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3Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy

4SISSA–Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
(Received 28 November 2016; revised manuscript received 13 June 2017; published 29 December 2017)

We demonstrate that there is a macroscopic coexistence between regions with hexatic order and regions
in the liquid or gas phase over a finite interval of packing fractions in active dumbbell systems with
repulsive power-law interactions in two dimensions. In the passive limit, this interval remains finite, similar
to what has been found in two-dimensional systems of hard and soft disks. We did not find discontinuous
behavior upon increasing activity from the passive limit.
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Interest in the behavior of 2D (and also 3D) macroscopic
systems under continuous and homogeneous input of
energy has been boosted by their connection with active
matter [1–8]. This new type of matter can be realized in
various ways. Systems of self-propelled particles constitute
an important subclass, with natural examples such as
suspensions of bacteria [9–11] and artificial ones made
of Janus [12–14] or asymmetric granular [15] particles.
In all these cases, the constituents consume internal or
environmental energy and use it to displace. Very rich
collective motion arises under these out of equilibrium
conditions, and liquid, solid and segregated phases are
observed [16–21]. In particular, in active Brownian particle
systems, segregation, also called motility induced phase
separation (MIPS), was claimed to occur only above a large
critical threshold of the activity [19,22–25].
Besides, the behavior of passive disks is a classic theme

of study in soft condensed matter. Recently, Bernard and
Krauth argued that 2D melting of hard and soft repulsive
disks occurs in two steps, with a continuous Berezinskii-
Kosterlitz-Thouless transition between the solid and
hexatic phases and a first-order transition between the
hexatic and liquid phases, when density or packing fraction
are decreased at constant temperature [26]. The hexatic
phase has no positional order but quasi-long-range orienta-
tional order, while the solid phase has quasi-long-range
positional and proper long-range orientational order. Liquid
and quasi-long-range orientationally ordered zones coexist
close to the liquid phase, within a narrow interval of
packing fractions.
In this Letter, we study the phase diagram of a two-

dimensional model of active purely repulsive dumbbells
and show that it does not comply with the MIPS scenario.
We prove that the phase separation found at high values of
the activity continuously links, in the passive limit, to a
finite coexistence region as the one predicted by Bernard
and Krauth for 2D melting of hard and soft repulsive

disks [26]. There is no nonvanishing critical value of
activity needed for segregation in this system, making
the popular MIPS scenario at least not general.
The reason for choosing a dumbbell model is that many

natural swimmers have an elongated shape, and a hard
dimer is the simplest approximation of such anisotropy
[27–29]. This geometry favors aggregation at intermediate
densities and sufficiently strong activation [23,30–35].
In this limit, the evolution of an initial homogeneous
phase occurs by nucleation and growth of clusters [31]
and the system phase separates. At the other extreme, for
sufficiently low densities and not so strong activity,
particles form only very small clusters that do not coalesce
[32,36,37]. The results in this Letter complement these two
extreme limits. In the absence of activity, we confirm the

FIG. 1. The phase diagram and some representative local
hexatic parameter maps. Note the red rectangular contours in
the boxes at Pe ¼ 20 and Pe ¼ 40 that surround the disordered
regions. The way in which the phase boundaries are determined is
explained in the text and more details are given in the Supple-
mental Material [40].
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results of Krauth and co-workers [26,38,39] for hard and
soft disks—for what concerns the existence of a first-order
transition from the liquid phase—using now a molecular
system and estimating the density interval for coexistence.
We prove that this interval continuously expands toward the
strong activity region where cluster aggregation had
already been observed. Hence, there is no discontinuity
between the passive and active regions in the phase diagram
with phase separation. Figure 1 summarizes this scenario
that, we emphasize, is different from what has been stated
in the literature so far. In this work, we did not analyze the
transition between hexatic and solid phase.
Event-chain algorithms have proven to be an efficient

tool to equilibrate 2D interacting particle systems [41] and
they have been used to give strong support to the two step
phase transition scenario [26,39]. We use, however, con-
ventional molecular dynamics in order to simulate the out
of equilibrium dynamics of active systems as realistically
as possibly.
Themodel consists ofN diatomicmolecules (dimers)with

identical spherical head and tail centered at a fixed distance
equal to their diameters σd. Interactions are mediated by a
purely repulsive potential, UðrÞ ¼ 4ϵ½ðr=σÞ−2n − ðr=σÞ−n�,
truncated at its minimum rc ¼ 21=nσ, where r is the distance
between the centers of any two disks. We set σ ¼ 2−1=nσd,
so that rc ¼ σd, and we favor coexistence in the passive
system [39] using n ¼ 32, with particle overlap unlikely
smaller than σd. Results similar to those shown in the
following have been obtained for n ¼ 6, but with a narrower
coexistence region in the passive limit. The evolution
of the position ri of the ith bead is given by a Langevin
equation

md ̈ri ¼ −γd _ri − ∇iU þ Fact þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTγd
p

ηiðtÞ; ð1Þ

where γd is the friction coefficient, ∇i ¼ ∂ri , T is the
temperature of the thermal bath, md is the mass of a bead,
Fact is a tail-head-directed active force with constant magni-
tude Fact, and ηiðtÞ is an uncorrelated Gaussian noise with
zero mean and unit variance. We set the parameters to be in
the overdamped limit [42]. The dimensionless control
parameters are the area fraction covered by the active
particles, ϕ ¼ Nπσ2d=ð2AÞ, where A ¼ L2 is the area of
the simulation domain, and the Péclet number Pe ¼
2Factσd=ðkBTÞ. We used L ¼ 500σd and periodic boundary
conditions. Each run took, typically, 5 × 105 simulation time
units (MDs [42] not written henceforth). We performed tests
in systems with L ≈ 1500σd run for longer and we did not
find differences with the results shown. More details on the
algorithm and running times are given in the Supplemental
Material [40].
We quantify our assertions with the measurement of the

local densities ϕj (computed in two ways, explained in the
Supplemental Material [40]) and the local hexatic param-
eter evaluated as

ψ6j ¼
1

Nj
nn

X

Nj
nn

k¼1

e6iθjk ; ð2Þ

where Nj
nn are the nearest neighbors of bead j found with a

Voronoi tessellation algorithm [43] and θjk is the angle
between the segment that connects jwith its neighbor k and
the x axis. For beads regularly placed on the vertices of
a triangular lattice, each site has six nearest neighbors,
θjk ¼ 2kπ=6, and ψ6j ¼ 1. We also consider the modulus
of the average per particle and the average per particle of
the modulus,

2Nψ6≡
�

�

�

�

X

2N

j¼1

ψ6j

�

�

�

�

; 2NΓ6 ≡
X

2N

j¼1

jψ6jj: ð3Þ

We visualize the local values of ψ6j as proposed in [26]:
first, we project the complex local values ψ6j onto the
direction of their space average; next, each bead is colored
according to this normalized projection. Zones with ori-
entational order have uniform color, whatever it is.
We start by studying the passive system. We use three

kinds of initial states: random configurations with positions
and orientations uniformly distributed, striped states with an
ordered close-packed slab, and a hexatic-ordered state (see
Sec. S1 in the Supplemental Material [40]). In all cases, we
present data evolved for a sufficiently long time to ensure that
the initial state is forgotten and equilibration is reached. In the
Supplemental Material [40], we exemplify the transient.
For ϕ < 0.730, any initial state with phase separation

quickly melts and eventually evolves as a liquid. This is
confirmed by the fact that translational and hexatic corre-
lation functions decay exponentially with distance. Above
ϕ ≈ 0.756, initial states with hexatic order remain ordered
and the correlations decay very slowly (see Fig. S3 in the
Supplemental Material [40]). In between there is a regime
with coexistence, as we now prove.
The first evidence for coexistence is given in Fig. 2,

where we show the local density plot in equilibrium, with
an enlargement close to an interface between dense and
sparse regions. The hexatic order in the region with high
density and the lack of orientational order in the sparse
region are clear in the enlarged area.
Further evidence for coexistence at this and other global

densities is given in Figs. 3(a)–3(c), where we show the
local hexatic parameter on three equilibrium snapshots at
ϕ ¼ 0.734, 0.740, and 0.750. These configurations are
chosen at the long-time limit of the evolution of random
initial states. The regions with local hexatic order are also
regions of local high density and, conversely, in the sparse
regions, the dumbbells do not have orientational order
(see Fig. S4 in the Supplemental Material [40], where
the corresponding density plots as the one in Fig. 2 and
histograms of the local densities are shown). In Fig. 3(d),
we display the asymptotic ψ6 and Γ6 defined in Eq. (3)
against ϕ for the three kinds of initial conditions. The data
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have been averaged over the last ten configurations
(sampled every ∼104). The results confirm that the depart-
ing state is forgotten as the curves coincide within numerical
accuracy. The ψ6 curve for random initial configurations
at ϕ≳ 0.780 is an exception and it still has to undergo a
coarsening process to orient the clusters in the same

direction (see Fig. S7 in the Supplemental Material [40]).
All curves increase with ϕ, indicating that the proportion of
regions with hexatic order with respect to the disordered
ones grows with ϕ. The curve Γ6 against ϕ is continuous
and smooth, while the one for ψ6, although also continuous,
shows a very steep increase starting at the smallest density
at which coexistence appears. In Fig. 3(e), we show the time
dependence of ψ6. The asymptote vanishes for ϕ < 0.730,
but grows with ϕ for ϕ > 0.730. For ϕ ¼ 0.740, we follow
the evolution of different kinds of initial states to prove that
they all approach the same asymptote. The evolution of
the local ψ6j for these three initial conditions is illustrated
in Supplemental Material Fig. S2 [40]. The last one is at a
time at which the (green) curves in Fig. 3 have reached the
plateau. Additional signatures of liquid, coexisting, and
ordered phases are given in Supplemental Material Fig. S5
[40], which shows the structure factor for six ϕ’s. Turning
these arguments into a quantitative analysis, we find
coexistence in the passive system in the interval ϕ ∈
½0.730; 0.756�, approximately, justifying the extent of the
gray region on the Pe ¼ 0 axis in Fig. 1.
We now switch on activity. We first focus on ϕ ¼ 0.734,

a density within the interval of coexistence in the passive
limit. In Fig. 4, we display the local hexatic order parameter
of three instantaneous configurations obtained from the
evolution at Pe ¼ 10. The snapshots above are for an initial
configuration with coexistence between a dense region with
a rough horizontal form and a sparse region around it.
Below are the snapshots for an initial stationary state at
Pe ¼ 40, where the system is strongly segregated. In the
first case, the system breaks the horizontal dense region and

FIG. 2. Passive system with ϕ ¼ 0.74 in equilibrium. (Left)
The density plot constructed by averaging the local density over a
region with radius equal to 20σd (similar results are obtained
averaging over a region with radius in [10, 50]σd). (Right) An
enlargement over the region within the black square in the left
plot showing the individual dumbbells close to the interface
between a region with hexatic order (lower right) and a disordered
sector (upper left). The color code is the same as in the left panel.
The local hexatic map for this configuration is shown in the
central upper panel in Fig. 3.
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FIG. 3. Passive system. (a)–(c) The local hexatic parameter ψ6j
in equilibrium configurations at ϕ ¼ 0.734 (a), 0.740 (b), 0.750
(c). (d) ψ6 and Γ6 defined in Eqs. (3) as functions of ϕ. (e) Time
evolution of ψ6 from striped initial conditions at various densities
with different solid lines. We also display the evolution at ϕ ¼
0.74 from random and hexatic-ordered initial states with dashed
and dotted lines.
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FIG. 4. Time evolution at Pe ¼ 10 and ϕ ¼ 0.734. The initial
states for the sequences (a)–(c) and (d)–(f) correspond to (a) a
phase separated configuration at Pe ¼ 0 evolved from a con-
figuration with a striped state of dumbbells and (d) the steady
state at Pe ¼ 40. The system is in its gas phase in the white zones
[cf. Fig. S12(d) in the Supplemental Material [40] ]. The times at
which the subsequent snapshots are taken are t ¼ 2.5 × 102ðbÞ,
8.6 × 105ðcÞ and t ¼ 105ðeÞ, 6 × 105ðfÞ. As an inset in (b), we
include the time dependence of Γ6 for the two runs.
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it later recreates dense clusters of approximately round
form. These clusters turn independently of one another and
have different (time-dependent) local hexatic order. Movie
M1 in the Supplemental Material [40] illustrates the
aforementioned dynamics at ϕ ¼ 0.74, with more details
on the cluster formation. In the second case, dumbbells are
progressively evaporated from the large and dense clusters
until less packed and smaller ones attain a stable size.
Simultaneously, the regions in between the dense clusters
reach the target density of the sparse phase. The subsequent
dynamics are the same as for the steady state reached in the
upper series of snapshots. In the inset, we show the time
dependence of Γ6 and we verify that the two runs reach the
same asymptote. Therefore, independently of the initial
conditions, the dynamics at ϕ ¼ 0.734 and Pe ¼ 10
approach a stationary limit with coexistence. The same
occurs for all Pe at this ϕ, even the very small ones (further
information on the Pe ¼ 2 case is given in Supplemental
Material Fig. S8 [40]).
Having established that a small amount of activity does

not destroy coexistence, we determine how it affects its
limits by sweeping the parameters ϕ and Pe.
With the data for the coarse-grained local density at

different pairs ðϕ; PeÞ, we built the density distributions of
Figs. 5(a)–5(f). In the first row, Pe ¼ 20 and ϕ ¼ 0.52,
0.54, and 0.7 (Supplemental Material Fig. S9 [40] shows
the dynamics at ϕ ¼ 0.54). Figure 5(a) presents a static

symmetric distribution around the global packing fraction
that is in the liquid phase close to the boundary. Figure 5(b)
shows the emergence of a second peak at a higher density,
ϕj ≃ 0.9, while the weight on lower density has displaced
to a lower value of ϕj. Figure 5(c) confirms the presence of
the peak at ϕj ≃ 0.9, the height of which has notably
increased. Consequently, the weight on smaller local
densities decreased and moved toward a slightly smaller
value. The appearance of the second peak is our criterium
to draw the upper boundary of the homogeneous phase,
also complemented by the analysis of the structure factor in
Supplemental Material Fig. S11 [40]. At higher packing
fractions, the position of the second peak does not vary but
its height increases at the expense of the one of the first
peak. The upper boundary of the phase segregated region is
naturally determined by the disappearance of the low
density peak (configurations below and above the upper
coexistence boundary are shown in Supplemental Material
Fig. S10 [40]).
The second row in Fig. 5 displays the Pe dependence of

the local density plots at ϕ ¼ 0.74, inside the coexistence
interval at Pe ¼ 0. This analysis confirms continuity
between the steady states in the passive and active cases
(see also Supplemental Material Fig. S14 [40]. The position
of the high density peak moves toward larger ϕj for
increasing Pe, indicating that the dense regions compactify,
and accordingly, the loose regions get more void. This fact
reveals that segregation is more effective at higher Pe.
Continuity upon increasing activity was also observed by
analyzing the position of the density peaks moving along
lines corresponding to equal proportions of disordered and
hexatic regions in the system (see Supplemental Material
Figs. S13 and S15 [40]).
The hexatic order can also be used to analyze the phase

diagram.At Pe ¼ 0, we used the steep increase ofψ6 (around
ϕ ¼ 0.734; see Fig. 3) to locate the boundary between liquid
to phase separated phases since this quantity does not
fluctuate much around its sample average. At finite Pe,
instead, clusters with rather different values ofψ6 coexist and
it is more convenient to use Γ6 to study this boundary.
In Fig. 5(g), we show Γ6 as a function of ϕ for various Pe
values. There is little dependence on Pe for, say, Pe≲ 10,
while for larger values the shoulder moves toward smaller
densities, signaling that the phase boundary becomes one
between gas (very lowϕ) and segregated phases at higher Pe.
An analysis of the statistics of the bead displacements at

different time delays and (ϕ, Pe) is given in Supplemental
Material Figs. S16 and S17 [40] where, in particular, we
distinguish the dynamics of the liquid and segregated dumb-
bells. Supplemental Material Movies M2–M4 complement
this survey with emphasis on coarsening at Pe ¼ 2, 10,
and 20.
Putting these results together, we drew the phase diagram

in Fig. 1. The figure also includes some configurations at
parameter values close to the limits of coexistence that clearly
show liquid, phase separated, and hexatic order. The lower
boundary of the coexistence region decreaseswith increasing
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Pe, since large activity favors the formation of high density
clusters and therefore coexistence. Furthermore, coexistence
is allowed at higher global packing fractions. This is because
the regions with hexatic order become denser and leavemore
free space for the liquid phase under higher Pe [44]. We
conclude that we do not see any discontinuity between the
behavior of the system at Pe ¼ 0 and Pe > 0 at the densities
at which there is phase coexistence in the passive limit.
As in a conventional liquid-vapor transition, it is hard

to establish where the first-order transition lies with high
precision. It would be desirable to complement our analysis
with a thermodynamic study of the phase transitions. The
double transition scenario proposed in [26] for the 2Dpassive
hard disk problem was confirmed by the finite-size analysis
of the equation of state or packing-fraction dependence of
the pressure in the NVT ensemble [26,38]. In contrast, the
existence of an equation of state in generic active matter
remains open. Indeed, the difficulty to precisely define a
pressure with the properties of a state variable in active
systems was underlined in a number of papers; see, e.g.,
[33,45,46]. The results presented here should further stimu-
late the search for a consistent definition of pressure for
(molecular) active matter and promote new studies of phase
diagrams in other active systems.
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