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Abstract 

Background:  Ticks and fleas are considered amongst the most important arthropod vectors of medical and veteri‑
nary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. 
By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially 
transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and 
fleas from companion dogs and cats in East and Southeast Asia.

Methods:  A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from 
China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the 
presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepato-
zoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.

Result:  Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the 
most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia 
spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas 
tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by 
Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and “Candidatus Rickettsia senegalensis” (0.4%). Furthermore, 
35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical 
and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).

Conclusion:  Keywords:  Ticks, Fleas, Dogs, Cats, Companion animals, Asia, Vector-borne pathogens, Zoonotic
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Background
Vector-borne diseases are caused by bacteria, viruses, 
protozoa and helminths transmitted by arthropod 
vectors, including ticks and fleas, worldwide [1]. For 
instance, Rhipicephalus sanguineus (sensu lato) ticks play 
an important role in the transmission of many pathogens 
to dogs (e.g. Ehrlichia canis, Rickettsia conorii, Rickettsii 
rickettsia, Babesia vogeli and Hepatozoon canis), some of 
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which may also infect humans [2–4]. The cat flea Cteno-
cephalides felis is the primary vector of Bartonella hense-
lae, the main causative agent of cat-scratch disease [5,6], 
and is also considered as vector of Rickettsia felis [7].

East (EA) and Southeast Asia (SEA) are among the 
world’s fastest-growing economic regions [8], which 
also resulted in a rise in the number of companion dogs 
and cats [9]. Companion dogs and cats live in close 
association with humans, potentially carrying ticks and 
fleas into human settlements. A large-scale survey con-
ducted in EA and SEA reported that 22.3% of dogs and 
3.7% of cats were infested by ticks, while 14.8% of dogs 
and 19.6% of cats were infested by fleas [10]. The most 
common flea species parasitizing dogs and cats in EA 
and SEA is C. felis, with Ctenocephalides orientis being 
increasingly observed in dogs [10, 11]. Rhipicephalus 
sanguineus (s.l.), Rhipicephalus haemaphysaloides and 
Haemaphysalis longicornis represent the most common 
tick species reported in dogs and cats [10–14]. These 
tick species are responsible for the transmission of 
several species of apicomplexan protozoa of the genus 
Babesia. Babesia vogeli was reported in cats in Thailand 
and China [15, 16] and widely reported in dogs in EA 
and SEA, including China, Cambodia, Thailand, the 
Philippines and Malaysia [17–20]. Additionally, dogs 
from Taiwan, Malaysia, China, and Singapore [10, 21, 
22] were also diagnosed with Babesia gibsoni infec-
tion. Other apicomplexan parasite commonly found in 
dogs across this region is H. canis, which is transmitted 
by ingestion of Rh. sanguineus (s.l.). This protozoan is 
commonly found in dogs from Thailand, Taiwan, China, 
Cambodia, Malaysia, Vietnam and the Philippines [10, 
17, 18, 23–26] and in cats from Thailand and the Philip-
pines [10, 24]. Of the tick-borne anaplasmataceae bacte-
ria, Anaplasma platys was found in dogs from Malaysia 
[22] and cats from Thailand [27]. Apart from tick-borne 
pathogens, flea-borne pathogens are also increasingly 
recognized as important pathogenic agents to ani-
mals and humans. For instance, R. felis, the etiological 
agent of flea-borne spotted fever in humans, has been 
detected in dogs from Cambodia and China [18, 28] 
and in C. felis from Taiwan, Laos, and Malaysia [29, 30]. 
Other zoonotic flea-borne pathogens such as B. hense-
lae and Bartonella clarridgeiae, agents of cat-scratch 
disease, were molecularly detected in cats and their 
fleas from the Philippines, Indonesia, Singapore, Thai-
land, Malaysia and China with the prevalence ranging 
from 10 to 60% [31–36].

Despite previous scientific investigations reported 
the circulation of vector-borne pathogens (VBPs) in 
dogs and cats in EA and SEA, there is a lack of  simi-
lar studies conducted in their associated ticks and 
fleas. Therefore, the present study aimed to provide an 

overview of the pathogens circulating in ticks and fleas 
from companion dogs and cats in EA and SEA.

Methods
Samples collection and DNA isolation
Of the 2381 privately-owned animals examined (i.e. 1229 
dogs and 1152 cats), ticks and fleas were collected from 
401 infested animals (i.e. 271 dogs and 130 cats) from 
China, Taiwan, Indonesia, Malaysia, Singapore, Thai-
land, the Philippines and Vietnam under the context of 
a previous multicenter survey [10]. Ticks and fleas were 
collected and placed in labelled tubes individualized per 
host, containing 70% ethanol. Ticks and fleas (20%) were 
randomly selected from each tick/flea species and from 
each infested animal in all studied countries, giving a 
total number of 392 ticks (i.e. 377 Rh. sanguineus (s.l.), 3 
Rh. haemaphysaloides, 7 H. longicornis, 2 Haemaphysalis 
wellingtoni, 1 Haemaphysalis hystricis, 1 Haemaphysalis 
campanulata and 1 Ixodes sp.) from 248 animals (39 cats 
and 209 dogs) and 248 fleas (i.e. 209 C. felis, 38 C. orientis 
and 1 Xenopsylla cheopis) from 213 animals (104 cats and 
109 dogs) were subjected to DNA isolation individually. 
Data on the molecular identification of these ticks and 
fleas are available elsewhere (see Table 4 in Colella et al. 
[10]) Genomic DNA was isolated according to the proce-
dures previously described [10, 37].

Molecular detection and phylogenetic analysis 
of pathogens
Tick DNA samples were tested for the presence of api-
complexan protozoa (i.e. Babesia spp., Hepatozoon spp.), 
Anaplasmataceae (i.e. Anaplasma spp., Ehrlichia spp.) 
and Coxiella burnetii by conventional PCR (cPCR). Flea 
DNA samples were tested by using real-time PCR for 
Bartonella spp. The presence of Rickettsia spp. was also 
screened in both tick and flea samples. In particular, the 
first cPCR amplified a portion of citrate synthase (gltA) 
gene, which is presented in all members of the genus 
Rickettsia. Positive samples were then subjected to a 
second cPCR, which amplified a fragment of the outer 
membrane protein (ompA) of the spotted fever group 
(SFG) rickettsiae. All primers and PCR protocols used 
for the detection of VBPs are summarized in Table 1. For 
all reactions, DNA of pathogen-positive samples served 
as a positive control. Amplified cPCR products were 
examined on 2% agarose gels stained with GelRed (VWR 
International PBI, Milan, Italy) and visualized on a Gel-
Logic 100 gel documentation system (Kodak, New York, 
USA). The cPCR amplicons were sequenced using the Big 
Dye Terminator v.3.1 chemistry in a 3130 Genetic ana-
lyzer (Applied Biosystems, California, USA). Nucleotide 
sequences were edited, aligned and analyzed using the 
BioEdit 7.0 software and compared with those available 
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in the GenBank database using Basic Local Alignment 
Search Tool (http://blast​.ncbi.nlm.nih.gov/Blast​.cgi).

To assess the genetic variation of Rh. sanguineus 
(s.l.) and Rickettsia spp., the mitochondrial 16S rDNA 
sequences of Rh. sanguineus (s.l.) ticks generated previ-
ously [10] as well as the gltA and ompA gene sequences 
of Rickettsia spp. generated herein were subjected to phy-
logenetic analysis. Phylogenetic relationship was inferred 
by Maximum Likelihood (ML) method after selecting 
the best-fitting substitution model. Evolutionary analysis 
was conducted on 8000 bootstrap replications using the 
MEGA 7 software [44].

Statistical analysis
The percentage of detected pathogens was calculated and 
95% confidence intervals (95% CI) (by the modified Wald 
method) were estimated by using Quantitative Parasitol-
ogy 3.0 software [45]. Fisher’s exact test was performed 
to analyze statistically significant differences in the detec-
tion of pathogens in fleas and ticks, and in the distri-
bution of different Rickettsia spp. among different flea 
species using SPSS 16.0 software. Differences were con-
sidered significant at P < 0.05.

Results
The occurrence of VBPs has been detected in ticks and 
fleas, with a higher number of fleas in which at least 
one pathogen was detected compared to ticks (Fisher’s 

exact test, P < 0.001). Of the 392 ticks tested, 37 (9.4%; 
95% CI: 6.9‒12.8%) scored positive for at least one 
pathogen with H. canis being the most prevalent 
(5.4%; 95% CI: 3.5‒8.1%), followed by E. canis (1.8%; 
95% CI: 0.8‒3.7%), B. vogeli (1%; 95% CI: 0.3‒2.7%), 
Rickettsia spp. (1%; 95% CI: 0.3‒2.7%) and A. platys 
(0.8%; 95% CI: 0.2‒2.3%). Co-infection of A. platys 
and B. vogeli was detected in one Rh. sanguineus (s.l.), 
whereas none of the ticks tested positive for C. bur-
netii (Table 2). Out of 248 fleas tested, 106 (42.7%; 95% 
CI: 36.7‒49.0%) were harboring at least one pathogen 
with R. felis being the most common (19.4%; 95% CI: 
14.9‒24.8%), followed by Bartonella spp. (16.5%; 95% 
CI: 12.4‒21.7%), Rickettsia asembonensis (10.9%; 95% 
CI: 7.6‒15.4%) and “Candidatus Rickettsia senegalen-
sis” (0.4%; 95% CI: < 0.0001‒2.5%) (Table 3). Rickettsia 
felis was mostly detected in C. felis, whereas C. orientis 
mainly harbored R. asembonensis (P < 0.001). 

Representative nucleotide sequences for each detected 
pathogen displayed 99.4‒100% identity with those avail-
able in GenBank database. In particular, A. platys nucleo-
tide sequences (n = 3) revealed 99.6‒100% identity with 
KU500914 (host: Canis lupus familiaris; origin: Malay-
sia), H. canis (n = 20) 99.7‒100% identity with DQ519358 
(host: C. lupus familiaris; origin: Thailand), E. canis 
(n = 7) and B. vogeli (n = 4) 100% identical to MN227484 
(host: C. lupus familiaris; origin: Iraq) and KX082917 
(host: C. lupus familiaris; origin: Angola), respectively.

Table 1  Primers, target genes and PCR conditions used in this study

Pathogen Primer (5’-3’) Target gene Product 
size (bp)

PCR protocol Reference

Babesia spp./Hepatozoon 
spp.

Piroplasmid-F: CCA​GCA​GCC​GCG​GTA​
ATT​C

18S rRNA 350–400 95 °C for 10 min initial denaturation, followed by 35 
cycles of 95 °C for 30 s, 64 °C for 20 s, 72 °C for 20 s, then 
72 °C for 7 min for the final elongation

[38]

Piroplasmid-R: CTT​TCG​CAG​TAG​TTY​GTC​
TTT​AAC​AAA​TCT​

Ehrlichia spp./ Anaplasma 
spp.

EHR16SD: GGT​ACC​YAC​AGA​AGA​AGT​CC 16S rRNA 345 95 °C for 10 min initial denaturation, followed by 35 
cycles of 95 °C for 30 s, 60 °C for 30 s, 72 °C for 30 s, then 
72 °C for 10 min for the final elongation

[39]

EHR16SR: TAG​CAC​TCA​TCG​TTT​ACA​ GC

Coxiella burnetii Trans-1: TAT​GTA​TCC​ACC​GTA​GCC​AGT​ IS1111a 687 95 °C for 10 min initial denaturation, followed by 35 
cycles of 95 °C for 30 s, 64 °C for 60 s, 72 °C for 60 s, then 
72 °C for 7 min for the final elongation

[40]

Trans-2: CCC​AAC​AAC​ACC​TCC​TTA​TTC​

Bartonella spp. ssrA-F: GCT​ATG​GTA​ATA​AAT​GGA​CAA​
TGA​AATAA​

ssrA 301 95 °C for 2 min initial denaturation, followed by 45 cycles 
of 95 °C for 15 s, 60 °C for 60 s

[41]

ssrA-R: GCT​TCT​GTT​GCC​AGGTG​

Probe: FAM-ACC​CCG​CTT​AAA​CCT​GCG​
ACG​

Rickettsia spp. CS-78F: GCA​AGT​ATC​GGT​GAG​GAT​GTAAT​ gltA 401 95 °C for 10 min initial denaturation, followed by 40 
cycles of 95 °C for 30 s, 58 °C for 30 s, 72 °C for 40 s, then 
72 °C for 7 min for the final elongation

[42]

CS-323R: GCT​TCC​TTA​AAA​TTC​AAT​AAA​
TCA​GGAT​

Spotted fever group 
rickettsiae

Rr190.70F: ATG​GCG​AAT​ATT​TCT​CCA​AAA​ ompA 632 95 °C for 10 min initial denaturation, followed by 35 
cycles of 94 °C for 40 s, 58 °C for 30 s, 72 °C for 45 s, then 
72 °C for 10 min for the final elongation

[43]

Rr190.701R: GTT​CCG​TTA​ATG​GCA​GCA​
TCT​

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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For Rickettsia spp. detection in ticks, the gltA sequence 
identified in one tick showed 99.7% identity with R. 
asembonensis (GenBank: KY445723; host: C. felis; ori-
gin: Brazil) and another was identical to R. felis (100% 
nucleotide identity with MG845522 (host: C. felis; origin: 
Chile) and 99.4% nucleotide identity with R. felis strain 

URRWXCal2; GenBank: CP000053 (source: cultivation; 
origin: USA)). The ompA gene amplification was success-
ful for two samples which showed 100% nucleotide iden-
tity with unidentified Rickettsia sp. (GenBank: EF219467; 
host: R. haemaphysaloides; origin: Taiwan), which was 

Table 2  Pathogens detected in ticks according to their species, developmental stage, sex and host in East and Southeast Asia

Abbreviations: C, cat; D, dog; L, larva; N, nymph; M, adult male; F, adult female
a  This female tick was reported as “Ixodes sp.” in [10]. Following reassessment of photomicrography images of this tick by one of the co-authors (F.D.-T.) the following 
morphological features were observed: auriculae and cornua present; porose area small, not contiguous, hypostome with a 2/2 dental formula on almost the entire 
hypostome; coxa I with slight internal spur, coxae III and IV each with external spur; syncoxae present on coxae I and II; trochanters lacking spurs. As such, this female 
shares several morphological features with Ixodes ovatus [46], but genetic data from a partial 16S rDNA sequence (percent identity: 90.7% with U95900) suggest that 
this may belong to a distinct species

Anaplasmataceae Rickettsia spp. Apicomplexan protozoans

Anaplasma platys Ehrlichia canis Rickettsia felis Rickettsia 
asembonensis

Rickettsia sp. Babesia vogeli Hepatozoon canis

China (n = 28) 1

 C; Haemaphysalis longicornis (1L)

 D; Haemaphysalis campanulata (1L)

 D; Haemaphysalis longicornis (3L, 
1N, 1F, 1M)

 D; Rhipicephalus sanguineus (s.l.) (3L, 
7N, 5F, 5M)

1F

Indonesia (n = 79) 2 1

 C; Rhipicephalus sanguineus (s.l.) (2N, 
6F, 2M)

1F

 D; Rhipicephalus sanguineus (s.l.) (2L, 
10N, 26F, 30M)

1F 1F

 D; Haemaphysalis wellingtoni (1N)

Malaysia (n = 3) 2 1

 D; Rhipicephalus sanguineus (s.l.) 
(1F, 2M)

1F, 1M 1M

The Philippines (n = 90) 2 1 12

 C; Rhipicephalus sanguineus (s.l.) (6N, 
8F, 13M)

1N, 1F 1N, 1M

 D; Rhipicephalus sanguineus (s.l.) (1L, 
6N, 23F, 33M)

1M 1N, 2F, 7M

Singapore (n = 4)

 C; Rhipicephalus sanguineus (s.l.) (1N, 
1F, 2M)

Taiwan (n = 25) 1 2 1

 C; Ixodes sp. (1F)a

 D; Rhipicephalus haemaphysaloides 
(1F, 2M)

1F, 1M

 D; Rhipicephalus sanguineus (s.l.) (2N, 
9F, 10M)

1M 1F

Thailand (n = 46) 3 1

 D; Haemaphysalis hystricis (1F)

 D; Haemaphysalis wellingtoni (1L)

 D; Rhipicephalus sanguineus (s.l.) (2L, 
3N, 20F, 9M)

1F, 2M 1F

Vietnam (n = 117) 3 6

 D; Rhipicephalus sanguineus (s.l.) 
(18N, 48F, 51M)

2F, 1M 5F, 1M

Total 3 7 1 1 2 4 21
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related (98.3%) to Rickettsia rhipicephali (GenBank: 
U43803; host: C. felis; origin: USA).

For Rickettsia spp. detection in fleas, amplification of 
a portion of the gltA gene was positive from 76 fleas. 
The partial sequence of the ompA gene was successfully 
obtained from 17 of the 76 gltA-positive C. felis fleas. 
All of those ompA gene sequences were 100% identi-
cal to R. felis strain URRWXCal2 (GenBank: CP000053; 
source: cultivation; origin: USA). Sequence analysis 
of the gltA genes fragment from the other 59 Rickett-
sia positive C. felis fleas revealed that the 31 sequences 
obtained had 99.4% nucleotide identity with R. felis 
strain URRWXCal2 (GenBank: CP000053; source: 
cultivation; origin: USA), 27 sequences 99.7% with R. 

asembonensis (GenBank: KY445723; host: C. felis; ori-
gin: Brazil) and one 100% with “Ca. R. senegalensis” 
(GenBank: MK548197; host: C. felis; origin: Colombia).

The phylogenetic tree based on the partial ompA 
gene sequences showed that all R. felis isolated from 
fleas were assembled together in one cluster, whereas 
Rickettsia sp. isolated from ticks clustered with R. rhi-
picephali and Rickettsia massiliae (Fig  1). In the gltA 
tree, phylogenetical analysis revealed that R. felis, R. 
asembonensis and “Ca. R. senegalensis” herein detected 
were formed together in a well-supported sister cluster 
include other R. felis-like organisms (RFLOs), close to 
the cluster of Rickettsia australis and Rickettsia akari 
(Fig. 2).

Table 3  Pathogens detected in fleas according to their species, developmental stage, sex and host in East and Southeast Asia

Abbreviations: C, cat; D, dog; F, female; M, male

Rickettsia spp. Bartonella spp.

R. felis R. asembonensis “Ca. R. senegalensis”

China (n = 17) 1 2

 C; Ctenocephalides felis (8F, 2M) 1F 2F

 D; Ctenocephalides felis (7F)

Indonesia (n = 48) 12 9 21

 C; Ctenocephalides felis (4F, 24M) 7F, 2M 18F

 C; Xenopsylla cheopis (1M) 1M

 D; Ctenocephalides felis (6F, 1M) 2F 2F

 D; Ctenocephalides orientis (9F, 3M) 1M 7F, 2M

Malaysia (n = 7)

 C; Ctenocephalides felis (4F, 1M)

 D; Ctenocephalides felis (2F)

The Philippines (n = 90) 20 9 4

 C; Ctenocephalides felis (24F, 9M) 4F, 3M 3F, 1M

 D; Ctenocephalides felis (34F, 13M) 12F, 1M 1F

 D; Ctenocephalides orientis (9F, 1M) 8F

Singapore (n = 2) 2

 C; Ctenocephalides felis (1M) 1M

 C; Ctenocephalides orientis (1F) 1F

Taiwan (n = 24) 8 4

 C; Ctenocephalides felis (10F, 4M) 3F, 2M 3F, 1M

 D; Ctenocephalides felis (6F, 3M) 3F

 D; Ctenocephalides orientis (1F)

Thailand (n = 21) 1 4 1 5

 C; Ctenocephalides felis (4F, 1M) 2F

 D; Ctenocephalides felis (7F, 4M) 1F 1F

 D; Ctenocephalides orientis (2F, 3M) 2F, 2M 1M 1F, 1M

Vietnam (n = 39) 6 5 3

 C; Ctenocephalides felis (14F, 5M) 3F, 1M 3F

 D; Ctenocephalides felis (8F, 3M) 2F

D; Ctenocephalides orientis (7F, 2M) 4F, 1M

Total 48 27 1 41
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The ML tree of 35 representative  mitochondrial 16S 
rDNA sequences of Rh. sanguineus (s.l.) gene showed 
that 34 sequences were identical to each other and iden-
tified as belong to the tropical lineage of Rh. sanguineus 
(s.l.) (100% identity with GU553075; origin: Brazil). One 
sequence from a tick collected from a dog in Beijing 
(northeast China) clustered with  Rh. sanguineus (sensu 
stricto) (100% identity with GU553078; origin: Argen-
tina) (Fig. 3).

Representative sequences of pathogens detected in this 
study were deposited in the GenBank database under the 
accession numbers MT499354-MT499356 (H. canis), 
MT499357 (B. vogeli), MT499358 and MT499359 (A. 
platys), MT499360 and MT499361 (E. canis), MT499362 
(Rickettsia sp.), MT499363-MT499367 (R. felis), 
MT499368-MT499370 (R. asembonensis) and MT499371 
(“Ca. R. senegalensis”).

Discussion
The results of this study reveal the presence of several 
pathogens in ticks (e.g. A. platys, B. vogeli, E. canis, H. 
canis and Rickettsia spp.) and fleas (e.g. Rickettsia spp. 
and Bartonella spp.) collected from dogs and cats in EA 
and SEA. The relatively low occurrence of pathogens 
herein detected in ticks is consistent with previous sur-
veys conducted in ticks infesting owned dogs in Asia [13, 
26, 47–49]. Conversely, the occurrence of VBPs is higher 
in ticks collected from stray animals [24]. Although B. 
gibsoni was identified in dogs from China (2.3%; [10]), 
none of the tested ticks from these dogs was found posi-
tive for this parasite. The absence of B. gibsoni in tick 
populations is probably due to the low number of H. lon-
gicornis and H. hystricis, which are recognized as vectors 
of this pathogen [50, 51]. The infection of E. canis (14.8% 
by serology) and H. canis (1.6% by cPCR) in host popu-
lations [10], along with the detection of these pathogens 

Fig. 1  Phylogenetic relationships of Rickettsia spp. isolated in this study (in bold) to other Rickettsia spp. based on partial sequences of the ompA 
gene. The analyses were performed using a Maximum Likelihood method with Tamura 3-parameter model. A discrete Gamma distribution was 
used to model evolutionary rate differences among sites. GenBank accession number, isolation source and country of origin are presented for each 
sequence



Page 7 of 11Nguyen et al. Parasites Vectors          (2020) 13:420 	

in Rh. sanguineus (s.l.) in the sampling areas support the 
vector role of this tick species in the transmission of these 
VBPs in this region [11, 14]. The finding of A. platys in 
dogs (7.1% by serology; [10]) and in Rh. sanguineus (s.l.) 
further suggests its vector competence for this pathogen. 
Additionally, the detection of R. felis and R. asembonen-
sis in Rh. sanguineus (s.l.) is similar to previous results in 
Chile [52], Brazil [53] and Malaysia [54], consequently 
giving more concern about the role of Rh. sanguineus 
(s.l.) in the transmission of Rickettsia spp. other than R. 
conorii, R. massiliae and R. rickettsii [4, 55]. Rickettsia sp. 

sequences herein obtained from Rh. haemaphysaloides 
are identical to one previously generated from the same 
tick species in Taiwan (named Rickettsia sp. TwKM01) 
[56]. This genotype and its closest related species R. rhi-
picephali remain of unknown pathogenicity to mammals 
[56, 57]. Additionally, the vector role of Rh. haemaphysa-
loides needs further investigations since it was found 
harboring multiple pathogens such as R. rhipicephali, A. 
platys, E. canis, B. gibsoni [13, 58].

Of the detected VBPs, R. felis stood out as the most 
important due to its wide distribution, association with 

Fig. 2  Phylogenetic relationships of Rickettsia spp. isolated in this study (in bold) to other Rickettsia spp. based on partial sequences of the gltA 
gene. The analyses were performed using a Maximum Likelihood method with Tamura 3-parameter model. A discrete Gamma distribution was 
used to model evolutionary rate differences among sites. GenBank accession number, isolation source and country of origin are presented for each 
sequence
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various arthropods, and importance as an emerging 
zoonotic pathogen [59]. In Asia, the first human case 
of flea-borne spotted fever attributed to R. felis was 
detected in the Thai-Myanmar border [60], since then 
several cases of human infection have been documented 
in Taiwan [61], Thailand [62], Laos [63], Vietnam [64] and 
Indonesia [65]. Although R. felis was detected in many 
arthropods, including non-hematophagous insect (i.e. 
the book louse Liposcelis bostrychophila) [66], the distri-
bution of this rickettsia is highly affiliated with the dis-
tribution of C. felis [59]. Ctenocephalides felis is the most 
well-recognized vector of this rickettsia, which is trans-
mitted transovarially and transstadially  in the fleas [67], 
with dogs as proven mammalian reservoir hosts [68]. The 
high occurrence of R. felis in C. felis along with the high 
relative frequency of this flea species in host populations 
(65.1% in dogs and 98.7% in cats) [10] emphasizes the 
risk of R. felis infection in animals and humans.

The detection of R. asembonensis only from fleas col-
lected on dogs (mainly C. orientis but in one case in 
C. felis) may suggest that dogs could act as amplify-
ing hosts of this rickettsia, as they do for R. felis [68]. 
Rickettsia asembonensis is the most well-characterized 
genotype of RFLOs [69]. This rickettsia was initially 
described in fleas from dogs and cats in Kenya [70] and 
was then reported in various arthropods worldwide 
[69]. In Asia, R. asembonensis was also found in C. ori-
entis from dogs [54] and in macaques from Malaysia 
[71]. Additionally, Rickettsia sp. RF2125, a genotype 
highly related to R. asembonensis, was reported with 
high incidence in C. orientis from India and Thailand 
[72, 73], and was also found in a febrile patient from 
Malaysia [74]. Moreover, R. felis, R. asembonensis 
and “Ca. R. senegalensis” clustered in the SFG rick-
ettsiae clade (Fig. 3), and while R. felis is a recognized 

Fig. 3  Phylogenetic relationships of the present Rhipicephalus sanguineus (s.l.) sequences (in bold) to other Rhipicephalus spp. based on a 
portion of the mitochondrial 16S rRNA gene. As most sequences (n = 34) were identified as belonging to the tropical lineage Rh. sanguineus (s.l.), 
representatives were selected for each country. The analyses were performed using a Maximum Likelihood method with Tamura 3-parameter 
model. A discrete Gamma distribution was used to model evolutionary rate differences among sites. GenBank accession number, isolation source 
and country of origin are presented for each sequence
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pathogen [67], the pathogenicity of other RFLOs is cur-
rently unknown.

Besides acting as vectors of Rickettsia spp., fleas have 
been well-recognized as vectors of Bartonella spp. [6, 
75]. The occurrence of Bartonella-positive fleas in our 
study was slightly lower than previous investigations in 
Laos [30], Malaysia [35] and Thailand [76]. Nevertheless, 
the occurrence of the two common Bartonella spp. (i.e. 
B. henselae and B. clarridgeiae) in dogs and cats from 
EA and SEA is relatively high; up to 60% [18, 31, 76, 77]. 
Additionally, B. henselae infection in humans is usually 
associated to previous exposure to cats or cat fleas [78], 
emphasizing the role of cat fleas in Bartonella spp. trans-
mission between animals and humans.

In the present study, all tested tick specimens were neg-
ative for C. burnetii although this pathogen was detected 
in Rh. sanguineus (s.l.) from dogs in Malaysia [79], in 
dogs in Taiwan [80] and in humans from Thailand [81]. 
Additionally, Coxiella-like endosymbionts were strongly 
associated with Rh. sanguineus (s.l.) tropical lineage 
[82],  although the role of these endosymbionts in the 
biology and vectoral capacity of this tick lineage needs 
further investigation.

Finally, the genetic lineage of Rh. sanguineus (s.l.) from 
EA and SEA was investigated based on the 16S rDNA 
sequences. The finding of Rh. sanguineus (s.s.) in Bei-
jing, a cold area, along with the existence of the tropical 
lineage in warmer localities, agreed with previous stud-
ies, which indicated that the tropical lineage is present 
in areas with annual mean temperature > 20°C, whereas 
the temperate lineage occurs in areas with annual mean 
temperature < 20°C [83]. This information is also relevant 
from a pathogen transmission perspective, considering 
that different Rh. sanguineus (s.l.) lineages may present 
variable vector competence and/or capacity for different 
pathogens; for instance, E. canis is primarily vectored by 
Rh. sanguineus (s.l.) tropical lineage [84].

Conclusions
Data herein reported updates the list of pathogens occur-
ring in ticks and fleas from companion dogs and cats in 
EA and SEA. By sharing the common environment with 
humans, these parasitic arthropods could be responsible 
for the transmission of pathogens to humans (i.e. R. felis). 
Strategies to prevent tick and flea infestations in these 
animals are fundamental to decrease the risk of transmis-
sion of VBPs to animals and humans.
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