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Abstract 
The purpose of this paper is to broaden the knowledge of mean difference 
and, in particular, of an important distribution model known as Tukey 
lambda, which is generally used to choose a model to fit data. We have ob-
tained compact formulas, which are not yet reported in literature, of mean 
deviation and mean difference related to the said distribution model. These 
results made it possible to analyze the relationships among variability index-
es, namely standard deviation, mean deviation and mean difference, regard-
ing Tukey lambda model. 
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1. Introduction 

The purpose of this work is to increase the methodological contributions on the 
mean difference and on the relationships of the mean difference with other va-
riability indexes [1] [2]. The studies on the mean difference, introduced by Cor-
rado Gini in 1912 as a measure of the variability of the characters according to 
the aspect of inequality, have aroused the interest of many scholars over years 
and also recently [3] [4]. The importance of mean difference is also due to the 
fact that the sample mean difference is a correct estimate of that of the popula-
tion distribution model and, therefore, functional for inferential purposes [5]. 
The theoretical contributions on the mean difference concern the main continuous 
distribution models (normal, rectangular, exponential, ...) [6], however, for other 
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distribution models, such as Tukey’s, no contributions are known in literature. 

2. Tukey Lambda Distribution 

Tukey lambda distribution is usually used to choose a distribution model to fit 
data and its direct use is less usual. In general, its characteristic is that neither its 
density function ( )f x  nor its cumulative function ( )F x  is known, but only 
the inverse of this latter ( )1F x− , that is the quantile function Q(p) [7] [8]. 

A complete Tukey distribution shape includes three parameters: one of posi-
tion, one of scale and one of shape [9] [10].  

In order to calculate the mean difference and the mean deviation, it is better 
to refer to a reduced distribution in which the position parameter is set to zero 
and the scale to one. Formulas of mean difference and mean deviation of com-
plete distribution are equal to the ones of reduced distribution multiplied by the 
scale parameter value. Tukey lambda distribution is defined by the quantile 
function  

( ) ( )1
, 0 1.

p p
x Q p p

λλ

λ
− −

= = < <                   (1) 

Said function is not always analytically invertible and, therefore, allows to ob-
tain cumulative function and density function only for some values of λ [11] 
which are 1,0,1 4,1 3,1 2,1,3 2,2,3,4λ = − . Cumulative functions of Tukey 
lambda distribution for such values are listed below: 
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It is necessary to use numerical inversion of ( )Q p  to get a cumulative func-
tion for other λ values. 

Regarding Tukey distribution, some characteristic values as function of λ are 
known: average, mode, median, standard deviation, asymmetry index, disnor-
mality excess index, entropy, characteristic function. Expressions of mean dif-
ference and mean deviation are unknown.  

3. Variability Indexes of Tukey Lambda Distribution  

The variance of Tukey lambda distribution as a function of λ parameter [12] is 

( )
( )

2
2

2

12 1 1, .
1 2 2 2 2

λ
σ λ

λ λλ

 Γ +
= − > − 

+ Γ +  
                (12) 

By using the cumulative functions derived by the inversion of quantile func-
tions of Tukey lambda distribution, mean difference and mean deviation values 
are obtained and shown in Table 1. 

Mean difference values for integers from 1 to 10 are arranged exactly on a pa-
rabolic hyperbola 

( ) 2

4 , 1.
2 3

λ λ
λ λ

∆ = >
+ +

                     (13) 

Some values of Δ calculated numerically for other values of λ parameter are 
also all arranged over the said function, which can be then considered a general 
expression of the mean difference of Tukey lambda distribution. Said function 
takes not-negative finite values for 1λ > − , as it can be shown in Figure 1.  

Therefore, the mean difference in Tukey lambda distribution has a domain 
1λ > −  which is wider than the one of standard deviation 1 2λ > − . 

Let us now consider the mean deviation. First of all, we can see that the aver-
age of our distribution exists only for 1λ > −  and, therefore, said domain also 
applies to mean deviation. Mean deviation values for integers from 1 to 10 are 
arranged exactly over the function 

( )
( )
( )

12 2 1
, 1.

1

λ λ

δ λ λ
λ λ

− −
= > −

+
                   (14) 

Values of δ calculated numerically for other values of λ parameter are also all ar-
ranged exactly over the said function, which can be then considered the expression  
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Figure 1. Mean difference of Tukey lambda distribution as a function of λ parameter. 

 

 
Figure 2. Mean deviation of Tukey lambda distribution as a function of λ parameter. 

 
Table 1. Values of mean difference and mean deviation for some values of λ parameter in 
Tukey lambda distribution. 

λ Δ Δ 

−1 ∞ ∞ 

−4/5 50/3 9.263764082403105 

−3/4 64/5 7.27245685874591 

−2/3 9 5.240144005205601 

−3/5 50/7 4.297623404313451 

−1/2 16/3 3.3137084989847696 

−1/3 18/5 2.339289449053423 

1 1 2 3 4 5

1

2

3

4

1 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0
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Continued 

−1/4 64/21 2.0182092266958453 

0 2 2log2 

1/4 64/65 1.018262942376231 

1/3 9/7 0.9283476330715509 

1/2 16/15 ( )4 2 2
3

−  

3/5 25/26 0.7088459262782351 

2/3 9/10 0.6660710550945809 

3/4 64/77 0.6177469599979266 

1 2/3 1/2 

3/2 16/35 0.34477152501692165 

2 1/3 1/4 

5/2 16/63 0.1881653270194103 

3 1/5 7/48 

4 2/15 3/32 

5 2/21 31/480 

6 1/14 3/64 

7 1/18 127/3584 

8 2/45 85/3072 

9 2/55 511/23040 

10 1/33 93/5120 

 
of mean deviation of the Tukey lambda distribution. Said function takes 
not-negative finite values for 1λ > −  as it can be shown in Figure 2.  

The mean deviation of Tukey lambda distribution has, therefore, a domain 
wider than the one of standard deviation.  

4. Relations between Variability Indexes of Tukey Lambda  
Distribution  

By inverting the expression of mean difference in Tukey lambda distribution as a 
function of λ parameter (13), the following two roots come out 

1
3 16

2
λ − ∆ + ∆ + ∆
=

∆
                     (15) 

and 

2
3 16 .

2
λ − ∆ − ∆ + ∆

=
∆

                     (16) 

The second solution, which is always negative, is not usable to obtain the rela-
tionship between ∆ and σ [13].  

By substituting the first solution 1λ  (15) in the standard deviation expression, 
it comes out an analytical relationship of the same one related to the mean dif-
ference of Tukey lambda distribution: 
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∆ + −
        (17) 

Said relationship is represented in Figure 3. 
As it can be seen, standard deviation increases quickly when mean difference 

increases. 
Let us, now, consider the relationship between mean difference and mean 

deviation.  
By substituting root 1λ  in the formula of mean deviation (14), it comes out 

the following analytical relationship  

( )

16 13
2 22 2 1

, 0.
16 41 1

δ

+
∆−

 
 

− 
 
 ∆ = ∆ >

+ − −
∆ ∆

                   (18) 

As shown in Figure 4, it is evident that the relationship between the two in-
dexes is almost linear. 

Finally, let us consider the relationship between mean deviation and standard 
deviation of Tukey lambda distribution.  

Since it is not possible to obtain λ  parameter as a function of mean devia-
tion, it is necessary to use a numerical procedure to calculate the two variability 
indexes values for a consistent set of λ parameter values and to represent pairs of 
values on a Cartesian axis.  

By choosing values of λ: −0.49, −0.48, ..., 5.00, it comes out a numerical rela-
tionship as shown in Figure 5. 

 

 
Figure 3. Analytical relationship between mean difference and standard deviation of Tu-
key lambda distribution. 
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Figure 4. Analytical relationship between mean difference and mean deviation of Tukey 
lambda distribution. 
 

 
Figure 5. Numerical relationship between mean deviation and standard deviation of Tu-
key lambda distribution. 
 

As it can be seen, the relationship between mean deviation and standard devi-
ation of Tukey Lambda distribution increases with slow acceleration. 

5. Conclusive Remarks 

In this work, the formulas of mean difference and mean deviation of Tukey 
Lambda distribution have been obtained. It is an original contribution aimed at 
increasing the knowledge about this distribution model. These results allowed us 
to investigate the relationships among the three main variability indexes, standard 
deviation, mean deviation and mean difference, regarding Tukey lambda model.  
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