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Abstract
In this paper, we introduce the concept of standardized call function and we obtain
a new approximating formula for the Black and Scholes call function through the
hyperbolic tangent. Differently from other solutions proposed in the literature, this
formula is invertible; hence, it is useful for pricing and risk management as well
as for extracting the implied volatility from quoted options. The latter is of particular
importance since it indicates the risk of the underlying and it is the main component of
the option’s price. That iswhat trading desks focus on. Furtherwe estimate numerically
the approximating error of the suggested solution and, by comparing our results in
computing the implied volatility with the most common methods available in the
literature, we discuss the challenges of this approach.
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1 Introduction

For investors and traders, a key component in their decisionmaking is to assess the risk
they run. A commonway to do so is to focus on the dispersion of returns. However, this
measure has the problem that is computed on past performance andmayhave little to do
with the current level of risk.Within the Black–Scholes framework (Black and Scholes
1973), later extended by Merton (1973), it is possible to identify a relation between
the value of an asset and the option written on it. Though such a formula is subjected
to strong criticism (Derman and Taleb 2005), and notwithstanding its pitfalls, the
formula and its related approximations (Taylor or delta-gamma) arewidely used in risk
management (Estrella 1995) and “inmany respects the story of the establishment of the
Black–Scholes–Merton model (BSM) simply marks the emergence of contemporary
financial risk management” (Millo and MacKenzie 2009). Many other models have
been developed to address some of the BSM weaknesses, such as those proposed by
Engle and Mustafa (1992), Heston (1993), Duan (1995) Ritchken and Trevor (1999),
Christoffersen and Jacobs (2004) and Duan et al. (2006) as well as models based on
neural networks (for a review see Mostafa et al. 2017) but those are beyond the scope
of the present paper. This is for the simple reason that we share the same experience
of most quants such as Paul Wilmott: when it comes to price and managing the risk of
thousands of options in real time “better” models are not a suitable choice. Problems
should be streamlined and models should be of practical use. Therefore constant
volatility Black–Scholes is a common choice while tail risk is managed throughworst-
case scenarios. Last but not least, the BSM is, simply put, another way to ensure
that “a portfolio consisting of a long position in a call and a short position in a put,
valued by the traditional discounted expected value of their payoffs, must statically
replicate a forward contract” (Derman and Taleb 2005). Therefore, irrespectively of its
shortcomings, it is widely used as an arbitrage free tool by dealers or market-makers
in options who need to stay consistent with the value of their “raw supplies” (Derman
and Taleb 2005).

As the usage of the BSM formula has become widespread in financial markets
(Millo and MacKenzie 2009), options are priced and traded in terms of their risk or, in
other words, the so-called implied volatility (i.e. the actual volatility embedded in the
option’s price). To be precise, given the value S of an underlying asset, the strike price
K , the time to maturity T , the interest rate r and the volatility σ , the BSM formula
derives the price C of a European call option through the formula:

C := S N (d1) − X N (d2), (1.1)

where X = K e−rT is the present value of the strike price, N (x) is the cumulative
distribution function of the standard normal i.e.

N (x) := 1√
2π

∫ x

−∞
e−t2/2 dt, (1.2)
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and

d1 := log(S/X)

σ
√
T

+ σ

2

√
T , d2 := log(S/X)

σ
√
T

− σ

2

√
T

are the first and the second parameter of probability, i.e. respectively, “the factor
by which the present value of contingent receipt of the stock, contingent on exercise,
exceeds the current value of the stock” (Nielsen 1993) and the risk-adjusted probability
of exercise.

Since the BSM formula involves the use of the cumulative distribution function
of the standard normal N (x), then we have to face two kinds of problems: (a) how
to compute the price of the option for given S, K , T , r and σ ; (b) given S, K , T , r ,
how to compute the so-called “implied volatility”, i.e. the volatility corresponding to
the current price of the option; in other terms, how to invert the call function, i.e. the
function C = C (σ ) which gives the price of the option as a function of the volatility.

The first problem may be faced in several ways. An approach is to use the standard
software based on the power series expansion of the cumulative normal distribution
function (cndf). Alternatively N can be approximated with suitable functions, gen-
erally of rational form. In this framework, there is a variety of contributions, see for
example Bowling et al. (2009), Choudhury (2014) and Eidous and Abu-Shareefa
(2020) who focus on the choice of the best coefficients. Hofstetter and Selby (2001)
obtained approximations by replacing the cndf with the logistic distribution, Li (2008)
developed an heuristic closed-form method based on the rational functions which
requires one or two steps of Newton–Raphson algorithm to improve the accuracy.
Unfortunately it works only in a limited domain. Jacquier and Lorig (2015) compute
the option price by a quadrature of the inverse Fourier transform and the “true implied
volatility by fitting the SVI parametrization to it”. Other closed-form approximations
that work only in the case S = X are the Pólya approximation (Pólya 1949;Matić et al.
2017), and the logistic approximation (Pianca 2005). A completely different point of
view is due to Fan and Mancini (2009), who derive the price of an European call by a
“nonparametric regression”.

Concerning the second problem, the inverse of the call function does not have an
analytical representation and therefore the problem can only be approached by numer-
ical methods (Newton–Raphson and other iterative schemes) and, in some instances,
even those methods may fail for technical reasons (Orlando and Taglialatela 2017;
Dura and Moşneagu 2010; Lorig et al. 2014; Liu et al. 2019). Recently, Liu et al.
(2019) and Cao et al. (2019) suggested new numerical methods to reconstruct the
volatility through neural networks.

A different approach to the solution of both problems is to approximate directly the
call function with a suitable function, and then to use the inverse of such a function to
derive the approximated implied volatility. The rationale of such an approach is that
“The cost and inconvenience of iterating alsomotivate the search for explicit formulas.
For example, traders often need to plot intra-day implied volatility in real time. In this
case, the non-numerical approach such as using an explicit formula is a must” (Li
2005). In this way, practitioners can use spreadsheets to derive the price of the call as
a function of the volatility and the implied volatility as a function of the price. This
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is of particular importance since only volatility matters in option valuation while the
direction of the asset price does not. Moreover, when traders agree on the volatility
they agree, also, on the option value and personal preferences are not relevant.

Generally, such closed formapproximations rely onTaylor approximations or on the
power series expansion of the cumulative normal distribution function (cndf) [see for
example Manaster and Koehler (1982), Brenner and Subrahmanyam (1998), Bharadia
et al. (1995), Chance (1996), Corrado and Miller (1996a, b), Liang and Tahara (2009)
and Li (2005)] [for a review of the subject see Orlando and Taglialatela (2017)]. In
particular, Li proposes to approximate the call function with its third or second order
Taylor polynomial and derives the implied volatility by solving a third or second degree
equation. Obviously, the Taylor polynomials have local character, so the approxima-
tions are useful only in the case S = X or S close to X and only for restricted values
of σ and C .

In this paper, we propose a different approach; to be precise, for every value of
S, X and T , the call function C = C (σ ) is a sigmoidal function with finite limits
at 0 and +∞; so we propose to approximate globally C with a function which has
the same behaviour at 0, at +∞ and at the inflection point of C . Moreover, since we
have to use the inverse of the approximating function to approximate the inverse of
C , we need the approximating function to have an inverse which is easily analytically
representable. So we have been led to look for the approximating function by means
of the hyperbolic tangent as in Orlando and Taglialatela (2020), which is the prototype
of a sigmoidal function with an easy inverse.

The paper is organized as follows. In the first section, we consider the case S �= X
and we introduce the so-called “standardized call functions”, which is a single-
parameter function representing the general family of calls, andwe propose the desired
approximations of the call functions. In the second section we propose the approxi-
mation of the call function in the case S = X . The third section is devoted to deriving
the approximations of the implied volatility again in the cases S �= X and S = X .
In the fourth section, we present some results of numerical simulations and compare
such results with the ones given by other authors. Performance of this closed form
solution as well as empirical tests on market data are included. Finally, the last section
summarizes the work and concludes.

2 Approximating the call function when S �= X

2.1 The standardized call function

In order to simplify the presentation we introduce a family of standardized call func-
tions:

χα(x) := N

(
α

2

(
x − 1

x

))
− eα2/2 N

(
−α

2

(
x + 1

x

))
, x > 0,

depending on a single parameter α > 0.
The following Proposition contains the main properties of the mappings χα .
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Proposition 2.1 For all α > 0 one has that:

(i) limx→0+ χα(x) = 0 and limx→+∞ χα(x) = 1.
(ii) χα(x) is strictly increasing in ]0,+∞[.
(iii) χα(x) is strictly convex in ]0, 1] and strictly concave in [1,+∞[.
Proof of (i) It is a trivial consequence of the limits at ±∞ of N (x).

Proof of (ii) We have:

χ ′
α(x) = α

2
√
2π

exp

[
−α2

8

(
x − 1

x

)2](
1 + 1

x2

)

+ α eα2/2

2
√
2π

exp

[
−α2

8

(
x + 1

x

)2](
1 − 1

x2

)

and, since

exp

[
−α2

8

(
x − 1

x

)2] = eα2/2 exp

[
−α2

8

(
x + 1

x

)2]

we get

χ ′
α(x) = α√

2π
exp

[
−α2

8

(
x − 1

x

)2]
, (2.1)

from which we derive that χα(x) is strictly increasing in ]0,+∞[.
Proof of (iii) Differentiating (2.1) we get

χ ′′
α (x) = α3

4
√
2π

exp

[
−α2

8

(
x − 1

x

)2]1 − x4

x3
, (2.2)

from which we derive that χα(x) is strictly convex in ]0, 1] and strictly concave in
[1,+∞[.

For S, X and T fixed, the relationship between the call function C = C (σ ) and the
family of functions (χα)α>0 is contained in the following

Proposition 2.2 Let us fix S > 0, X > 0 and T > 0, with X �= S, and let us put

α :=
√
2

∣∣log(S/X)
∣∣ ;

then we have

C (σ ) =
⎧⎨
⎩
S χα

(
σ

√
T

α

)
if X > S,

S − X + X χα

(
σ

√
T

α

)
if X < S.
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Proof. Assume X > S; since α2/2 = log(X/S) = − log(S/X), and therefore X =
Seα2/2, we have

S χα

(σ
√
T

α

)
= S N

(
− α2

2 σ
√
T

+ α

2

σ
√
T

α

)
− S eα

2/2 N
(
− α2

2 σ
√
T

− α

2

σ
√
T

α

)

= S N
( log(S/X)

σ
√
T

+ σ
√
T

2

)
− X N

( log(S/X)

σ
√
T

− σ
√
T

2

)
= C (σ ).

Assume X < S; sinceα2/2 = log(S/X) = − log(X/S) and therefore S = Xeα2/2,
we have

X χα

(σ
√
T

α

)
= X N

(
− α2

2 σ
√
T

+ α

2

σ
√
T

α

)
− X eα

2/2 N
(
− α2

2 σ
√
T

− α

2

σ
√
T

α

)

= X N
(
− log(S/X)

σ
√
T

+ σ
√
T

2

)
− S N

(
− log(S/X)

σ
√
T

− σ
√
T

2

)
.

Now, since

N (x) = 1 − N (−x), for any x ∈ R,

we get

X χα

(σ
√
T

α

)
= X − X N

( log(S/X)

σ
√
T

− σ
√
T

2

)
− S + S N

( log(S/X)

σ
√
T

+ σ
√
T

2

)

= X − S + C (σ ).

2.2 Construction of the approximating functions

From Proposition 2.2 it follows that, in order to get a good approximation of the call
functions C (σ ), it is sufficient to give, for all α > 0, a good approximation χ̂α of χα .

For the sake of simplicity, let us fix α > 0 so that we can omit the index α and
simply denote χ and χ̂ the mappings χα and χ̂α .

By Proposition 2.1, we know that χ has a sigmoidal shape.
This fact suggests us to look for an approximation based on the hyperbolic tangent

tanh(x) = ex − e−x

ex + e−x
= e2x − 1

e2x + 1
(2.3)

which has a similar shape and has the advantage of having a very simple inverse
function

arctanh(x) = 1

2
log

(1 + x

1 − x

)
. (2.4)
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In our case, we look for an approximating function of the form

χ̂ (x) := 1

2
+ 1

2
tanh

(
ϕ(x)

) = e2 ϕ(x)

e2 ϕ(x) + 1
(2.5)

whereϕ : ]0,+∞[→ R is strictly increasing and satisfies the conditionsϕ(0+) = −∞
and ϕ(+∞) = +∞, so that χ̂ is strictly increasing and tends to 0 as x tends to 0 and
tends to 1 as x tends to +∞.

For example, we can choose ϕ of the form

ϕ(x) := c1 x − c2
x

+ c3 (2.6)

with c1 > 0 and c2 > 0 so that ϕ(x) is strictly increasing and has the desired behaviour
at 0 and +∞.

Obviously, we have to choose the constants c1, c2, c3 in such a way that χ̂ gives the
best approximation of χ ; hence we impose that both χ̂ and χ have an inflection point
at x = 1 with the same tangent lines there, i.e. we impose that c1, c2 and c3 have to
satisfy the conditions:

χ̂(1) = χ(1), χ̂ ′(1) = χ ′(1), χ̂ ′′(1) = χ ′′(1) = 0. (2.7)

As

tanh′(x) = 1 − tanh2(x),

we have

χ̂ ′(x) = 1

2

[
1 − tanh2

(
ϕ(x)

)]
ϕ′(x),

χ̂ ′′(x) = − tanh
(
ϕ(x)

)[
1 − tanh2

(
ϕ(x)

)] [ϕ′(x)]2 + 1

2

[
1 − tanh2

(
ϕ(x)

)]
ϕ′′(x) =

= 1

2

[
1 − tanh2

(
ϕ(x)

)] [
ϕ′′(x) − 2 tanh

(
ϕ(x)

) [
ϕ′(x)

]2]
.

Thus, conditions (2.7) give

⎧⎪⎪⎨
⎪⎪⎩

1
2 + 1

2 tanh(c1 − c2 + c3) = χ(1) = N (0) − eα2/2N (−α) = 1
2 − eα2/2N (−α)

1
2

[
1 − tanh2(c1 − c2 + c3)

]
(c1 + c2) = χ ′(1) = α√

2π

−2 c2 − 2 tanh(c1 − c2 + c3) (c1 + c2)2 = 0.

If we put β = eα2/2N (−α), then we can rewrite such equations as

tanh(c1 − c2 + c3) = −2β (2.8)
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(1 − 4β2) (c1 + c2) = 2α√
2π

, (2.9)

c2 − 2 β (c1 + c2)
2 = 0. (2.10)

From (2.9) we get

c1 + c2 = 2α√
2π (1 − 4β2)

;

thus Eq. (2.10) gives

c2 = 4α2β

π (1 − 4β2)2
, (2.11)

and consequently

c1 = 2α√
2π (1 − 4β2)

− 4α2β

π(1 − 4β2)2
= α

[√
2π (1 − 4β2) − 4αβ

]
π(1 − 4β2)2

. (2.12)

Finally, from (2.8) it follows

c3 = arctanh(−2 β) − c1 + c2 = 1

2
log

(1 + 2β

1 − 2β

)
+ α

[
8αβ − √

2π (1 − 4β2)
]

π(1 − 4β2)2
.

(2.13)
Hence, c1, c2 and c3 are uniquely determined and depend only on α. We have only

to check that c1 and c2 are positive.
The positivity of c2 follows from (2.11); the proof of the positivity of c1 is a little

more involved.
In fact the sign of c1 is the same as the sign of

2π(1 − 4β2) − 4αβ
√
2π = α2 + 2π − (

α + 2
√
2π β

)2
= (√

α2 + 2π − α − 2
√
2π β

) · (√
α2 + 2π + α + 2

√
2π β

)
(2.14)

The second factor is positive; hence, the sign of c1 is the same as the sign of the first
one, i.e.

√
α2 + 2π −α−2

√
2π eα

2/2N (−α) = eα
2/2 ·

(
e−α2/2[√α2 + 2π −α

]−2
∫ −α

−∞
e−t2/2 dt

)
.

(2.15)
So, in order to prove that c1 is positive, it is sufficient to prove that

e−α2/2[√α2 + 2π − α
] − 2

∫ −α

−∞
e−t2/2 dt > 0 for all α > 0. (2.16)
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Such an inequality is an immediate consequence of the Komatsu–Pollak estimate
(Komatsu 1955; Pollak 1956). For the reader’s convenience, we provide a proof in
“Appendix”.

2.3 The approximating call functions

Hence, for all α > 0 we have found a good approximation to χα , namely the function

χ̂α(x) = 1

2

(
1 + tanh

(
ϕα(x)

) )
with ϕα(x) := c1(α) x − c2(α)

x
+ c3(α), (2.17)

where c1(α), c2(α) and c3(α) are given by (2.12), (2.11) and (2.13).
From this and from Proposition 2.2, we can conclude that for all S > 0 and X > 0,

with S �= X , a good approximation to C (σ ) is the function

Ĉ (σ ) :=
⎧⎨
⎩
S χ̂α

(
σ

√
T

α

)
if X > S

S − X + X χ̂α

(
σ

√
T

α

)
if X < S

(2.18)

with

α :=
√
2

∣∣log(S/X)
∣∣ .

3 Approximating the call function when S = X

In the special case S = X , we have d1(σ ) = σ
2

√
T and d2(σ ) = −σ

2

√
T = −d1.

Hence, C (σ ) reduces to

C (σ ) = S N
(σ

2

√
T

)
− S N

(
−σ

2

√
T

)
= S

[
2 N

(σ

2

√
T

)
− 1

]
, (3.1)

since N (−x) = 1 − N (x) for all x ∈ R. Recalling the error function defined by

erf(z) := 2√
π

∫ z

0
e−t2 dt,

which is related to N (x) by the identity

N (x) = 1

2

[
1 + erf

( x√
2

)]
(3.2)

we can also write

C (σ ) = S erf

(
σ

√
T

8

)
. (3.3)
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Hence, in order to approximate the call function, we have to approximate the func-
tion N (x) or equivalently erf(x). There are a lot of approximated formulae for N (x)
as well as for erf(x), see Choudhury (2014), Eidous and Abu-Shareefa (2020) and the
references therein. However, not all of these formulas are useful for our purpose, since
the inverse is not easy to compute; (e.g. Eidous and Abu-Shareefa 2020) or they are
similar to the hyperbolic tangent [see Page (1977) or the almost identical formula in
Bowling et al. (2009)].

We propose to approximate erf(x) with the function

�(x) := tanh

(
2√
π

x + 8 − 2π

3
√

π3
x3

)
,

which has the same limit at +∞ and the same Taylor expansion of third order in 0 as
the error function, and therefore we propose to approximate C (σ ) with

Ĉ (σ ) = S tanh

( (
σ

√
T

2π

)
+ 4 − π

12

(
σ

√
T

2π

)3)
. (3.4)

Notice that �(x) is quite similar to the functions

�F (x) = tanh(a x + b x3), with a = 1.129324 and b = 0.100303,
(3.5)

�P (z) = tanh(a′ x + b′ x3), with a′ = 1.1297 and b′ = 0.0997,
(3.6)

obtained, respectively, in Fairclough (2000) and Page (1977) by an optimization pro-
cedure.

Numerical tests show that �(x), �F (x) and �P (x) provide approximations of the
same order of accuracy (see Sect. 5.2 for details).

4 Approximation of the implied volatility

In order to find the implied volatility we should invert the call function C , i.e. we
should be able to solve the equation C (σ ) = C . Since Ĉ is a good approximation of
C , we approximate the implied volatility by solving the equation

Ĉ (σ ) = C . (4.1)

4.1 Case S �= X

In this case, by (2.18), equation (4.1) is equivalent to

χ̂α

(σ
√
T

α

)
= C∗, where C∗ :=

{
C/S if X > S,

(C − S + X)/X if X < S.
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According to (2.5) such an equation is equivalent to

ϕα

(σ
√
T

α

)
= 1

2
log

( C∗

1 − C∗
)

= 1

2
log

(C − [S − X ]+
S − C

)
, (4.2)

where [S − X ]+ = max(S − X , 0) is the pay-off.
On the other hand, for any λ ∈ R the equation

c1 x − c2
x

+ c3 = λ i.e. c1 x
2 − (λ − c3) x − c2 = 0

has a unique positive solution, given by

x = 1

2 c1

[
λ − c3 +

√
(λ − c3)2 + 4 c1 c2

]
.

Thus, the implied volatility can be approximated by

σ̂ = α

2 c1(α)
√
T

[

 − c3(α) +

√(

 − c3(α)

)2 + 4 c1(α) c2(α)

]
, (4.3)

where 
 = 1
2 log

(
C−[S−X ]+

S−C

)
and c1(α), c2(α) and c3(α) are given by (2.12), (2.11)

and (2.13).

4.2 Case S = X

In this case, the equation Ĉ (σ ) = C is equivalent to the equation

(
σ

√
T

2π

)
+ 4 − π

12

(
σ

√
T

2π

)3

= 1

2
log

( S + C

S − C

)
. (4.4)

Now it is well known that for all p > 0 the equation

x3 + 3 p x = 2 q

has a unique real solution given by

x = 3

√√
p3 + q2 + q − 3

√√
p3 + q2 − q .

Hence, the approximating value of the implied volatility, i.e. the unique solution to
Eq. (4.4) is given by

σ̂ :=
√
2π

T

[
3

√√
p3 + q2 + q − 3

√√
p3 + q2 − q

]
, (4.5)
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with

p := 4

4 − π
and q := 3

4 − π
log

( S + C

S − C

)
.

5 Numerical results

Volatility in the markets has been calculated by many. Mo andWu (2007), on a sample
from January 3, 1996, to August 14, 2002, of 346 weekly observations for each index,
reported that the implied volatility on the S&P 500 Index (SPX), the FTSE 100 Index
(FTS), and the Nikkei-225 Stock Average (NKY) ranges from 15 to 35% with S/X
comprised between 80 and 120% and maturity 1m, 3m, 6m and 12m. Glasserman
and Wu (2011), on a sample consisting of 2049 data points from August 9, 2001 to
June 16, 2009, found that the implied volatility ranges from 5 to 43% with currency
options on EURUSD, GBPUSD and USDJPY for at 10-delta put (P10d), 25-delta put
(P25d), At-The-Money (ATM), 25-delta call (C25d), and 10-delta call (C10d).

Figure 1 shows the overall daily distribution of the VIX (CBOE 2020) since incep-
tion up to 2015. Throughout these years median volatility has been ∼ 18%, mode
∼ 13% and average is ∼ 20% and high values are rare.

Fig. 1 Overall daily distribution of the VIX. Distribution is heavily skewed to the left. SourceMehta (2015).
Volatilities above ∼ 30% belong to the 10th decile while the remaining ∼ 90% of the VIX distribution is
comprised between 0 and ∼ 30%
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5.1 Call when S �= X

5.1.1 On the estimation error

First of all notice that for all α > 0 the approximation error

Eα(x) = χα(x) − χ̂α(x)

corresponds to the moneyness S/X = eα2/2 > 1 as well as to the moneyness S/X =
e−α2/2 < 1.

We start by showing (Fig. 2) the graph of Eα(x) for α = 0.3124 corresponding to
the moneyness S/X = 1.05, as well as S/X = 0.95. There it can be seen that the error
of the approximation

∣∣Eα(x)
∣∣ is greater than 0.01 only for x > 2, e.g. for T = 0.25,

when σ > 1.2495 which is an unrealistic level of the volatility.

Fig. 2 Graph of the difference between the standardized call function χα(x) and its approximating function
χ̂α(x) for α = 0.3124 corresponding to S/X = 1.05, or S/X = 0.95

More generally, Tables 1 and2 report the error
∣∣Eα(x)

∣∣ for some significant values of
x andα in absolute and percentage terms.Notice that the chosen values ofα correspond
approximately to S/X equal to 1.03, 1.13, 1.32, 1.65, 2.18 as well as S/X equal to
0.97, 0.88, 0.75, 0.61, 0.46 respectively. These tables show that the approximation is
sufficiently good, especially for the small values of x , which correspond to realistic
values of sigma.

We have also tried to compute the maximum value of the approximation error as
a function of α. Indeed for every α > 0 the function

∣∣Eα(x)
∣∣ is smooth in ]0,+∞[,

and tends to 0 as x tends to 0 and to +∞. Thus, the maximum value of
∣∣Eα(x)

∣∣ in the
interval ]0,+∞[ exists and can be located by finding the zeros of its derivative,

E
′
α(x) = α√

2π
exp

[
−α2

8

(
x − 1

x

)2] − 2 e2 ϕα(x) ϕ′
α(x)

(e2 ϕα(x) + 1)2
,
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Table 1 Difference between χα(x) and χ̂α(x)

x\α Absolute difference
∣∣Eα(x)

∣∣
0.25 0.5 0.75 1 1.25

0.25 0.004525 0.003069 0.000584 0.000795 0.001040

0.5 0.001838 0.002137 0.001334 0.000147 0.001914

0.75 0.000217 0.000288 0.000226 0.000037 0.000276

1.25 0.000175 0.000242 0.000201 0.000050 0.000216

1.5 0.001262 0.001705 0.001365 0.000287 0.001461

1.75 0.003859 0.005034 0.003795 0.000568 0.004081

2 0.008332 0.010381 0.007245 0.000558 0.007817

2.25 0.014883 0.017547 0.011177 0.000026 0.012043

2.5 0.023587 0.026101 0.014991 0.001273 0.016040

Approximation error by rows (x) and columns (α)

Table 2 Error between χα(x) and χ̂α(x)

x\α Percent change
∣∣Eα(x)

∣∣/χα(x)

0.25 (%) 0.5 (%) 0.75 (%) 1 (%) 1.25 (%)

0.25 36.0435 27.7193 9.2665 29.3629 113.4827

0.5 5.0593 4.0755 2.3805 0.2809 4.2354

0.75 0.3561 0.2862 0.1798 0.0261 0.1876

1.25 0.1580 0.1207 0.0732 0.0147 0.0551

1.5 0.9298 0.6837 0.3935 0.0664 0.2883

1.75 2.4047 1.6914 0.9115 0.1094 0.6700

2 4.5021 3.0110 1.5023 0.0931 1.1220

2.25 7.1052 4.4929 2.0547 0.0039 1.5645

2.5 10.0943 6.0030 2.4937 0.1739 1.9350

Approximation error by rows (x) and columns (α). Notice that high percentage changes are due to the
denominator approaching 0

whereϕα(x) := c1(α) x− c2(α)
x +c3(α) and c1(α), c2(α) and c3(α) are given by (2.12),

(2.11) and (2.13). Unfortunately, finding the zeros of E ′
α is an almost impossible task.

The same applies to finding a function � = �(α) such that for every α > 0 one has∣∣Eα(x)
∣∣ ≤ �(α) for all x .

For the said reason, for a given α > 0, in order to compute

Gα = max
{ ∣∣Eα(x)

∣∣ ∣∣∣ x > 0
}
,

we resort to numerical methods, namely to the Nelder–Mead simplex algorithm
(Nelder and mead 1965; Gao and Han 2012), which, even though it is slower than
gradient-based algorithms, works well when the call function to approximate is steep
or flat [for issues related to those cases see Orlando and Taglialatela (2017)]. Table 3
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Table 3 Maximum error between χα(x) and χ̂α(x). Nelder–Mead method

α 0.25 0.5 0.75 1 1.25 1.5

Gα 0.00453 0.00356 0.00158 0.00091 0.00244 0.00386

reports the maximum value of the approximation error for the same values of α con-
sidered in Tables 1 and 2.

5.1.2 Monte Carlo analysis on the estimation error

Notice that for all α > 0, T > 0, σ > 0 the approximation error

∣∣∣Eα

(
σ
√
T /α

)∣∣∣ =
∣∣∣χα

(
σ
√
T /α

) − χ̂α

(
σ
√
T /α

)∣∣∣

represents the approximation error between the callC (σ ) and its approximation Ĉ (σ )

for the case when X = 1 and S = eα2/2 > 1 = X as well for the case S = 1 and
X = eα2/2 > 1 = S.

The following Table 4 shows that such an approximation error is very good for the
most traded combination of T , S/X and σ .

We have also performed a Monte Carlo analysis on the error

∣∣∣Eα

(
σ
√
T /α

)∣∣∣ = C (σ ) − Ĉ (σ )

for 10, 000 values of α and 500 instances of σ , uniformly distributed in the interval
]0, 1.25]. We first take the whole interval ]0, 1.25] and then we divide it into five parts
(each containing 100 σ ) to illustrate where the differences are higher or lower.

In Tables 5, 6 and 7, we show such an analysis, respectively, for the cases where
time is equal to 1month, one quarter and one semester (respectively).

Notice that the biggest errors are when σ ∈ [0.75, 1.25] i.e. for those cases in which
the volatility is extremely rare (see Fig. 1).

Table 4 Statistics on the difference between χα(σ
√
T /α) and χ̂α(σ

√
T /α)

S/X
∣∣χα(x) − χ̂α(x)

∣∣
σ = 10% σ = 20% σ = 30%

1 month 3 months 6 months 1 month 3 months 6 months 1 month 3 months 6 months

0.5 1.79E−130 1.72E−15 3.13E−11 1.53E−13 3.23E−08 3.13E−11 0.00E+00 2.41E−09 8.72E−06

0.75 2.72E−13 3.55E−08 3.59E−06 3.05E−07 4.78E−05 3.59E−06 2.79E−78 2.12E−05 5.31E−05

1.25 3.62E−11 5.21E−07 1.02E−05 2.51E−06 6.58E−05 1.02E−05 4.82E−49 1.58E−06 9.43E−04

1.5 5.55E−17 2.49E−10 1.27E−07 4.31E−09 9.88E−06 1.27E−07 1.90E−150 1.99E−06 1.88E−04

3 4.32E−320 1.04E−109 2.78E−16 2.59E−83 9.62E−12 2.78E−16 0.00E+00 1.96E−13 4.29E−08

6 0.00E+00 5.34E−284 4.01E−144 4.24E−214 5.83E−74 4.01E−144 0.00E+00 2.20E−97 4.60E−12
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Table 5 Statistics on the difference between C (σ ) and Ĉ (σ ), case T = 1/12

Interval of σ Error

Mean Median Maximum Minimum Standard devi-
ation

Root mean
squared error

[0.0, 1.25] 0.000101 0.000000 0.004515 −0.001729 0.000499 0.000510

[0.0, 0.25] 0.000025 0.000000 0.004309 −0.000013 0.000143 0.000145

[0.25, 0.5] 0.000173 0.000000 0.004515 −0.000186 0.000505 0.000535

[0.5, 0.75] 0.000212 0.000000 0.003899 −0.000586 0.000553 0.000595

[0.75, 1.0] 0.000123 0.000000 0.002970 −0.001128 0.000511 0.000529

[1.0, 1.25] − 0.000026 0.000000 0.002137 −0.001729 0.000509 0.000512

Results obtained by simulating randomly 10,000 occurrences of α for a lattice of 500 σ . The full matrix of
10,000 × 500 has been divided into 5 parts, each composed of 10,000 × 100 data. Note that the biggest
errors are for high (and unlikely) level of volatility

Table 6 Statistics on the difference between C (σ ) and Ĉ (σ ), case T = 0.25

Interval of σ Error

Mean Median Maximum Minimum Standard deviation Root mean
squared error

[0.0, 1.25] − 0.000125 0.000000 0.004506 −0.008262 0.000713 0.000725

[0.0, 0.25] 0.000083 0.000000 0.004506 −0.000121 0.000339 0.000350

[0.25, 0.5] 0.000198 0.000000 0.004110 −0.000838 0.000548 0.000586

[0.5, 0.75] − 0.000005 0.000000 0.002540 −0.001862 0.000516 0.000519

[0.75, 1.0] − 0.000296 0.000000 0.001336 −0.002894 0.000648 0.000718

[1.0, 1.25] − 0.000605 − 0.000005 0.000598 −0.008262 0.000907 0.001109

Results obtained by simulating randomly 10,000 occurrences of α for a lattice of 500 σ . The full matrix of
10,000 × 500 has been divided into 5 parts, each composed of 10,000 × 100 data. Note that the biggest
errors are for high (and unlikely) level of volatility

Table 7 Statistics on the difference between C (σ ) and Ĉ (σ ), case T = 0.5

Interval of σ Error

Mean Median Maximum Minimum Standard deviation Root mean
squared error

[0.0, 1.25] − 0.000455 − 0.000001 0.004502 −0.037686 0.001340 0.001417

[0.0, 0.25] 0.000126 0.000000 0.004502 −0.000359 0.000425 0.000444

[0.25, 0.5] 0.000084 0.000000 0.003425 −0.001694 0.000526 0.000536

[0.5, 0.75] − 0.000311 0.000000 0.001490 −0.003176 0.000671 0.000747

[0.75, 1.0] − 0.000763 − 0.000024 0.000470 −0.016198 0.001112 0.001368

[1.0, 1.25] − 0.001410 − 0.000233 0.000088 −0.037686 0.002200 0.002623

Results obtained by simulating randomly 10,000 occurrences of α for a lattice of 500 σ . The full matrix of
10,000 × 500 has been divided into 5 parts, each composed of 10,000 × 100 data. Note that the biggest
errors are for high (and unlikely) level of volatility
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5.2 Call when S = X

To show the approximation’s error, in Fig. 3we plot the graph of the difference between
the functions erf(x) and �(x) as defined in Sect. 3.

1 2 3 4 5

−0.0006

−0.0005

−0.0004

−0.0003

−0.0002

−0.0001

xy

Fig. 3 The graph of erf(x) − �(x)

As previouslymentioned, there is a large number of approximations for the standard
normal distribution or, equivalently, for the error function. In Table 8, we compare our
approximations with Bowling et al. (2009) [which is equivalent to Page (1977)], and
Eidous and Abu-Shareefa (2020). As shown, the approximations are very close and
� has the smallest RMSE.

5.2.1 Monte Carlo analysis on the estimation error

Now we consider the lattice L composed of the couples (σ, T ) with σ ∈ [0, 1.25] and
T = k/12 with k = 1, . . . , 24. From it, we randomly extract 10,000 samples. The
statistics on the errors reported in Table 9 confirm the good quality of the approxima-
tion.

5.3 Implied volatility

In Orlando and Taglialatela (2017), we compared the results derived with Brenner and
Subrahmanyam (1998), Corrado and Miller (1996a, b) and Li (2005) formulae. As we
found that the latter is the most accurate, we consider S. Li formula as our benchmark.
Notice that, for reader’s convenience, ranges are similar to the ones published byAMC
(see Li 2005). This because we wanted to make easier for the reader a comparison
with one of the most precise approximations available in the literature.

5.3.1 Case when S �= X

In Table 10, we compare the results obtained by S. Li formula denoted by σ̂L with
those obtained with formula (4.3) denoted by σ̂ . The prices of all calls have been
generated with the BSM model and, then, the implied volatility has been derived by
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Table 8 Comparison between percent change of the error due by approximating erf with the function �

and with the Fairclough, Page and Eidous et al. formulas for some values of x

x �(x) (%) Fairclough (%) Page (%) Eidous(%)

0.01 0.000000 0.083704 0.114696 0.017498

0.1 0.000002 0.080783 0.111039 0.012391

0.25 0.000080 0.066133 0.092664 0.109891

0.5 0.001544 0.024474 0.039932 0.377435

0.6 0.003380 0.006901 0.017253 0.502277

0.62 0.003886 0.003610 0.012949 0.527200

0.64 0.004446 0.000427 0.008764 0.551931

0.66 0.005061 0.002635 0.004712 0.576396

0.68 0.005734 0.005562 0.000808 0.600518

0.7 0.006468 0.008342 0.002931 0.624222

0.8 0.011104 0.019689 0.018745 0.733905

0.9 0.017401 0.026110 0.028925 0.822677

1 0.025192 0.027257 0.032985 0.883538

1.02 0.026892 0.026874 0.033078 0.891911

1.04 0.028629 0.026299 0.032942 0.898954

1.1 0.033995 0.023502 0.031248 0.911956

1.5 0.062581 0.015386 0.007017 0.716576

2 0.045533 0.030125 0.027105 0.239427

2.5 0.012129 0.009982 0.009537 0.033727

RMSE 0.017005 0.024249 0.033899 0.305931

The table has been divided in four parts: the first and the last to show the differences when z is very small
or very large, the second (more granular) part shows some significant values for those cases in which the
volatility is more common and the third (less granular) part when the volatility is high

Table 9 Statistics on the difference erf(σ
√
T /8) − �(σ

√
T /8), 10,000 simulations

Interval of σ Error

Mean Median Maximum Minimum Standard
deviation

Root mean
squared error

[0.0, 1.25] −1.23405E−06 −5.75226E−08 5.42101E-20 −0.00002423 2.95917E−06 3.20618E−06

[0.0, 0.25] −3.31189E−10 −1.75199E−11 1.35525E-20 −6.31596E−09 7.7678E−10 8.44437E−10

[0.25, 0.5] −2.17191E−08 −7.24392E−09 − 2.2806E-12 −2.17943E−07 3.36263E−08 4.00306E−08

[0.5, 1.75] −2.41594E−07 −1.19167E−07 − 7.29428E-11 −1.78407E−06 3.10627E−07 3.93518E−07

[0.75, 1.0] −1.29135E−06 −7.05183E−07 − 5.55995E-10 −7.96528E−06 1.51968E−06 1.99425E−06

[1.0, 1.25] −4.603E−06 −2.62831E−06 − 2.35745E-09 −2.48933E−05 5.13655E−06 6.89723E−06
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Table 10 Comparison of S. Li and (4.3) estimated implied volatilities for Out-The-Money calls

Time to expiration True volatility

10% 35% 55%

σ̂L (%) σ̂ (%) σ̂L (%) σ̂ (%) σ̂L (%) σ̂ (%)

0.1 NA 6.58 NA 34.10 NA 52.40

0.2 NA 8.05 NA 33.62 43.58 49.87

0.3 NA 9.28 NA 32.75 54.91 48.10

0.4 NA 9.76 34.87 31.94 61.22 46.82

0.5 NA 9.94 41.03 31.22 65.98 45.82

0.6 NA 9.97 44.55 30.58 69.93 45.01

0.7 NA 9.97 47.22 30.00 73.39 44.33

0.8 NA 9.95 49.44 29.47 76.51 43.74

0.9 NA 9.92 51.39 28.98 79.36 43.21

1.0 NA 9.86 53.15 28.52 82.02 42.74

1.1 NA 9.80 54.76 28.09 84.50 42.29

1.2 NA 9.72 56.25 27.68 86.85 41.88

1.3 NA 13.19 57.66 27.29 89.08 41.48

1.4 NA 12.98 58.99 26.91 91.21 41.09

1.5 NA 12.76 60.26 26.54 93.25 40.71

Average volatility NA 9.41 50.80 29.85 75.13 44.63

Average error NA − 0.59 15.80 − 5.15 20.13 − 10.37

Std. Dev. error NA 0.91 7.41 2.37 14.11 3.30

Time to expiration True volatility

75% 95% 125%

σ̂L (%) σ̂ (%) σ̂L (%) σ̂ (%) σ̂L (%) σ̂ (%)

0.1 40.82 68.64 66.50 83.93 94.13 106.24

0.2 66.63 64.88 86.37 79.63 114.63 102.02

0.3 76.60 62.78 97.30 77.56 127.47 100.40

0.4 83.70 61.42 105.57 76.35 137.48 99.56

0.5 89.48 60.44 112.46 75.53 145.87 99.02

0.6 94.48 59.69 118.47 74.93 153.19 98.57

0.7 98.93 59.08 123.85 74.43 159.70 98.15

0.8 102.99 58.56 128.75 73.99 165.59 97.71

0.9 106.74 58.10 133.26 73.57 126.79 97.25

1.0 110.22 57.67 137.46 73.17 126.69 96.75

1.1 113.50 57.27 141.38 72.76 126.65 96.21

1.2 116.59 56.88 145.07 72.33 126.65 95.63

1.3 119.52 56.48 96.08 71.89 126.69 95.01

1.4 122.32 56.09 95.98 71.42 126.77 94.34

1.5 124.98 55.68 95.90 70.93 126.89 93.63

Average volatility 97.83 59.58 112.29 74.83 132.35 98.03

Average error 22.83 − 15.42 17.29 − 20.17 7.35 − 26.97

Std. Dev. error 22.54 3.48 22.02 3.34 17.35 3.12

The implied volatilities σ̂L and σ̂ have been calculated with S. Li formula and (4.3) respectively
S = $100, X = $125, risk free-rate 5% p.a.
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Table 11 Comparison of S. Li and (4.3) estimated implied volatilities for Out-The-Money calls

Time to expiration True volatility

5% 10%

σ̂L (%) σ̂ (%) σ̂L (%) σ̂ (%)

0.1 NA 6.35 NA 11.92

0.2 NA 6.34 NA 10.76

0.3 NA 6.15 9.49 10.00

0.4 NA 5.95 9.74 9.44

0.5 NA 5.77 9.84 9.01

0.6 NA 5.60 9.89 8.66

0.7 NA 5.45 9.91 8.36

0.8 4.41 5.32 9.93 8.11

0.9 4.62 5.19 9.94 7.89

1 4.73 5.08 9.95 7.69

1.1 4.80 4.97 9.96 7.51

1.2 4.84 4.87 9.96 7.35

1.3 4.87 4.78 9.97 7.20

1.4 4.90 4.70 9.97 7.06

1.5 4.91 4.61 9.97 6.94

Average volatility 4.76 5.41 9.89 8.53

Average error −0.24 0.41 −0.11 − 1.47

Std. Dev. error 0.16 0.57 0.13 1.41

The implied volatilities σ̂L and σ̂ have been calculated with S. Li formula and (4.3) respectively
S = $100, X = $105, risk free-rate 0.5% p.a.

using the inversion formulae. Each column provides the results of the said formulae
for maturities T from 0.1 to 1.5 versus the true volatility.

As shown, σ̂ is available even when σ̂L is not and approximates better the implied
volatility for all maturities, moneyness and level of σ except the part where it is very
high (but this occurrence is very unlikely as shown in Fig. 1). Moreover the error for
the σ̂ formula is more consistent.

When S is close to X , the proposed approximating function is structurally less
precise than the S. Li formula. This because his formula is derived from the Taylor
polynomial with center S/X = 1. Nevertheless, in Table 11 we report some results
for the case S/X = 1.05 and low levels of σ , where our formula produces a result
close to the reality for the short term traded options (i.e. the most traded), while the
benchmark fails to provide any value.

5.3.2 Case when S = X

Let us now consider the ATM case. In Table 12, we compare the implied volatility σ̂ as
defined in (4.5) with σ̂L calculated with S. Li formula (Li 2005). Notice that precision
of our formula is of 10−6.
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Table 12 Comparison of Li and (4.5) estimated implied volatilities for At-The-Money calls

Time to expiration True volatility

10% 35% 55%

σ̂L (%) σ̂ (%) σ̂L (%) σ̂ (%) σ̂L (%) σ̂ (%)

0.1 10.00 10.00 35.00 35.00 55.00 55.00

0.2 10.00 10.00 35.00 35.00 55.00 55.00

0.3 10.00 10.00 35.00 35.00 55.00 55.00

0.4 10.00 10.00 35.00 35.00 55.00 55.00

0.5 10.00 10.00 35.00 35.00 55.00 55.00

0.6 10.00 10.00 35.00 35.00 55.00 55.00

0.7 10.00 10.00 35.00 35.00 55.00 55.00

0.8 10.00 10.00 35.00 35.00 55.01 55.00

0.9 10.00 10.00 35.00 35.00 55.01 55.00

1.0 10.00 10.00 35.00 35.00 55.01 55.00

1.1 10.00 10.00 35.00 35.00 55.01 55.00

1.2 10.00 10.00 35.00 35.00 55.01 55.00

1.3 10.00 10.00 35.00 35.00 55.01 55.00

1.4 10.00 10.00 35.00 35.00 55.02 55.00

1.5 10.00 10.00 35.00 35.00 55.02 55.00

Average volatility 10.00 10.00 35.00 35.00 55.01 55.00

Average error 0.00 0.00 0.00 0.01 0.00 0.00

Std. Dev. error 0.00 0.00 0.00 0.00 0.00 0.00

Time to expiration True volatility

75% 95% 125%

σ̂L (%) σ̂ (%) σ̂L (%) σ̂ (%) σ̂L (%) σ̂ (%)

0.1 75.00 75.00 95.00 95.00 125.00 125.00

0.2 75.00 75.00 95.00 95.00 125.02 125.00

0.3 75.00 75.00 95.01 95.00 125.04 125.00

0.4 75.01 75.00 95.02 95.00 125.08 125.00

0.5 75.01 75.00 95.03 95.00 125.13 125.00

0.6 75.01 75.00 95.05 95.00 125.19 125.00

0.7 75.02 75.00 95.06 95.00 125.26 125.00

0.8 75.02 75.00 95.08 95.00 125.35 125.00

0.9 75.03 75.00 95.11 95.00 125.45 125.00

1.0 75.04 75.00 95.13 95.00 125.57 125.00

1.1 75.05 75.00 95.16 95.00 125.70 125.00

1.2 75.06 75.00 95.20 95.00 125.85 125.00

1.3 75.07 75.00 95.23 95.00 126.02 125.00

1.4 75.08 75.00 95.27 95.00 126.21 125.00

1.5 75.09 75.00 95.31 95.00 126.42 125.00

Average volatility 75.03 75.00 95.11 95.00 125.49 125.00

Average error 0.03 0.00 0.11 0.00 0.49 0.00

Std. Dev. error 0.03 0.00 0.10 0.00 0.44 0.00

The implied volatilities σ̂L and σ̂ have been calculated with S. Li formula and (4.5) respectively
Stock $100, exercise price $100, risk free-rate 5% p.a.
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Table 13 Statistics with respect to T on the estimation error for At-The-Money calls

True volatility

15% 35% 55% 75% 95% 125%

Statistics Implied volatility estimation error for σ̂L

Mean 0.00000983 0.00068779 0.00672967 0.03275487 0.11169245 0.48689149

Median 0.00000761 0.00053019 0.00515269 0.02481224 0.08326543 0.34881310

Minimum 0.00000012 0.00000822 0.00007887 0.00037279 0.00121955 0.00484083

Maximum 0.00002678 0.00187959 0.01850733 0.09098208 0.31488411 1.42410046

Std Dev 0.00000846 0.00059359 0.00584033 0.02867370 0.09902358 0.44499502

Statistics Implied volatility estimation error for σ̂

Mean −0.00000002 −0.00000131 −0.00001338 −0.00006825 −0.00024386 −0.00111527

Median −0.00000001 −0.00000100 −0.00001004 −0.00005016 −0.00017529 −0.00077766

Minimum −0.00000005 −0.00000362 −0.00003744 −0.00019455 −0.00070786 −0.00331424

Maximum 0.00000000 −0.00000002 −0.00000015 −0.00000070 −0.00000231 −0.00000928

Std Dev 0.00000002 0.00000114 0.00001180 0.00006121 0.00022249 0.00104102

The implied volatilities σ̂L and σ̂ have been calculated with S. Li formula and (4.5) respectively
S = $100, X = $100, time to expiration T = 0.1, 0.2, . . . , 1.5, risk free-rate 5%p.a.

Furthermore, in Table 13, we show aMonte Carlo simulation where the prices of all
calls are generated with the BSMmodel for a given volatility ranging from 15 to 125%
and maturity comprised between 0.1 and 1.5years. Displayed on the left of Table 13
there are some statistics on the error between the true volatility and the estimated one.

5.3.3 Empirical results on SPDR S&P 500 ETF TRUST

In Table 14 we show how Eq. (4.3) compares versus (Li 2005) and the widely used
Brenner and Subrahmanyam (1998) (σ̂B) formula. As shown, S. Li formula often does
not provide any value, whereas Brenner and Subrahmanyam and our formula give an
estimate in all cases. Unfortunately, Brenner and Subrahmanyam formula is precise
only for ATM options which may exist only at the inception.

5.4 Computational performance of the algorithm: hybridmethod versus closed
form solution

With regard to computational performance, we recall that the scope of this work is
limited to analytical approximations. Among the reasons of this choice is the practical
need to obtain a fast result. In order to asses that, we take as a benchmark a hybrid
numeric algorithm able to quickly compute the implied volatility in a large number
of cases such as the one proposed in Orlando and Taglialatela (2017). While we do
not want to discuss all potential alternatives in this instance, we limit to mention that
there are other solutions such as the built-in blsimpv available in Matlab (2020) or the
heuristic hybrid method proposed by Li (2008) as implemented by Whirdy (2020).
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Table 14 Comparison between the SPX true volatility and the implied volatilities computed by means of
Brenner et al., Li (2005) and (4.3) formulas

S/X S Call price X Days SPX True Vol (%) σ̂B (%) σ̂L (%) σ̂ (%)

1.23 287.970 53.240 235 30 33.00 81.23 NA 35.90

1.20 287.970 48.300 240 30 31.48 73.82 NA 34.25

1.18 287.970 43.400 245 30 30.33 66.54 NA 32.87

0.98 287.970 2.155 295 30 14.43 17.22 14.55 13.48

0.93 287.970 0.055 310 30 11.77 33.61 NA 13.72

0.91 287.970 0.025 315 30 12.63 41.11 NA 14.16

1.23 287.970 53.840 235 72 33.38 53.61 NA 28.68

1.20 287.970 49.040 240 72 31.58 49.10 NA 27.64

1.18 287.970 44.260 245 72 29.73 44.64 NA 26.40

0.98 287.970 4.615 295 72 15.12 15.93 14.73 10.91

0.93 287.970 0.485 310 72 11.56 22.54 NA 12.44

0.91 287.970 0.220 315 72 14.24 26.92 NA 12.35

1.23 287.970 54.880 235 135 28.90 40.64 NA 24.89

1.20 287.970 50.320 240 135 27.12 37.69 24.23 24.20

1.18 287.970 45.795 245 135 26.07 34.79 24.11 23.30

0.98 287.970 7.780 295 135 15.69 16.17 15.46 9.64

0.93 287.970 1.980 310 135 12.56 18.60 10.96 12.28

0.91 287.970 1.105 315 135 11.93 20.93 NA 12.17

Source NYSE. Data as of 8, August 2019

The idea in both papers Li (2008) and Orlando and Taglialatela (2017) is to derive
numerically the implied volatility from a suitable starting point with the following
characteristics: as close as possible to the true value and able to “guide” a gradient
based algorithm to not diverge. Apart from the said similarity, the two approaches are
quite different in their implementation. In fact, the first one calculates Black–Scholes
implied volatility by usingM. Li’s rational function approximations for the initial esti-
mate, followed by 3rd-order Householder’s root finder (i.e. using Vega, Vomma and
Ultima) (Li 2008; Whirdy 2020). The second adopts the Newton–Raphson algorithm
by taking as a starting point the inflection of the call function (Orlando and Taglialatela
2017). The problem with the first approach is that M. Li formula (Li 2008) works only
in a very strict domain while the second approach (Orlando and Taglialatela 2017)
works almost every time (unless the objective function is flat or vertical). Table 15,
for a given true volatility of 10%, displays the implied volatility obtained with the two
above mentioned approaches. As shown, once more, the Li (2005) formula in some
instances does not provide a solution and the Whirdy algorithm (Li 2008; Whirdy
2020) shoots off.

As the chosen parameters are not uncommon to find in the current market envi-
ronment, we discard (Li 2008; Whirdy 2020) in favour of Orlando and Taglialatela
(2017).

Having demonstrated that the best available hybrid solution is Orlando and
Taglialatela (2017), in thiswork,we compare the said algorithmwith the proposed ana-

123



M. Mininni et al.

Table 15 Comparison of implied volatilities between numerical algorithms approximation and analytical
formulas (true volatility = 10%)

Numerical methods Analytical approximations

Formula LW OT Matlab Equation
(4.3)

Li

Implied Vol. 0.2160 0.1000 0.0999 0.1191 NA

Parameters: S = 100, X = 105, call price = 0.092, T = 0.1, risk free = 0.01, dividend yield = 0
Legend: LW = Li (2008) and Whirdy (2020), OT = Orlando and Taglialatela (2017), Matlab = blsimpv,
MATLAB Version: 9.4.0.813654 (R2018a), Li = Li (2005)

Table 16 Performance of the algorithm in seconds

Numeric algorithm (a) Closed form solution (b) � Performance
( a
b − 1

)
(%)

ATM 1.0927734 0.2968750 268.092

ITM 1.2275391 0.2812500 336.458

OTM 1.1992188 0.2929688 309.333

Performance of a VBA macro for finding 10,000 volatilities for each option’s type (i.e. ATM, ITM, OTM)
with the numeric method in Orlando and Taglialatela (2017) versus σ̂ calculated via the proposed closed
form approximation

lytic formula for ATM, ITM and OTM options. In Table16 we show the performance
of the Newton–Raphson method as described in Orlando and Taglialatela (2017) ver-
sus σ̂ on a test run over 10,000 options. The closed form solution, executed in VBA, is
quite fast in finding the 10,000 volatilities for the corresponding ATM, ITM and OTM
options and, as expected, it is faster than its corresponding numerical algorithm.

6 Stress tests

Stress testing is a key activity for managing the risk. Risk is represented by σ which is
the only variable that may jump suddenly. By sampling the approximating functions
in different segments of σ , stress testing boils down to taking one of those intervals.
Tables in Sects. 5.1.2, 5.2.1 and 5.3.1 list the possible outcomes for both: volatility and
strike. Alternative formulas (Corrado and Miller 1996a, b; Li 2005, 2008) for some
values cannot provide any solution.

7 Conclusions

In regard to the BSM formula “in many respects the story of the establishment of the
Black–Scholes–Mertonmodel simplymarks the emergence of contemporary financial
risk management” (Millo and MacKenzie 2009). Despite the many pitfalls of the
BSM formula, there are several reasons that keep it alive. For example “the BSMs
biggest strength is the possibility of estimating market volatility of an underlying
asset generally as a function of price and time without, for example, direct reference
to expected yield, risk aversion measures or utility functions. The second greatest
strength aspect is its self-replicating strategy or hedging: explicit trading strategy
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in underlying assets and risk-less bonds whose terminal payoff, which equals the
payoff of a derivative security at maturity. In other words, theoretically an investor
can continuously buy and sell derivatives in the strategy and never incur loss. It is also
simple andmathematically tractable as compared to someof itsmore recent variations”
(Yalincak 2012). Therefore, even though in many respects BSM is outdated and has a
number of shortcomings, it is still widely used especially for real time computations
and for extracting the implied volatility.

In this work, we have recalled the importance of calculating the value of the call for
pricing as well as for inferring the implied volatility. To be precise a standardized call
function has been introduced to represent the whole family of calls and to simplify
the calculations. Then we have shown how the approximation of the aforementioned
standardized call can be performed through the hyperbolic tangent instead of the usual
Taylor truncation. This allows a greater accuracy for extreme values of σ , whichmakes
this approach particularly suitable for stress testing and hedging purposes.

Finally, we have derived some explicit formulae for approximating the implied
volatility that seem to be better than the ones proposed in the literature so far and are
valid regardless of an option’s moneyness. Therefore because of the higher accuracy
and flexibility, this approach could replace currentmethodswith little additional effort.
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Appendix: Proof of inequality (2.16)

Consider the function

h(x) := e−x2/2
[√

x2 + 2π − x
]

− 2
∫ −x

−∞
e−t2/2 dt;

in order to prove the assertion it will be sufficient to prove that h(x) > 0 for all x > 0.
On the other hand, since h(0) = 0 and h(+∞) = 0, it is sufficient to prove that

there exists x1 > 0 such that h is strictly increasing in ]−∞, x1] and strictly decreasing
in [x1,+∞[.

To this purpose we remark that one has

h′(x) = e−x2/2
[
−x

(√
x2 + 2π − x

) + x√
x2 + 2π

+ 1
]

=

= e−x2/2
[
− 2πx√

x2 + 2π + x
+ x√

x2 + 2π
+ 1

]
=
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= e−x2/2
[
− 2π u(x)

1 + u(x)
+ u(x) + 1

]
= e−x2/2

[u2(x) − 2 (π − 1) u(x) + 1

u(x) + 1

]
,

where we have put

u(x) := x√
x2 + 2π

∈] − 1, 1[ for all x .

Therefore in order to study the sign of h′, we need to study the sign of the polynomial

p(u) := u2 − 2 (π − 1) u + 1

in the interval ] − 1, 1[. Since p(u) has two real roots, u1 and u2, such that 0 < u1 <

1 < u2, one has p(u) > 0 if u ∈] − 1, u1[ and p(u) < 0 if u ∈]u1, 1[.
On the other hand it is easy to see that u(x) is strictly increasing; therefore, if we

put

x1 = u−1(u1) = u1

√
2π /(1 − u21) > 0,

we deduce that h′(x) > 0 if x ∈] − ∞, x1[ and h′(x) < 0 if x ∈]x1,+∞[.
Thus, h is strictly increasing in ] − ∞, x1] and strictly decreasing in [x1,+∞[, as

desired.
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