inaccurate areas is 0.21%
for error X and 2.53% for error Y, corresponding to approximately 114.5 ha and 1377 ha of the total
study area, respectively. The largest errors are located in the north-west and southern parts of the
considered maps. Such errors can be related to the poor quality of the archival photographs, leading
to increased uncertainty in the choice of points and to an edge effect. The final result highlights that
the orthomosaic accuracy cannot be considered completely satisfying for the purpose of the study;
hence, it was necessary to increase the number of GCPs, the location of which was suggested by the
two error maps.
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4.2. Stage 2: 75 GCPs

For the case at hand, 25 new GCPs were introduced following the methodology outlined in
Section 3.1.5. The number of GCPs was achieved by summing the weak areas’ sizes of error X and
error Y, approximately 250 km2, and multiplying that value by 0.1; that is, the ratio between the initial
number of GCPs and the entire study area size (see Section 3.1.2). The placement of the new GCPs
was pursued by seeking man-made structures over or close to weak areas; hence, such additional
sampling is preferential. In Figure 10, the spatial distribution over the two errors maps of the 25 GCPs
just introduced are reported.Remote Sens. 2020, 12, 2232 14 of 23 
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4.2.1. Basic Statistics

Once identified, the GCPs were added to the dataset, and the georeferencing of the orthomosaic
was repeated, producing an error matrix of 75 × 3.

The results of the RMSE values are shown in Table 5.

Table 5. RMSE values referring to the 75 GCP and 25 CP dataset.

Variables Error X Error Y Error Z

RMSE (m)—GCP 2.42 2.24 3.32

RMSE (m)—CP 3.08 2.54 4.66

The table shows that the RMSEs of GCPs values related to error X and error Y decreased (13.94%
and 31.87%, respectively), but as already noted, the analysis of such a parameter is insufficient to
establish the absence of weak areas. The RMSE related to error X improved by 13.55%, confirming the
improvement of RMSE of GCPs. The RMSE related to error Y showed a worsening of 1.35%.

Therefore, a statistical analysis of GCPs was performed once more.
The basic statistics referring to the errors of the three coordinates of the GCPs highlight a noticeable

improvement characterized by the decrease in absolute terms of the extreme values (minimum and
maximum) (Table 6).

The QQ-plots, skewness, and kurtosis of error X and error Y variables (Figure 11) show a
distribution closer to a Gaussian one, with the exception of error Y, which still has outlier values,
but they were lower than the threshold.
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Table 6. Basic statistic of the 75 GCP dataset.

Variables Minimum Maximum Mean Median Standard Deviation Skewness Kurtosis
(m) (m) (m) (m) (m)

Error X −5.59 5.08 0.18 0.38 2.43 −0.08 −0.33
Error Y −3.82 9.26 0.32 0.41 2.24 0.79 2.38
Error Z −7.20 8.50 0.16 0.12 3.34 0.03 0.56Remote Sens. 2020, 12, 2232 15 of 23 
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4.2.2. Stage 1 vs. Stage 2

Given the peculiar methodology structure, the values of the first 50 GCP errors at this stage can be
compared with the values of the same GCPs at the previous stage.

It can be demonstrated that the worst values (minimums and maximums) had improved
significantly after the increase of the GCPs, as reported in Table 7.

Table 7. Fifty GCP stage 1 vs. 50 GCP stage 2.

Variables Minimum Maximum Mean
(%) (%) (%)

Error X −28.54 −58.62 −107.93
Error Y −0.60 −37.20 −90.94
Error Z −114.33 −41.61 −260.54

In more detail, such an analysis can be broadened to check how many points have improved and
how many worsened and to what extent they were changed (Figure 12).

Table 8 summarizes the results in Figure 12 for all variables.

Table 8. Improvement and worsening of the first 50 GCPs compared with the first and second steps.

Variables GCPs Improved GCPs Worsened Improvement Mean Worsening Mean
n. n. (m) (m)

Error X 22 28 1.15 −0.45
Error Y 28 22 0.95 −0.50
Error Z 33 17 1.85 −1.21

Concerning error X, the result can seem poor in absolute terms because the number of
improvements is less than that of worsening. However, when examining the average values related
to the improvements and worsening, it is clear that the average improvements outperform the
worsening by approximately threefold. Hence, worsening, when it takes place, can be considered to be
practically negligible.
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Concerning the error Y results, in this case, the number of improvements overcomes the number
of worsening and, once more, the average intensity of the improvement outperforms by about two
times the worsening. The comparison of the standard deviation values indicates a tendency to decrease.
The error X value goes from 2.84 to 2.22 m; error Y from 3.25 to 2.34 m; and, in particular, the error Z
value decreases from 4.88 to 3.25 m. This result indicates that, in general, the model equalizes the error
values, making them more similar to each other in this second step than in the first one.

4.2.3. Spatial Analysis

The most relevant result is that both error X and error Y present no more local values that overcome
the given threshold. Hence, the addition of a further 25 points enables the desired goal to be achieved,
and the spatial analysis was performed anyway to compare the maps obtained by 50 and 75 GCPs.
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As noted previously, the correlation analysis between the variables and coordinates was performed.
From Table 9, it can be seen that error Y is correlated significantly to all three coordinates. The other
two errors do not present any significant correlation.

Table 9. Correlation matrix and p-value referring to error values with the 75 GCP dataset.

Variables Correlation p-Value
X Y Z X Y Z

Error X −0.18 −0.20 −0.12 0.1306 0.0846 0.2904
Error Y −0.39 0.25 0.21 0.0006 * 0.0282 * 0.0682 *
Error Z −0.07 −0.15 −0.13 0.5357 0.2097 0.2734

* symbol beside a p-value indicates that the corresponding correlation value is significantly different from zero.

Moran’s local index indicated a spatial autocorrelation at lower ranges compared with the
previous step; error X and error Y have a range of 1500 m (Moran’s index = 0.48) and 2000 m
(Moran’s index = 0.31), respectively, indicating that a part of the structural error was filtered out
after new GCPs addition. The spherical model reported lower values of SSErr 2.7 × 10−5 for error X
and 6.5 × 10−6 for error Y, highlighting a clear improvement of the variograms, the parameters and
goodness of fit indices of which are reported in Figure 13.
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Table 10 reports the overall accuracies related to cross validation and validation stages. Error X
shows an accuracy that is nearly sufficient, whereas error Y shows accuracy values that are
quite satisfactory.
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Table 10. Cross validation and validation results with the 75 GCP dataset.

Variables Cross Validation p-Value Validation p-Value
Overall Accuracy (Lin) Overall Accuracy (Lin)

Error X 0.56 0.009 0.53 0.00
Error Y 0.85 7.53 × 10−6 0.82 0.03

An explanation for such different behaviour can be tied to the selection of the 25 new points; they
lowered the structural part of error X, whereas error Y was only impacted negligibly. This difference
may be owing to a different uncertainty degree related to the X coordinate (uncompressible error) with
respect to the Y coordinate (auto-correlated error).

Finally, two maps of errors along X and Y, respectively, were reported (Figure 14).
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dataset. The size of each point represents the error value; the larger points correspond to higher
error values.

By analyzing both maps, it can be observed that, after using 75 GCPs for georeferencing the
orthomosaic, some residual weak areas with high error values are located approximately at the same
positions (Error Y map); however, in absolute terms, the error values are far below those at the
earlier stage.

5. Discussion

Figure 15a shows the variation of the mean values related to the three errors before and after the
application of the proposed methodology. As a first remark, it is noticeable that the mean values were
reduced and tend to zero. Another feature of this result is the sign of the mean value that is positive
after the methodology application, which suggests that there is a tendency to overestimate the error
values during the kriging application. Concerning Figure 15b, a decrease in the standard deviation
values is apparent. An interpretation of this result is that a tendency exists towards an equalization of
the error values; that is to say, the structural error vanishes, and the white noise remains, as expected.
In fact, the three error distributions become even more similar to the general white noise distribution
that is Gaussian centred on zero.
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To provide a judgement regarding the appropriateness of this methodology, it is necessary to
compare the achieved results with the existing literature. After a review, it emerged that authors
typically tend to lower RMSE values and achieve a fine georeferencing using a large information rate
for unit area (ratio between number of GCPs and the size of the study area), which can be measured
as nGCPs/Km2 [18,32] (see Table 11). Hence, there is a general tendency for neglecting the GCPs’
positions in favour of their number.

Table 11. Comparison between the present study and the literature.

Area Surface Archival Images GCPs nGCPs/Km2 RMSE Mean
(km2) (n) (n) (m)

Present study 550 67 50 0.09 3.65
Present study 550 67 75 0.13 2.66

[1] Vuorela et al., 2002 9 - 108 12 4.80
[7] Molg and Bolch, 2017 16 7 24 1.5 4.88
[18] Martínez-Carricondo et al., 2018 0.18 160 20 113.38 0.048
[21] Gonçalves, 2016 0.3 24 8 26.67 4.7
[25] Micheletti, et al., 2015 20 12 169 8.45 0.34
[27] Oniga et al., 2020 0.08 - 150 1.87 2.1

The issue of minimizing the GCP number optimally has been addressed by many authors. Table 11
reports the results derived from a set of papers, the contributions of which can be grouped into three
main categories: (i) the use of archival aerial photogrammetry to quantify the landscape change [1,25];
(ii) the application of SfM for orientation, orthorectification, and mosaic composition of historical aerial
images [7,21]; and (iii) the optimal distribution [18] and number [27] of GCPs to optimize the accuracy
of the georeferencing process obtained by unmanned aerial vehicle (UAV) photogrammetry.

Table 11 demonstrates clearly that, by comparing results from the scientific literature with those
achieved in the present paper, it is, in fact, possible to reach the same RMSE values with a reduced
information rate for area unit. This was reached by selecting GCPs in the areas highlighted during the
geostatistical analysis (weak areas).

Therefore, this finding demonstrates that GCP position can be a key piece of information for
achieving a fine georeferencing as much as the GCP number. In Table 11, the references reporting a
better result compared with the present study are those of [25,27] and [18]. However, it should be
highlighted that the nGCPs/Km2 is approximately 65, 10, and 871 times larger than the results obtained
here, and the corresponding size areas are substantially smaller than the presented study area. It may
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be that it would have been possible to achieve a similar goal with a smaller increase in the information
rate, but such an analysis was beyond the objective of the present study.

Another important result is that the optimal (minimal) number of GCPs required to achieve the
study’s main objective is within the range of 50 < opt ≤ 75. Furthermore, it is noticeable that the RMSE
related to error Z improved strongly, notwithstanding the fact the GCPs were selected with respect to
errors X and Y only. This association suggests the possible existence of inter-relationships between
the three errors and that, probably, an improvement along a single direction can impact positively
upon all the remaining errors. Therefore, applying the methodology to a single direction could
achieve similar results in terms of accuracy by simplifying the overall complexity of the procedure to a
significant degree.

From a computational standpoint, it can be stated that the proposed methodology converged
after only a single run for the presented case study. This is not surprising, because simulation trials
demonstrated that, at most, a couple of runs are sufficient to reach the desired accuracy. Therefore,
the methodology is generally also particularly rapid.

6. Conclusions

This research has presented a geostatistically-based methodology aimed at the following:
(i) assessing and mapping the local accuracy of a grossly georeferenced archival orthomosaic; and
(ii) improving that accuracy to meet a given error threshold (10 m) by selecting a number of GCPs
within or close to areas affected by large errors [16] reported by error maps.

After the methodology’s application, (i) the target error was, in fact, reached along all three axes,
and (ii) the target was reached with a minimal quantity of GCPs. The (ii) point was gained not by
chance, but as an effect of limiting areas within which GCPs were found.

To compare two different GCP configurations over two different areas, the information rate per
unit area, measured in terms of nGCPs/Km2, can be an effective index.

A review reported in Table 11 shows that the rate was substantially lower than those considered
in this study. To test the proposed methodology, a wide and morphologically complex study area
was considered. The methodology found the convergence towards a satisfying solution after only
one run. The results showed a significant improvement for error X, which decreased far below the
given threshold; in fact, the largest local error was approximately 5 m, only half of the required
target. The same large positive impact was found for error Z, notwithstanding the fact that the GCP
selection strategy was not driven by such a variable. At first sight, error Y, observing the behaviour
of the largest errors, would appear to be influenced in a lower measure by the proposed procedure,
but this impression is incorrect because the RMSE improved by approximately 32%. In addition,
as emerged following the geostatistical analysis, the structural error was not completely filtered out [31],
demonstrating potential room for further improvement. However, because the largest errors decreased
below the given threshold (even if by only a small amount), and the local errors converged towards a
uniform value over the entire study area, the procedure was stopped.

Therefore, the procedure can be considered validated and the application fully successful.
Regarding the next developments, we consider that the addressed topic deserves further investigation.
In particular, research into the error propagation during georeferencing process is presently in progress.
The initial results are interesting and are likely to be of high significance.
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