
Can We Use SE-specific Sentiment Analysis Tools in a
Cross-Platform Setting?

Nicole Novielli, Fabio Calefato, Davide Dongiovanni, Daniela Girardi, Filippo Lanubile
University of Bari, Italy

nicole.novielli,fabio.calefato,daniela.girardi,filippo.lanubile@uniba.it

d.dongiovanni@studenti.uniba.it

ABSTRACT

In this paper, we address the problem of using sentiment analysis

tools ‘off-the-shelf’, that is when a gold standard is not available for

retraining. We evaluate the performance of four SE-specific tools

in a cross-platform setting, i.e., on a test set collected from data

sources different from the one used for training. We find that (i) the

lexicon-based tools outperform the supervised approaches retrained

in a cross-platform setting and (ii) retraining can be beneficial in

within-platform settings in the presence of robust gold standard

datasets, even using a minimal training set. Based on our empirical

findings, we derive guidelines for reliable use of sentiment analysis

tools in software engineering.

CCS CONCEPTS

• Software and its engineering; • Information systems →

Sentiment analysis; • Computing methodologies→ Machine

learning; • Human-centered computing → Collaborative and

social computing;

KEYWORDS

Sentiment analysis, empirical software engineering, human fac-

tors, NLP, machine learning

ACM Reference Format:

Nicole Novielli, Fabio Calefato, Davide Dongiovanni, Daniela Girardi, Fil-

ippo Lanubile. 2020. Can We Use SE-specific Sentiment Analysis Tools in a

Cross-Platform Setting?. In 17th International Conference on Mining Software

Repositories (MSR ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3379597.3387446

1 INTRODUCTION

Investigating the role of affect has emerged as a consolidated trend

of research on human aspects in software engineering [28, 31].

Sentiment analysis is used to detect emotions in social coding plat-

forms, such as GitHub [15, 36, 43], issue-tracking tools, such as

Jira [13, 25, 32], and collaborative knowledge-sharing sites, such as

Stack Overflow [7]. Further research has been leveraging sentiment

analysis for requirements elicitation based on opinion detection in

user-generated content [14, 24].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387446

Despite the popularity of general-purpose sentiment analysis

tools, a consensus has been reached in the research community

about the negative results obtained when using such tools ‘off-the-

shelf’ to detect developers’ emotions [19, 23, 29], thus indicating

the need for fine-tuning such tools for the software engineering

domain [26]. Trying to overcome these limitations, researchers

have started to build their own classifiers specifically customized

for software engineering (SE) [5, 11, 13, 17, 18]. Among others,

four SE-specific tools are publicly available, namely Senti4SD [6],

SentiStrength-SE [17], SentiCR [2], and DEVA [18]. SentiStrength-

SE and DEVA implement a lexicon-based approach and have been

optimized on a gold standard dataset of manually annotated content

from Jira. Conversely, Senti4SD and SentiCR implement a super-

vised approach for training polarity classification models. They also

offer retraining functions for model optimization and fine-tuning

based on a custom gold standard dataset.

In a previous benchmarking study [30], we compared the pre-

dictions of Senti4SD, SentiCR, and SentiStrength-SE, showing how

domain-specific customization provides a boost in accuracy com-

pared to the baseline approach represented by SentiStrength [47],

an off-the-shelf tool trained and validated on general-purpose so-

cial media. Specifically, the best performance was observed for

tools implementing supervised approaches. Based on this evidence,

customized retraining of the classifiers was recommended. We ex-

ecuted the study in a within-platform setting, that is, we trained

and tested each classifier using a gold standard from the same data

source. However, building a manually annotated gold standard is a

time-consuming task and, as such, not always feasible.

In this paper, we address the problem of using SE-specific senti-

ment analysis tools in a cross-platform setting, i.e., in the absence of

a gold standard for a target data source. Our study builds upon the

design and results of two previous studies, one by Jongeling et al.

[19] and one of our previous works [30], assessing the performance

of general-purpose and SE-specific sentiment analysis tools, respec-

tively. Specifically, in line with these previous studies [19, 30], we

define the following research questions:

• 𝑅𝑄1 - To what extent do different SE-specific sentiment
analysis tools agreewith the emotions of software developers

when used as ‘off-the-shelf’ tools in a cross-platform setting?

• 𝑅𝑄2 - To what extent do results from different SE-specific

sentiment analysis tools agree with each other when used

as ‘off-the-shelf’ tools in a cross-platform setting?

To enable the comparison with previous research, we assess the

tool performance on two gold standard datasets from the software

engineering domain, namely a Jira dataset of 6K comments [33] and

a Stack Overflow dataset of 4K posts (questions, answers, and com-

ments). Both datasets have been manually annotated by adopting a

158

2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR)

model-driven approach, that is by referring to theoretical emotion

models translated into detailed guidelines for the human raters.

Specifically, the annotation of the Jira and Stack Overflow dataset

is based on the theoretical model of emotions defined by Shaver et

al. [42]. Furthermore, we create and include in our benchmark a

gold standard dataset of 7K comments from GitHub pull-request

and commit comments. The GitHub comments have been manually

annotated by three of the authors, following the same annotation

guidelines adopted for the Stack Overflow and Jira datasets.

Finally, we aim to understand how many training documents are

required so that choosing to retrain a supervised tool is convenient

compared to using a lexicon-based approach ‘off-the-shelf’. Indeed,

building a manually annotated gold standard for sentiment analysis

is a time-consuming task that requires careful training of the raters

and the appropriate choice of the emotion model [29]. As such, we

formulate a third research question:

• 𝑅𝑄3 - To what extent is the performance of SE-specific sen-
timent analysis tools affected by the size of the training set?

The contributions of this paper are as follows. First, we release

a dataset of more than 7k comments from GitHub.1 To the best of

our knowledge, this is the first publicly available dataset including

texts from GitHub annotated for sentiment polarity. As a second

contribution, we enhance the current understanding of the most

frequent causes of misclassification due to cross-platform use of

sentiment analysis tools when applied in the software engineering

domain. Finally, we derive empirically-based recommendations for

the safe adoption of SE-specific tools for sentiment analysis, both

in presence and in absence of a gold standard for retraining.

The paper is organized as follows. In Section 2, we address senti-

ment analysis in software engineering and summarize the previous

benchmarking studies we build upon. In Section 3, we describe the

SE-specific tools we include in our benchmark. In Section 4, we

describe the three manually annotated gold standard dataset that

we include in our benchmark, with a detailed description of the

annotation study we conduct to build the GitHub gold standard.

Then, we describe the study design in Section 5, report results in

Section 6, and present guidelines for sentiment analysis in SE in

Section 7. Finally, we discuss the threats to validity in Section 8 and

conclude in Section 9.

2 SENTIMENT ANALYSIS IN SOFTWARE
ENGINEERING

Sentiment analysis is the task of mining the positive or negative

opinions and emotions conveyed by text [34]. Psychologists have

worked for decades at the definition of theoretical model for emo-

tions [21, 39, 42]. Regardless of the specific taxonomy, emotions

can be mapped to the polarity dimension, i.e., classified as posi-

tive, negative, or neutral. This holds true also for other states of

the affective spectrum, such as opinions, which are traditionally

investigated by research in sentiment analysis.

Sentiment analysis is a consolidated research field, and a plethora

of tools are nowadays publicly available for research purposes. In re-

cent years, a trend emerged and consolidated to leverage sentiment

analysis as a tool for empirical software engineering. Recent studies

1The dataset can be downloaded from: https://doi.org/10.6084/m9.figshare.11604597

applied sentiment analysis to Stack Overflow, in order to define

empirically-driven guidelines for successful question-writing in

technical question and answering sites [7]. Users’ sentiment in app

reviews [24] or social media [14] was studied to support require-

ments elicitation. Developers’ emotions were studied in the context

of issue tracking to investigate their impact on issue-fixing time [27]

or to understand how emotions are communicated in collaborative-

software development [13]. Opinion mining on Stack Overflow was

leveraged to support the development of recommender systems for

software libraries [22, 48].

General-purpose sentiment analysis tools have been trained on

movie reviews [44] or social media texts [47]. In spite of their

popularity, there is a general consensus in the research community

about the negative results obtained when using such tools in SE [19,

29]. In our previous work [29], we manually investigated a dataset

of 800 posts from Stack Overflow, reporting domain-specific lexicon

as the main cause for false positives in negative sentiment detection.

Jongeling and colleagues [19] compared the predictions of widely

used off-the-shelf sentiment analysis tools, showing not only how

these tools disagree with human annotation of developers’ emotions

and opinions, but also how they disagree with each other. They

conclude advocating in favor of SE-tuning of sentiment analysis

tool to allow reliable empirical studies.

To overcome these limitations, researchers recently started to

develop their own SE-specific tools [5, 11, 22, 35, 48]. At the time of

this study, we identified four of the most widely used, SE-specific

tools available for research use (see Section 3). By replicating the

original study of Jongeling et al., our benchmark study [30] pre-

sented at MSR 2018 investigated to what extent fine-tuning senti-

ment analysis tools for the software engineering domain do succeed

in improving the accuracy of emotion detection. The results show

that fine-tuning of tools on SE-related text does improve the perfor-

mance of sentiment classification, provided that the train set used

for retraining are built following guidelines grounding on theoreti-

cal models of affect. The study was performed in a within-platform

setting, that is the train and test sets used for assessing the per-

formance of classifiers based on machine-learning were collected

on the same collaborative development platform. In the current

study, we partially replicate the experimental setting of the two

previous studies [19, 30]. The goal is to further advance the state

of the art by addressing the problem of using SE-specific tools in a

cross-platform setting, that is when a gold standard dataset is not

available for retraining.

3 SE-SPECIFIC SENTIMENT ANALYSIS TOOLS

State-of-the-art approaches to sentiment analysis treat subjectivity

and polarity detection as text classification problems. The existing

tools implement two main approaches. The first one exploits ma-

chine learning algorithms for training supervised classifiers based

on textual features. Such features are typically based on words

occurring in the documents (i.e., tokens, stems, lemmata) or syn-

tactic features as part-of-speech tags. Often, textual features are

extracted using n-grams, i.e., sequences of n contiguous words [37].

Such approaches mainly rely on state-of-the-art machine learning

algorithms. Recently, researchers also leveraged deep learning [50]

159

in combination with emoji-based vector representations of docu-

ments [11]. On the other hand, lexicon-based methods [45] exploit

the prior sentiment polarity of words in a text, that is the word pos-

itive, negative, or neutral polarity based on large lexicons of words

annotated with scores indicating their positive or negative semantic

orientation. The overall sentiment of a text is then computed based

on the prior polarity of the words occurring in it. However, due to

the effect of contextual valence shifters, such as intensifiers (e.g.,

adverbs as "very") or negations (e.g., "not"), the prior polarity of

a given word might not match the actual sentiment of the author.

Therefore, lexicon-based approaches are usually integrated with

additional rules to adjust the prior polarity of words based on the

effect of intensifiers and negations.

In this study, we assess the performance of four tools that are pub-

licly available at the time of writing. Specifically, Senti4SD and Sen-

tiCR leverage supervised machine-learning, while SentiStrength-SE

and DEVA implement a lexicon-based approach.

Senti4SD [6] is our own supervised polarity classifier, which

leverages a suite of features based on Bag of Words (BoW), senti-

ment lexicons, and semantic features based on word embedding.

Along with the toolkit, we distribute a classification model, trained

and validated on a gold standard of about 4K questions, answers,

and comments from Stack Overflow, and manually annotated for

sentiment polarity. Furthermore, the toolkit provides a training

method that enables the customization of the classifier using a gold

standard as input. Compared to the performance obtained by Sen-

tiStrength on the same Stack Overflow test set, Senti4SD reduces

the misclassifications of neutral and positive posts as emotionally

negative (F1=.87). A good performance (F1=.84) is also achieved

with a minimal set of training documents. For this study, we use

the Python version of Senti4SD [8].

SentiCR [2] is a supervised tool that leverages a feature vec-

tor generated by computing term frequency–inverse document

frequency (tf-idf) for Bag-of-Words (BoW) extracted from the in-

put text. SentiCR implements basic preprocessing of the raw input

text to expand contractions, handle negations and emoticons, re-

move stop-words, derive word stems, and remove code snippets.

Furthermore, it performs SMOTE to handle the class imbalance in

the training set. The currently distributed version implements a

training approach based on Gradient Boosting Tree and requires

a training set as an input in order to retrain the model and use

it on the target document collection. A mean accuracy of 83%, a

precision of .68, and a recall of .58 are reported on a gold standard

of 2,000 code-review comments.

SentiStrength-SE [17] is built upon theAPI of SentiStrength [47].

It leverages amanually adjusted version of the SentiStrength lexicon

and implements ad hoc heuristics to correct the misclassifications

observed when running it on a subset of the dataset of Ortu et

al. [33]. The sentiment scores of words in the lexicon were manu-

ally adjusted to reflect the semantics and neutral polarity of domain

words such as "support" or "default." As a result, SentiStrength-SE

outperforms SentiStrength on technical texts.

DEVA [18] leverages a lexicon-based approach for the identi-

fication of both emotion activation (arousal) and polarity from

text. To this end, the tool uses two separate dictionaries devel-

oped by exploiting a general-purpose lexicon as well as one spe-

cific for software engineering text. To further increase its accuracy,

Table 1: Datasets included in our benchmark, with distribu-

tion of polarity classes.

Dataset
Overall Polarity Classes

documents Neutral Positive Negative

GitHub 7,122 3,022 (43%) 2,013 (28%) 2,087 (29%)

Jira [33] 5,869 3,955 (67%) 1,128 (19%) 786 (14%)

Stack Over-

flow [6]

4,423 1,694 (38%) 1,527 (35%) 1,202 (27%)

DEVA also includes several heuristics, some of which are borrowed

from SentiStrength-SE. For the empirical evaluation, a ground-truth

dataset was built, consisting of 1,795 Jira issue comments, manually

annotated by three human raters, on which DEVA was found to

achieve a precision of .82 and a recall of .79.

4 ANNOTATED DATASETS

The quality of the gold standard largely impacts the classification

performance, regardless of the machine learning approach [1, 46].

As for sentiment analysis, we found that SE-specific customization

might not guarantee a reasonable accuracy if ad hoc annotation is

performed [30]. In fact, ad hoc annotation consists of asking the

raters to provide polarity labels according to their subjective percep-

tion of the semantic orientation of the text [2, 23]. In our previous

benchmarking study [30], we provide evidence that the absence

of clear guidelines for annotation leads to noisy gold standards,

thus resulting in unreliable model training and testing. As such, we

argue that reliable sentiment analysis in software engineering is

nonetheless possible, provided that manual annotation of gold stan-

dards is supported by theoretical models of emotion. In line with

our previous findings, in this study, we employ two model-driven

datasets from Stack Overflow and Jira (described next), consistently

annotated according to the same theoretical framework [42]. As a

third dataset, we manually labeled over 7K comments from GitHub

pull requests and commits, following the same annotation schema

and guidelines used in [6] as detailed next. In Table 1, we report

the overall number of documents2 included in each dataset with

the distribution of labels for each polarity class.

The Stack Overflow dataset [6] consists of 4,423 posts, includ-

ing questions, answers, and comments manually annotated with

polarity labels by twelve trained coders with a background in Com-

puter Science. The coders were trained to explicitly indicate a po-

larity label for each post according to the emotion detected, based

on the labels included in the Shaver framework [42]. Each post was

annotated by three raters and received the polarity gold label based

on majority voting. The gold standard resulting from this procedure

is well-balanced, with 35% of posts conveying positive emotions,

27% presenting negative emotions, and 38% of posts labeled as neu-

tral, denoting the absence of emotions. A Cohen’s [12] 𝜅 of .74 is
observed, indicating a substantial inter-rater agreement [49].

The Jira dataset [33] includes about 6,000 issue comments and

sentences authored by software developers of popular open-source

software projects, such as Apache and Spring. The Jira dataset is

2In the remainder of the paper, we will use the term ‘document’ to refer to the text
items (posts or comments) in our datasets.

160

originally distributed with the six emotion labels from the Shaver et

al. framework [42] (i.e., love, joy, surprise, anger, fear, and sadness),

whereas this study focuses on emotion polarity (i.e., the positive,

negative, or neutral valence conveyed by texts). As such, we use an

approach consistent with the labeling guidelines adopted for the

Stack Overflow gold standard described above, thus resulting in

two homogeneous benchmarking datasets grounded on the same

emotion model. Specifically, we translate positive emotions, i.e.,

love and joy, into a positive polarity label. Similarly, sadness, anger,

and fear are mapped to the negative polarity class. Instead, surprise

cases are discarded as this emotion label could be either consid-

ered positive or negative, depending on the expectations of the

author of a text. Finally, the absence of emotions defines neutral

cases. Unlike the Stack Overflow dataset, the Jira gold standard is

not well-balanced, with 19% of posts conveying positive emotions,

14% conveying negative emotions, and 67% labeled as neutral. The

authors do not assess the 𝜅 agreement for the polarity classes, as
they originally provide labels for discrete emotions. Conversely,

they report the 𝜅 for the emotion annotation, with values ranging
from absence of agreement for anger to moderate agreement for

love, for which the highest value observed is 𝜅 = .55.
The GitHub dataset includes about 7,000 pull request and com-

mit comments. The dataset is well-balanced, is a desirable property

for a training set [16], with 28% and 29% of posts conveying positive

and negative emotions, respectively. The remaining 43% of posts

are labeled as neutral, as they do not convey emotions. The dataset

has been annotated by three of the authors following the guide-

lines for annotation defined for the creation of the Stack Overflow

dataset [6]. As a unit of analysis, we consider the entire comment,

i.e., the raters were requested to annotate the sentiment conveyed

by the whole comment. Specifically, the raters were trained to pro-

vide a polarity label based on the emotion detected according to the

Shaver model, following the emotion-polarity mapping described

for the Stack Overflow and Jira datasets.

We built our GitHub gold standard using the iterative approach

depicted in Figure 1. Specifically, we designed the protocol for

our annotation study following the methodology adopted in the

study on anger in collaborative software development [13]. We

extracted the annotation sample for each iteration from the dataset

of comments created to study the sentiment of security discussion in

GitHub [36]. We started with an annotation sample of 4k comments,

randomly extracted from the initial dataset of 116k comments. Each

comment was labeled by two raters independently. We observed an

almost perfect inter-rater agreement (𝜅 = .84). Once the individual
annotation was completed, we assigned the manually provided gold

label to all the comments for which the two raters agreed. Then,

the three raters discussed the 340 disagreement cases in a plenary

meeting: we include in the gold standard all those comments for

which the initial disagreement is resolved through discussion (298)

and discard the others (42, corresponding to 1.05% of the annotation

sample). Furthermore, 27 duplicate comments were removed.

As a result of this first step, we obtained 3,931 comments for

which the three raters agreed both on the presence of emotions and

on its polarity. Given the unbalanced distribution of the obtained

dataset (see Figure 1), we implemented the subsequent two annota-

tion steps to collect more positive and negative comments. Since

manual labeling is a time-consuming activity, we accelerated the

process by leveraging a semi-automatic approach involving manual

confirmation of automatically obtained polarity labels. Using the ini-

tial core of 3,931 comments, we retrained the polarity classification

model using the Senti4SD toolkit, as it reported a better precision

than SentiCR for both the positive and negative classes. Specifically,

we observe a precision of .61 (Senti4SD) vs. .34 (SentiCR) for the

negative class. Conversely, the precision for the positive class is

comparable (.89 for Senti4SD vs. 88 for SentiCR). The reason be-

hind this choice is that, by optimizing for precision, we reduce the

number of neutral sentences misclassified as expressing sentiment,

thus avoiding to annoy the raters with useless annotation of neutral

cases. The performance of this classification model is reported in

Figure 1 (Precision = .79, Recall =.59, F1-measure = .62).

In the second step, we applied this classifier to the remaining

112k comments of the original dataset by Pletea et al., excluding all

cases that were already included in the first annotation sample. We

obtained an automatically labeled dataset, from which we randomly

extracted a new annotation sample of 600 positive and 600 negative

comments. To avoid any bias, the annotators were not provided

with the outcome of the classifier. As such, their annotation was

done only based on the text, as in the first round. Again, the raters

performed the annotation individually. They confirmed the classi-

fier label for 343 positive and 550 negative comments. These new

confirmed cases were added to the gold standard, resulting in an en-

riched set of 4,809 comments, of which 63% labeled as neutral, 19%

as positive, and 18% as negative. To further enrich and balance the

gold standard, we repeated the training with this new set, observing

an improved performance of the classification model (Precision =

.88, Recall =.82, F1-measure = .84). We use this second classifier to

label the remaining 111k comments and repeat the manual confir-

mation step for 3,000 comments. This third annotation step resulted

in 1,124 positive and 1,204 additional negative comments. The final

GitHub gold standard includes 7,122 comments that we use for this

study.

5 STUDY DESIGN

Experimental Setting. To answer RQ1 and RQ2, we assess the

performance on the three gold standard datasets of the two super-

vised tools (Senti4SD and SentiCR), which can be retrained, and

the two lexicon-based classifiers (SentiStrength-SE and DEVA), for

which retraining is not possible. To enable comparison with the

within-platform benchmark [30], we replicate the former experi-

mental setting. Specifically, we split each gold set into training (70%)

and test (30%) sets by performing stratified sampling with scikit-

learn.3 We evaluate the performance of all tools on the held-out

test sets. As for the supervised classifiers, we first use the training

set to retrain them using the methods provided by each toolkit;

then, their performance is assessed in a cross-platform setting, by

using the test set from the other experimental datasets (e.g., we

train on the 70% train set of Stack Overflow and test on the 30% test

sets from Jira and GitHub). Furthermore, we run twice the train

and test for Senti4SD, because the feature set of Senti4SD can be

customized. As such, we also run the train/test steps by removing

the keyword-based features, that is, the uni- and bi-grams Bag of

Words (BoW). The reason behind this choice is to understand the

3https://scikit-learn.org/stable/index.html

161

Figure 1: Creating the Gold Standard through manual anno-

tation of polarity classes.

extent to which the interaction style, i.e., the specific lexicon or

jargon observed in a given platform, has an impact on the perfor-

mance. We cannot replicate this evaluation for SentiCR as it only

exploits features based on BoW.

In this study, we aim to compare the results we achieved when

training/testing supervised approaches on different datasets (cross-

platform) with the performance observed when such approaches

are trained and tested on the same dataset (within-platform), as

done in our previous work [30]. However, even minor changes in

the settings used in the two studies may lead to major differences in

the results. To address this problem, we rerun the training/testing in

the within-platform setting for comparison, following the approach

we previously adopted and described in [30] and observed negligi-

ble differences in the tool performances. By doing so, all possible

confounding factors are controlled, and we can be confident that

the potential differences between the two scenarios (within- vs.

cross-platform settings) would be due to the used training sets.

To address RQ3, we analyze the learning curves of the super-

vised tools in a within-platform setting. The goal of this evaluation

is to identify the minimum size of the gold standard that makes

re-training convenient for supervised tools as compared to using

lexicon-based, non-customizable ones. The learning curves enable

us to visually assess how the size of the training set influences the

classification performance.We start by training the supervised tools

using a subset of 5% of the original training set for each platform. At

each step, we increment the training set size by 5%. At every itera-

tion, the subset for training is extracted from scratch with stratified

sampling, and the performance is assessed on the entire held-out

30% test set from the same platform. Given the unbalanced distribu-

tion of the Jira dataset, we repeated the performance of evaluation

twice for Senti4SD, with and without performing data resampling.

To enable comparison with SentiCR, we use SMOTE [10] by repli-

cating the setting described by its authors [2].

Metrics. We report the performance of each sentiment analysis

tool in terms of precision, recall, and F1-measure for all the three

polarity classes. This choice is in line with previous research [19, 30]

and is consistent with the standard methodology adopted for bench-

marking of sentiment analysis systems as well as more general text

categorization approaches in evaluations campaigns [9].

For the sake of completeness, we report the overall performance

using both micro- and macro-averaging as aggregated metrics.

Micro-averaging is known to be influenced by the performance

on the majority class [41]. Conversely, the ability of a classifier

to correctly identify items belonging to classes with few training

instances is correctly assessed by the macro-average. Given the

unbalanced distribution of the Jira dataset, in this study we rely

on the macro-average, i.e., precision and recall are first evaluated

locally for each class, and then globally by averaging the results of

the different categories.

Furthermore, we use the weighted kappa (𝜅) [12, 49] to assess
both the agreement with gold labels (RQ1) and the agreement

among the three tools (RQ2). We distinguish between mild disagree-

ment (weight = 1), i.e., the disagreement between negative/positive

and neutral annotations, and strong disagreement (weight = 2),

i.e., the disagreement between positive and negative judgments.

We interpret 𝜅 as follows [49]: 𝜅 values less or equal to zero indi-
cate that agreement is less than chance; the agreement is slight if

0.01 ≤ 𝜅 ≤ 0.20, fair if 0.21 ≤ 𝜅 ≤ 0.40, moderate if 0.41 ≤ 𝜅 ≤ 0.60,
substantial if 0.61 ≤ 𝜅 ≤ 0.80 and almost perfect if 0.81 ≤ 𝜅 ≤ 1.

Both the weighted scheme and the interpretation of 𝜅 are the same
adopted in the previous studies [19, 30].

6 RESULTS

6.1 Performance of SE-specific tools in
cross-platform settings

RQ1 - To what extent do different SE-specific sentiment analysis

tools agree with the emotions of software developers when used as

‘off-the-shelf’ tools in a cross-platform setting? In Table 2, we report

the performance in the cross-platform setting of the four tools, both

by polarity class and overall. In bold we highlight the best values for

each metric. For the sake of comparison against the within-platform

setting, we also report the performance obtained by replicating the

our previous study [30] (reported in grey). For each dataset, we

highlighted in Italic the differences with respect to the within-

platform setting. Furthermore, we report the tool agreement with

the manual labeling (see Table 3) in terms of both weighted Cohen

𝜅 and the percentage of cases in which each tool issues the correct
prediction (perfect agreement with the gold label) as well as the

percentage of wrong predictions (severe/mild disagreements).

In the cross-platform setting, we observe a drop in the perfor-

mance of the supervised tools SentiCR and Senti4SD on all datasets,

compared to the within-platform setting. Conversely to what is

observed in the within-platform setting, the two lexicon-based tools

outperform the supervised approaches when these are retrained in

a cross-platform condition. Exceptions are the cross-platform set-

ting with training performed on Stack Overflow and test on GitHub,

where Senti4SD achieve the best performance (macro F1 =.82), and

the setting with training performed on GitHub and test on Stack

Overflow, where Senti4SD and SentiStrength-SE both achieve the

162

Table 2: Performance of SE-specific sentiment analysis tools in the cross-platform setting. For each setting, we highlight the

best values for each metric in bold and the overall performance in Italic. The within-platform setting is reported in grey.

Setting Train set
Polarity

Class

Senti4SD Senti4SD (no BoW) SentiCR SentiStrength-SE DEVA

P R F1 P R F1 P R F1 P R F1 P R F1

Test set: GitHub

Within-platform GitHub

Negative .92 .90 .91

–

.90 .63 .74 .79 .77 .78 .65 .68 .67

Neutral .90 .93 .92 .76 .94 .84 .78 .86 .82 .83 .71 .77

Positive .95 .91 .93 – .89 .85 .87 .86 .76 .81 .69 .81 .75

Micro-avg. .92 .92 .92 .82 .82 .82 .80 .80 .80 .73 .73 .73

Macro-avg. .92 .92 .92 .85 .81 .82 .81 .80 .80 .72 .73 .73

Cross-platform Stack Overflow

Negative .79 .50 .61 .75 .83 .79 .78 .34 .47 .79 .77 .78 .65 .68 .67

Neutral .71 .85 .77 .82 .78 .80 .60 .93 .73 .78 .86 .82 .83 .71 .77

Positive .76 .84 .80 .88 .85 .86 .86 .67 .75 .86 .76 .81 .69 .81 .75

Micro-avg. .74 .74 .74 .82 .82 .82 .68 .68 .68 .80 .80 .80 .73 .73 .73

Macro-avg. .76 .84 .80 .82 .82 .82 .75 .65 .65 .81 .80 .80 .72 .73 .73

Differences with the within-platform setting
Micro-avg. -.18 -.18 -.18 -.10 -.10 -.10 -.14 -.14 -.14

– –
Macro-avg. -.16 -.08 -.12 -.10 -.10 -.10 -.10 -.16 -.17

Cross-platform Jira

Negative .84 .51 .63 .86 .50 .64 .84 .24 .37 .79 .77 .78 .65 .68 .67

Neutral .59 .96 .73 .62 .95 .75 .51 .98 .67 .78 .86 .82 .83 .71 .77

Positive .93 .45 .61 .91 .57 .70 .92 .35 .51 .86 .76 .81 .69 .81 .75

Micro-avg. .68 .68 .68 .71 .71 .71 .58 .58 .58 .80 .80 .80 .73 .73 .73

Macro-avg. .79 .64 .66 .79 .67 .69 .76 .52 .52 .81 .80 .80 .72 .73 .73

Differences with the within-platform setting
Micro-avg. -.24 -.24 -.24 -.21 -.21 -.21 -.24 -.24 -.24

– –
Macro-avg. -.13 -.28 -.26 -.13 -.25 -.23 -.09 -.29 -.30

Test set: Stack Overflow

Within-platform Stack Overflow

Negative .81 .87 .84

–

.79 .74 .76 .74 .79 .76 .67 .79 .73

Neutral .86 .81 .84 .80 .82 .81 .76 .76 .76 .84 .68 .75

Positive .91 .92 .92 – .88 .90 .89 .89 .84 .86 .85 .90 .87

Micro-avg. .87 .87 .87 .83 .83 .83 .80 .80 .80 .79 .79 .79

Macro-avg. .86 .87 .87 .82 .82 .82 .80 .80 .79 .79 .79 .78

Cross-platform GitHub

Negative .71 .72 .72 .71 .80 .75 .72 .41 .52 .74 .79 .76 .67 .79 .73

Neutral .71 .80 .75 .79 .75 .77 .64 .88 .74 .76 .76 .76 .84 .68 .75

Positive .92 .78 .84 .90 .85 .87 .84 .78 .81 .89 .84 .86 .85 .90 .87

Micro-avg. .77 .77 .77 .80 .80 .80 .72 .72 .72 .80 .80 .80 .79 .79 .79

Macro-avg. .78 .77 .77 .80 .80 .80 .73 .69 .69 .80 .80 .79 .79 .79 .78

Differences with the within-platform setting
Micro-avg. -.10 -.10 -.10 -.07 -.07 -.07 -.11 -.11 -.11

– –
Macro-avg. -.09 -.10 -.10 -.06 -.07 -.07 -.09 -.13 -.13

Cross-platform Jira

Negative .77 .34 .48 .79 .32 .46 .71 .13 .22 .74 .79 .76 .67 .79 .73

Neutral .56 .93 .70 .57 .93 .70 .46 .97 .62 .76 .76 .76 .84 .68 .75

Positive .96 .65 .78 .92 .70 .79 .96 .38 .54 .89 .84 .86 .85 .90 .87

Micro-avg. .68 .68 .68 .68 .68 .68 .54 .54 .54 .80 .80 .80 .79 .79 .79

Macro-avg. .76 .64 .65 .76 .65 .65 .71 .49 .46 .80 .80 .79 .79 .79 .78

Differences with the within-platform setting
Micro-avg. -.19 -.19 -.19 -.19 -.19 -.19 -.29 -.29 -.29

– –
Macro-avg. -.10 -.23 -.22 -.10 -.22 -.22 -.11 -.33 -.36

Test set: Jira

Within-platform Jira

Negative .75 .60 .67

–

.83 .63 .72 .64 .72 .68 .52 .69 .59

Neutral .87 .89 .88 .88 .91 .89 .93 .81 .87 .96 .75 .83

Positive .76 .78 .77 – .79 .81 .80 .69 .93 .79 .63 .90 .74

Micro-avg. .83 .83 .83 .86 .86 .86 .82 .82 .82 .77 .77 .77

Macro-avg. .79 .76 .77 .83 .78 .80 .75 .82 .78 .69 .78 .72

Cross-platform GitHub

Negative .57 .64 .61 .57 .61 .59 .75 .56 .64 .64 .72 .68 .52 .69 .59

Neutral .89 .79 .84 .88 .80 .84 .90 .87 .88 .93 .81 .87 .96 .75 .83

Positive .65 .85 .74 .65 .81 .72 .71 .91 .8 .69 .93 .79 .63 .9 .74

Micro-avg. .78 .78 .78 .78 .78 .78 .84 .84 .84 .82 .82 .82 .77 .77 .77

Macro-avg. .70 .76 .73 .70 .74 .71 .79 .78 .77 .75 .82 .78 .69 .78 .72

Difference with the within-platform setting
Micro-avg. -.05 -.05 -.05 -.05 -.05 -.05 -.02 -.02 -.02

– –
Macro-avg. -.09 – -.04 -.09 -.02 -.06 -.04 – -.03

Cross-platform Stack Overflow

Negative .44 .26 .33 .50 .69 .58 .16 .03 .05 .64 .72 .68 .52 .69 .59

Neutral .83 .79 .81 .92 .73 .81 .75 .94 .83 .93 .81 .87 .96 .75 .83

Positive .57 .85 .68 .63 .90 .74 .72 .49 .58 .69 .93 .79 .63 .90 .74

Micro-avg. .73 .73 .73 .76 .76 .76 .73 .73 .73 .82 .82 .82 .77 .77 .77

Macro-avg. .62 .63 .61 .68 .78 .71 .54 .49 .49 .75 .82 .78 .69 .78 .72

Differences with the within-platform setting
Micro-avg. -.10 -.10 -.10 -.07 -.07 -.07 -.13 -.13 -.13

– –
Macro-avg. -.17 -.13 -.16 -.11 +.02 -.06 -.29 -.29 -.31

163

Table 3: Agreement of SE-specific tools with manual la-

belling. The within-platform setting for each dataset is re-

ported in gray.

Train set Classifier

Agreement metrics

k
Perfect Disagreement

Agreement Severe Mild

Test set: GitHub

none
Senti-Strength-SE .71 80% 4% 16%

DEVA .58 73% 9% 18%

Stack

Overflow

Senti4SD .61 74% 5% 21%

SentiCR .53 68% 3% 29%

Jira
Senti4SD .52 68% 2% 30%

SentiCR .35 58% 1% 41%

GitHub
Senti4SD .88 91% 1% 8%

SentiCR .74 83% 2% 15%

Test set: Stack Overflow

none
Senti-Strength-SE .74 80% 2% 18%

DEVA .71 79% 4% 17%

GitHub
Senti4SD .69 77% 3% 20%

SentiCR .58 72% 5% 23%

Jira
Senti4SD .55 68% 1% 31%

SentiCR .31 54% 1% 45%

Stack

Overflow

Senti4SD .83 87% 1% 12%

SentiCR .76 82% 3% 15%

Test set: Jira

none
Senti-Strength-SE .69 82% 1% 17%

DEVA .6 77% 2% 21%

GitHub
Senti4SD .61 78% 1% 21%

SentiCR .68 84% 1% 16%

Stack

Overflow

Senti4SD .47 73% 2% 25%

SentiCR .33 73% 2% 25%

Jira
Senti4SD .68 83% – 17%

SentiCR .72 86% – 14%

best performance (macro F1 = .80). The highest drop in performance

is observed for SentiCR when Jira is used for training and GitHub

(macro F1 = .52, representing a drop of 30% with respect to the

within-platform setting) and Stack Overflow for testing (macro F1

= .46, indicating a drop of 36%). As a further confirmation of the

results in Table 2, we observe a substantial agreement with the

manual annotation for SentiStrength-SE (see Table 3). Conversely,

the𝜅 values in the cross-platform setting indicate a moderate to sub-

stantial agreement for Senti4SD and DEVA, and a fair to moderate

agreement for SentiCR.

As for Senti4SD, a slight increase in performance is reported

when BoW is excluded from the feature set in most settings (see

Table 2). For the GitHub test set, the macro F1 of Senti4SD raises

from .80 (with BoW) to .82 (without BoW) when training on Stack

Overflow, and from .66 (with BoW) to .69 (without BoW) when

training on Jira. We observe similar results for Stack Overflowwhen

GitHub is used to train and for the Jira test set with training on

Stack Overflow. Consistently, we observe the highest drop in macro-

average from the within- to the cross-platform setting for SentiCR

(-30%, -36%, and -31% decrease in macro F1 for the GitHub, Stack

Overflow, and Jira test sets, respectively), which exploits a fixed

feature set composed on uni- and bi-grams. This provides evidence

of the lower ability to generalize of BoW features in cross-dataset

settings, thus confirming the concerns of the NLP community about

the risk of overfitting of model relying on n-gram features [20].

Looking at the performance of each polarity class, we observe that

the drop in performance is mainly due to a drop in precision for

the neutral class and recall for the negative and positive classes.

This evidence suggests that positive and negative lexicon might

be platform-dependent and, therefore, we lose recall for the non-

neutral classes in cross-platform settings. This also reflects in the

mild disagreement (i.e., the confounding between the positive and

neutral, or between the negative and neutral classes) being the main

cause of disagreement. Conversely, severe disagreement occurs at

most in the 9% of cases, for DEVA on GitHub (see Table 3).

RQ2 - To what extent do results from different SE-specific senti-

ment analysis tools agree with each other when used as ‘off-the-shelf’

tools in a cross-platform setting? - In Table 4, we report the paired

comparisons, using the same measures of agreement between each

pair of tools. SentiStrength-SE and DEVA also show a substantial

to almost perfect agreement with each other, ranging from 𝜅 = .65
for GitHub to 𝜅 = .79 for Stack Overflow, and 𝜅 = .81 for Jira.
This is somewhat expected, considering that they share the same

lexical resources and approach for polarity classification [17, 18].

The lowest agreement scores are observed for the lexicon-based

tools and SentiCR, which is purely based on BoW. Senti4SD is in

the middle of this scale, showing a moderate to substantial agree-

ment with lexicon-based tools, probably because it relies on both

lexicon-based features and BoW.

6.2 Error Analysis

We complement the quantitative analysis with a content analy-

sis aimed at assessing the main causes of misclassification. We

randomly sampled a subset of 320 texts (statistically significant

sample size at 95% confidence level) from the documents for which

both supervised classifiers yield a wrong prediction. Two of the

authors independently labeled half of the cases and assigned a la-

bel choosing among the error categories identified in our previous

benchmark study [30] (see Table 5). Then, they jointly discussed

all cases to confirm the error labels. The goal of this analysis is

to assess if the open challenges in sentiment analysis of develop-

ers’ communication traces in a cross-platform setting are the same

highlighted in a within-platform condition.

We found that the main cause of misclassification are general

errors, occurring 68% of times. Such errors are caused by the in-

ability of the tools to correctly deal with some textual cues. In

most cases, this is due to lexical cues that are not recognized as

either positive or negative because they do not occur frequently

enough in the train set in order to hold sufficient predictive power.

A special case is emoticons, which may have platform-dependent

representation (e.g., ":smiley:" vs. ":-)"). General errors also occur

due to wrong preprocessing (e.g., emoticons erroneously treated as

non-unique tokens and rather split into its constituent characters),

wrong spelling of words, or wrong negation handling.

The second cause for misclassification is the subjectivity in sen-

timent annotation (11%). Sentiment labeling is an inherently sub-

jective task: even in the presence of clear annotation guidelines,

164

Table 4: Agreement of SE-specific tools with each other

in cross-platform settings. The within-platform setting for

each dataset is reported in gray.

Train set Classifier

Agreement metrics

k
Perfect Disagreement

Agreement Severe Mild

Test set: GitHub

– SentiStrength-SE vs DEVA 0.65 78% 7% 15%

Stack

Overflow

Senti4SD vs. SentiCR 0.48 68% 3% 29%

Senti4SD vs. SentiStrength-SE 0.58 73% 5% 22%

Senti4SD vs. DEVA 0.46 65% 8% 27%

SentiCR vs. SentiStrength-SE 0.51 68% 3% 29%

SentiCR vs. DEVA 0.47 64% 5% 31%

Jira

Senti4SD vs. SentiCR 0.49 78% 0% 22%

Senti4SD vs. SentiStrength-SE 0.51 69% 2% 29%

Senti4SD vs. DEVA 0.38 58% 4% 38%

SentiCR vs. SentiStrength-SE 0.39 63% 1% 36%

SentiCR vs. DEVA 0.30 53% 2% 45%

GitHub

Senti4SD vs. SentiCR 0.75 83% 2% 15%

Senti4SD vs. SentiStrength-SE 0.71 81% 4% 15%

Senti4SD vs. DEVA 0.59 73% 8% 19%

SentiCR vs. SentiStrength-SE 0.65 77% 4% 19%

SentiCR vs. DEVA 0.56 72% 7% 21%

Test set: Stack Overflow

– SentiStrength-SE vs DEVA 0.79 85% 4% 11%

GitHub

Senti4SD vs. SentiCR 0.59 73% 5% 22%

Senti4SD vs. SentiStrength-SE 0.69 76% 2% 22%

Senti4SD vs. DEVA 0.64 74% 5% 21%

SentiCR vs. SentiStrength-SE 0.57 70% 4% 26%

SentiCR vs. DEVA 0.55 69% 7% 24%

Jira

Senti4SD vs. SentiCR 0.44 74% 1% 25%

Senti4SD vs. SentiStrength-SE 0.53 65% 1% 34%

Senti4SD vs. DEVA 0.49 62% 2% 36%

SentiCR vs. SentiStrength-SE 0.33 55% 1% 44%

SentiCR vs. DEVA 0.29 49% 1% 50%

Stack Overflow

Senti4SD vs. SentiCR 0.75 82% 4% 14%

Senti4SD vs. SentiStrength-SE 0.79 83% 2% 15%

Senti4SD vs. DEVA 0.73 80% 5% 15%

SentiCR vs. SentiStrength-SE 0.72 80% 4% 16%

SentiCR vs. DEVA 0.68 79% 7% 14%

Test set: Jira

– SentiStrength-SE vs DEVA 0.81 90% 3% 7%

GitHub

Senti4SD vs. SentiCR 0.71 84% 1% 15%

Senti4SD vs. SentiStrength-SE 0.71 83% 2% 15%

Senti4SD vs. DEVA 0.63 79% 3% 18%

SentiCR vs. SentiStrength-SE 0.76 87% 2% 11%

SentiCR vs. DEVA 0.69 83% 3% 14%

Stack

Overflow

Senti4SD vs. SentiCR 0.38 74% 1% 24%

Senti4SD vs. SentiStrength-SE 0.61 79% 3% 18%

Senti4SD vs. DEVA 0.54 75% 4% 21%

SentiCR vs. SentiStrength-SE 0.33 69% 2% 29%

SentiCR vs. DEVA 0.29 65% 3% 32%

Jira

Senti4SD vs. SentiCR 0.77 89% 0% 11%

Senti4SD vs. SentiStrength-SE 0.70 84% 1% 15%

Senti4SD vs. DEVA 0.63 79% 2% 19%

SentiCR vs. SentiStrength-SE 0.76 87% 1% 12%

SentiCR vs. DEVA 0.69 82% 1% 17%

the label assigned to a given text might be influenced by the per-

sonality traits of the human annotator [40]. In line with previous

results [30], we observe that in some cases, the raters are conserva-

tive and provide a neutral label for mild expressions of emotions or

opinions.

Furthermore, the specific research goal and applications of sen-

timent analysis might be another driver for labeling decisions. It

is the case of polar facts, which are inherently desirable or unde-

sirable facts, such as code patch acceptance (e.g., "fixed") or bug

reports (e.g., "seems to be failing for a different reason now"), ex-

pressed with a neutral sentiment. Polar facts are the third cause of

Table 5: Distribution of error categories

Error category #cases (%)

General error 214 (68%)

Subjectivity in annotation 35 (11%)

Polar facts 25 (8%)

Politeness 19 (6%)

Implicit sentiment polarity 16 (5%)

Figurative language 6 (2%)

Pragmatics 6 (2%)

Overall 320

misclassification in the cross-platform setting (8%), as they might

be inconsistently labeled across datasets, in line with the specific

goals of the authors. For example, polar facts are often labeled as

non-neutral in Jira. As an example, sentences such as "This seems

to be failing for different reasons" or "This might be a bug indeed"

are labeled as negative even if a neutral style is used (absence of

emotions), probably due to the original intention of the authors of

the Jira dataset to analyze the role of sentiment in issue tracking and

its correlation with issue fixing time [27]. Polar facts are reported

as the main cause of error in the within-platform setting [30].

The misclassification of sentences conveying politeness is a cause

of error in 6% of cases, due to politeness expression such as "Thanks!"

or "Sorry for" being inconsistently labeled across-dataset. As an

example, in the Stack Overflow and GitHub datasets, politeness is

considered neutral unless a clear expression of emotion is present

in the text. This choice is in line with the evidence provided by

computational linguists that emotion lexicon can be used for polite-

ness expressions. This is typical of the so-called behabitives speech

acts [3], in which no real feelings are expressed, but still emotional

words are employed to convey other communicative intentions

(e.g., "I am afraid this does not work"). As for Jira, thanking expres-

sion receive a positive label when they are related to code change

approval (e.g., "thanks for the patch" is positive) indicating that

positive polar facts receive a positive label (the patch is satisfying),

while expression of gratitude (as in "Thanks!") are usually inter-

preted as neutral. Again, this is in line with the intention of Murgia

et al. to study how sentiment correlates with issue-fixing time [27].

In 5% of cases, the sentiment is conveyed through indirect lex-

icon (Implicit sentiment polarity). As such, these comments are

erroneously classified as neutral due to the absence of explicit lexi-

cal cues of sentiment. Finally, a few cases (2%) are misclassified due

to the inability of the classifiers to deal with figurative language, as

in the presence of humor or irony. The remaining 2% of cases are

misclassified because the classifiers are not designed to take into ac-

count pragmatics. It is the case of questions or sentences reporting

third persons’ opinions or emotions, which are correctly labeled

as neutral by humans but misclassified by the tool as positive or

negative due to the presence of emotion words.

6.3 Learning curves for supervised classifiers

RQ3 - To what extent is the performance of SE-specific sentiment

analysis tools affected by the size of the training set? - We want to

assess how many documents we need to reliably retrain a super-

vised classifier for sentiment analysis in the software engineering

domain. Accordingly, we analyze the learning curves of Senti4SD

165

(a) GitHub

(b) Jira

(c) Stack Overflow

Figure 2: Learning curves for the supervised tools evaluated

in a within-platform setting using the GitHub (a), Jira (b),

and Stack Overflow (c) datasets.

and SentiCR in a within-platform setting (see Figure 2). The perfor-

mance of the lexicon-based tools, which cannot be customized, is

reported for reference. We obtain the learning curves by plotting

the performance on the test set of models created with training

subsets of incremental size. We start by randomly sampling a subset

of 5% of the original train set, using stratified sampling to preserve

the polarity label distribution. At each iteration, we increase the

training set at a rate of 5% and assess the model performance on

the same 30% held-out test set used to address RQ1 and RQ2.

We observe that for GitHub and Stack Overflow, retraining

Senti4SD is always convenient, even with a minimal set of doc-

uments, compared to the performance of lexicon-based tools. The

nearly-optimal performance is obtained, for both datasets, with a

train set of about 1,200 documents. A different situation is observed

for Jira, which is largely unbalanced in favor of the neutral class

(67% of the dataset). In this case, retraining is beneficial only if a

larger set of documents is available (about 1,600 texts). For example,

for SentiCR more than 1,200 documents are required to outperform

SentiStrength-SE (see Figure 2.b). However, the improvement is

negligible if compared to the one observed for GitHub (see Fig-

ure 2.a) and Stack Overflow (see Figure 2.c). A possible explanation

for these results is that SentiStrength-SE was originally optimized

using a subset of the Jira gold standard as a reference [17], which

may arguably explain its very good performance on it. Another

possible explanation for this difference in the performance could

reside in the Jira dataset being unbalanced, thus making retrain-

ing not as effective as for GitHub and Stack Overflow, which are

well-balanced datasets. As such, we included an additional setting

for Jira where we performed class-balancing using SMOTE also

for Senti4SD (SMOTE is the default preprocessing for SentiCR).

This evidence suggests that even if resampling is performed before

retraining, SentiStrength-SE still outperforms the other tools. As a

further possible explanation, we hypothesize that the quality of the

gold standard, measured in terms of inter-rater agreement, is also

a major fact influencing the quality and reliability of the learned

classification model. In fact, for both GitHub and Stack Overflow, 𝜅
values indicate a substantial to almost perfect agreement, while a

lower agreement is observed for Jira (see Section 4).

7 DISCUSSION

In the following, we derive empirically-driven guidelines for reliable

sentiment analysis in SE, based on the findings of the current study.

PerformSE-specific tuning for enhanced accuracy. Domain

adaptation is a well-known problem in machine learning [4], in

general, and in sentiment analysis, in particular [38]. Our previous

benchmarking study performed in a within-platform setting on the

Stack Overflow and Jira datasets demonstrated that SE-specific tun-

ing is beneficial for ensuring reliable sentiment analysis on technical

texts [30]. We confirm these findings also on the GitHub dataset

that we developed for the purpose of enriching the benchmark in

the current study. In particular, we report comparable performance

for the lexicon-based tools SentiStrength-SE and DEVA, thus pro-

viding further evidence that reliable sentiment analysis in software

engineering is a feasible task.

Perform platform-specific tuning. The results of our bench-

mark study demonstrate how retraining across platforms does not

work well for supervised tools, thus suggesting that the definition of

‘domain’ might be even narrowed-down at the level of the specific

platform. In fact, despite our benchmark included only SE-specific

datasets, we observe a drop in performancewhen supervisedmodels

are trained and tested on data gathered from different collaborative

development environments. This suggests that semantics shifts also

occur due to platform-specific jargon and communication style. In

line with this evidence, we report better performance in the absence

of BoW-based features (i.e., for Senti4SD no BoW, see Table 2) indi-

cating the lower ability of n-grams to generalize, i.e., they might

cause overfitting to the platform-specific lexicon, thus negatively

166

affecting the performance of supervised tools. This is further con-

firmed by the results of our error analysis (see Section 6.2). As such,

whenever a gold standard is available, we recommend platform-

specific retraining to enable correct modeling of the interaction

style and lexicon of the specific platform.

Build a robust gold standard. In building a gold standard, one

open issue is the correct amount of data required for retraining a re-

liable supervised classifier. To address this question, we performed

a within-platform study and built the learning curves obtained

with training sets of incremental size. The results, depicted in Fig-

ure 2, show that learning from unbalanced, low-agreement data

might produce unsatisfying results even in a within-platform set-

ting. This claim is in line with previous findings suggesting that

the quality [1, 46] and internal consistency [30] of gold standards

are crucial properties for successful training of classifiers.

Select the appropriate tool in line with the research goals.

In the absence of a platform-specific gold standard for retraining,

unsupervised tools or ‘off-the-shelf’ use of supervised classifiers

are the only possible options. In both cases, we recommend using

a tool only if a preliminary sanity check produces satisfying re-

sults on the target platform. Specifically, we recommend to collect

and manually annotate sample data from the target platform in

order to verify the alignment between the classification output and

the manually-provided labels. Indeed, one of the most dangerous

assumptions when reusing sentiment analysis tools and datasets

is assuming agreement with the goals and sentiment conceptual-

ization as originally thought by their authors. Our error analysis

shows that even when sharing the theoretical model of emotion

(e.g., the Shaver model used for the three datasets), the human raters

may provide polarity labels based on their subjective perception or

the specific research goals. It is the case of politeness, which is la-

beled inconsistently across datasets (see Section 6.2), thus inducing

misclassification in the cross-platform settings.

8 THREATS TO VALIDITY

We are aware that the methodology adopted could produce different

results if applied to different datasets and, therefore, that the choice

of datasets to include in the benchmark might represent a threat to

conclusion validity. As such, we included all the model-driven gold

standards for sentiment annotation in software engineering that

are available at the time of writing, composed of posts (questions,

answers, and comments) from Stack Overflow and comments from

Jira. To further mitigate this threat, we built a third gold standard

dataset including comments from GitHub.

All datasets in our benchmark are built by collecting documents

from platforms that are popular and widely adopted among soft-

ware developers. As such, we included three major collaborative

software development platforms. Each platform supports differ-

ent collaborative tasks, from technical question-answering (Stack

Overflow) to issue tracking (Jira), to collaborative software develop-

ment with version control (GitHub). Given the dataset size and the

variety of tasks considered, we are reasonably confident that the

datasets included in this study are representative of the developers’

communication, thus reducing threats to external validity.

A threat to construct validity is due to sentiment analysis being

inherently affected by the subjectivity of the studied phenomenon,

i.e., emotions and opinions as conveyed in text [40]. In our pre-

vious research [30], we showed how model-driven annotation is

crucial to obtain a high-quality, reliable gold standard for train-

ing emotion polarity classifiers. Inconsistency in the annotation

guidelines might be a cause of a drop in performance per se. As

such, we addressed this threat by including in our benchmark only

model-driven datasets. Furthermore, the GitHub dataset, which

we built from scratch, is annotated following the same guidelines

and adopting the same theoretical model of emotions leveraged for

creating the Stack Overflow and Jira gold standards. This choice

reduces the risk of confounding factors due to different annota-

tion schema, thus enabling us to correctly assess the impact of the

cross-platform train-test condition.

Finally, threats to internal validity concern internal factors such

as the configuration of the parameters for the machine learning

algorithms implemented by Senti4SD and SentiCR. To mitigate this

threat, we replicated the experimental conditions under which the

tools were originally validated [6], [2], using the available training

toolkits. Furthermore, we ran again the within-platform setting to

enable a fair comparison with the results reported in our previous

research [30].

9 CONCLUSIONS

In this paper, we assessed the performance of four available SE-

specific sentiment analysis tools in a cross-platform setting. We

found that the retraining of SE-specific sentiment analysis tools

is not a viable solution when the training and test sets come from

different data sources. Conversely, better performance is observed

for lexicon-based approaches, which we recommend whenever

retraining is not possible due to the unavailability of a gold standard.

However, further evidence shows that supervised tools achieve

better performance than lexicon-based ones when retrained with

a minimal training set of about 1,000 documents, as long as the

training set is balanced and substantial inter-rater agreement is

observed. Based on our empirical findings, we derived guidelines

for reliable sentiment analysis in software engineering. Finally, we

built a dataset of over 7,000 manually annotated GitHub comments,

which we release to support future studies in the field.

In future work, we plan to further enhance the understanding

of classification performance drop under domain- and platform-

shift, by including the assessment of predictive power of features

across additional datasets. Also, we plan to assess the cross-platform

performance of approaches based on deep learning, which are not

included in this study.

10 ACKNOWLEDGMENTS

We thank Giovanna Saracino for contributing to the early stage of

this study.

REFERENCES
[1] Amritanshu Agrawal and Tim Menzies. 2018. Is “Better Data” Better than “Better

Data Miners”? On the Benefits of Tuning SMOTE for Defect Prediction (ICSE ’18).
ACM, New York, NY, USA, 1050–1061. https://doi.org/10.1145/3180155.3180197

[2] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi. 2017. SentiCR: A customized sentiment
analysis tool for code review interactions. In 2017 32nd IEEE/ACM International
Conf. on Automated Software Engineering (ASE). IEEE Press, 106–111. https:
//doi.org/10.1109/ASE.2017.8115623

[3] John L. Austin. 1962. How to do things with words. Oxford University Press.

167

[4] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and
Jennifer Wortman Vaughan. 2010. A theory of learning from different domains.
Machine Learning 79, 1 (2010), 151–175. https://doi.org/10.1007/s10994-009-
5152-4

[5] Cássio Castaldi Araujo Blaz and Karin Becker. 2016. Sentiment Analysis in
Tickets for IT Support (MSR ’16). ACM, New York, NY, USA, 235–246. https:
//doi.org/10.1145/2901739.2901781

[6] Fabio Calefato, Filippo Lanubile, Federico Maiorano, and Nicole Novielli. 2018.
Sentiment Polarity Detection for Software Development. Empirical Software
Engineering 23, 3 (2018), 1352–1382. https://doi.org/10.1007/s10664-017-9546-9

[7] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2018. How to ask for tech-
nical help? Evidence-based guidelines for writing questions on Stack Overflow.
Information & Software Technology 94 (2018), 186–207. https://doi.org/10.1016/j.
infsof.2017.10.009

[8] Fabio Calefato, Filippo Lanubile, Nicole Novielli, and Luigi Quaranta. 2019. EMTk:
The Emotion Mining Toolkit (SEmotion ’19). IEEE Press, 34–37. https://doi.org/
10.1109/SEmotion.2019.00014

[9] Tommaso Caselli, Nicole Novielli, Viviana Patti, and Paolo Rosso. 2018. Evalita
2018: Overview on the 6th Evaluation Campaign of Natural Language Processing
and Speech Tools for Italian. In Proc. of the Sixth Evaluation Campaign of Natural
Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2018)
co-located with the Fifth Italian Conf. on Computational Linguistics (CLiC-it 2018),
Turin, Italy, December 12-13, 2018. CEUR-SW.org. http://ceur-ws.org/Vol-2263/
paper001.pdf

[10] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res.
16 (2002), 321–357. https://doi.org/10.1613/jair.953

[11] Zhenpeng Chen, Yanbin Cao, Xuan Lu, Qiaozhu Mei, and Xuanzhe Liu. 2019.
SEntiMoji: An Emoji-Powered Learning Approach for Sentiment Analysis in
Software Engineering (ESEC/FSE 2019). ACM, New York, NY, USA, 841–852.
https://doi.org/10.1145/3338906.3338977

[12] Jacob Cohen. 1968. Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit. Psychological Bulletin 70, 4 (1968), 213.
https://doi.org/10.1037/h0026256

[13] Daviti Gachechiladze, Filippo Lanubile, Nicole Novielli, and Alexander Serebrenik.
2017. Anger and Its Direction in Collaborative Software Development (ICSE-NIER
’17). IEEE Press, 11–14. https://doi.org/10.1109/ICSE-NIER.2017.18

[14] Emitza Guzman, Rana Alkadhi, and Norbert Seyff. 2016. A Needle in a Haystack:
What Do Twitter Users Say about Software?. In 24th IEEE International Require-
ments Engineering Conf., RE 2016, Beijing, China, September 12-16, 2016. IEEE,
96–105. https://doi.org/10.1109/RE.2016.67

[15] Emitza Guzman, David Azócar, and Yang Li. 2014. Sentiment Analysis of Commit
Comments in GitHub: An Empirical Study (MSR 2014). ACM, New York, NY, USA,
352–355. https://doi.org/10.1145/2597073.2597118

[16] H. He and E. A. Garcia. 2009. Learning from Imbalanced Data. IEEE Transactions
on Knowledge and Data Engineering 21, 9 (2009), 1263–1284. https://doi.org/10.
1109/TKDE.2008.239

[17] Md Rakibul Islam and Minhaz F. Zibran. 2017. Leveraging Automated Sentiment
Analysis in Software Engineering (MSR ’17). IEEE Press, 203–214. https://doi.
org/10.1109/MSR.2017.9

[18] Md Rakibul Islam and Minhaz F. Zibran. 2018. DEVA: sensing emotions in the
valence arousal space in software engineering text. In Proc. of the 33rd Annual
ACM Symposium on Applied Computing, SAC 2018, Pau, France, April 09-13, 2018.
1536–1543. https://doi.org/10.1145/3167132.3167296

[19] Robbert Jongeling, Proshanta Sarkar, Subhajit Datta, and Alexander Serebrenik.
2017. On negative results when using sentiment analysis tools for software
engineering research. Empirical Software Engineering 22, 5 (2017), 2543–2584.
https://doi.org/10.1007/s10664-016-9493-x

[20] Daniel Jurafsky and James H. Martin. 2009. Speech and Language Processing (2nd
Edition). Prentice-Hall, Inc., USA.

[21] Richard S. Lazarus. 1991. Emotion and adaptation / Richard S. Lazarus. Oxford
University Press New York. xiii, 557 p. ; pages. http://www.loc.gov/catdir/
enhancements/fy0602/91009611-t.html

[22] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and Michele
Lanza. 2019. Pattern-Based Mining of Opinions in Q&AWebsites (ICSE ’19). IEEE
Press, 548–559. https://doi.org/10.1109/ICSE.2019.00066

[23] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele
Lanza, and Rocco Oliveto. 2018. Sentiment Analysis for Software Engineering:
How Far Can We Go? (ICSE ’18). ACM, New York, NY, USA, 94–104. https:
//doi.org/10.1145/3180155.3180195

[24] Walid Maalej, Zijad Kurtanoviundefined, Hadeer Nabil, and Christoph Stanik.
2016. On the Automatic Classification of App Reviews. Requir. Eng. 21, 3, 311–331.
https://doi.org/10.1007/s00766-016-0251-9

[25] Mika Mäntylä, Bram Adams, Giuseppe Destefanis, Daniel Graziotin, and Marco
Ortu. 2016. Mining Valence, Arousal, and Dominance: Possibilities for Detecting
Burnout and Productivity? (MSR ’16). ACM, New York, NY, USA, 247–258. https:
//doi.org/10.1145/2901739.2901752

[26] T. Menzies. 2020. The Five Laws of SE for AI. IEEE Software 37, 1 (Jan 2020),
81–85. https://doi.org/10.1109/MS.2019.2954841

[27] Alessandro Murgia, Parastou Tourani, Bram Adams, and Marco Ortu. 2014. Do
Developers Feel Emotions? An Exploratory Analysis of Emotions in Software
Artifacts (MSR 2014). ACM, New York, NY, USA, 262–271. https://doi.org/10.
1145/2597073.2597086

[28] Nicole Novielli, Andrew Begel, and Walid Maalej. 2019. Introduction to the
special issue on affect awareness in software engineering. Journal of Systems and
Software 148 (2019), 180 – 182. https://doi.org/10.1016/j.jss.2018.11.016

[29] Nicole Novielli, Fabio Calefato, and Filippo Lanubile. 2015. The Challenges of
Sentiment Detection in the Social Programmer Ecosystem (SSE 2015). ACM, New
York, NY, USA, 33–40. https://doi.org/10.1145/2804381.2804387

[30] Nicole Novielli, Daniela Girardi, and Filippo Lanubile. 2018. A Benchmark Study
on Sentiment Analysis for Software Engineering Research (MSR ’18). ACM, New
York, NY, USA, 364–375. https://doi.org/10.1145/3196398.3196403

[31] N. Novielli and A. Serebrenik. 2019. Sentiment and Emotion in Software Engineer-
ing. IEEE Software 36, 5 (2019), 6–23. https://doi.org/10.1109/MS.2019.2924013

[32] MarcoOrtu, BramAdams, GiuseppeDestefanis, Parastou Tourani, MicheleMarch-
esi, and Roberto Tonelli. 2015. Are Bullies More Productive? Empirical Study of
Affectiveness vs. Issue Fixing Time (MSR ’15). IEEE Press, 303–313.

[33] Marco Ortu, Alessandro Murgia, Giuseppe Destefanis, Parastou Tourani, Roberto
Tonelli, MicheleMarchesi, and BramAdams. 2016. The Emotional Side of Software
Developers in JIRA (MSR ’16). ACM, New York, NY, USA, 480–483. https://doi.
org/10.1145/2901739.2903505

[34] Bo Pang and Lillian Lee. 2008. Opinion Mining and Sentiment Analysis.
Foundations and Trends in Information Retrieval 2, 1-2 (2008), 1–135. https:
//doi.org/10.1561/1500000011

[35] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A. Visag-
gio, Gerardo Canfora, and Harald C. Gall. 2015. How Can i Improve My
App? Classifying User Reviews for Software Maintenance and Evolution. In
Proc. of the 2015 IEEE International Conf. on Software Maintenance and Evo-
lution (ICSME) (ICSME ’15). IEEE Computer Society, USA, 281–290. https:
//doi.org/10.1109/ICSM.2015.7332474

[36] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. 2014. Security and
Emotion: Sentiment Analysis of Security Discussions on GitHub (MSR 2014).
ACM, New York, NY, USA, 348–351. https://doi.org/10.1145/2597073.2597117

[37] Ellen Riloff, Siddharth Patwardhan, and JanyceWiebe. 2006. Feature Subsumption
for Opinion Analysis (EMNLP ’06). ACL, USA, 440–448.

[38] Sebastian Ruder and Barbara Plank. 2018. Strong Baselines for Neural Semi-
Supervised Learning under Domain Shift. In Proc. of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol. 1: Long Papers). ACL, 1044–1054.
https://doi.org/10.18653/v1/P18-1096

[39] J.A. Russell. 1980. A circumplex model of affect. Journal of personality and social
psychology 39, 6 (1980), 1161–1178.

[40] Klaus R. Scherer, Tanja Wranik, Janique Sangsue, Véronique Tran, and Ursula
Scherer. 2004. Emotions in everyday life: probability of occurrence, risk factors,
appraisal and reaction patterns. Social Science Information 43, 4 (2004), 499–570.
https://doi.org/10.1177/0539018404047701

[41] Fabrizio Sebastiani. 2002. Machine learning in automated text categorization.
ACM Comput. Surv. 34, 1 (2002), 1–47. https://doi.org/10.1145/505282.505283

[42] Phillip Shaver, Judith Schwartz, Donald Kirson, and O’Connor Cary. 1987. Emo-
tion knowledge: Further exploration of a prototype approach. Journal of Personal-
ity and Social Psychology 52, 6 (1987), 1061—-1086. https://doi.org/10.1037/0022-
3514.52.6.1061

[43] Vinayak Sinha, Alina Lazar, and Bonita Sharif. 2016. Analyzing Developer
Sentiment in Commit Logs (MSR ’16). ACM, New York, NY, USA, 520–523.
https://doi.org/10.1145/2901739.2903501

[44] Richard Socher, Alex Perelygin, JeanWu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank. In Proc. of the 2013 Conf. on Em-
pirical Methods in Natural Language Processing. ACL, Seattle, Washington, USA,
1631–1642. https://www.aclweb.org/anthology/D13-1170

[45] Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly Voll, and Manfred Stede.
2011. Lexicon-Based Methods for Sentiment Analysis. Comput. Linguist. 37, 2
(June 2011), 267–307. https://doi.org/10.1162/COLI_a_00049

[46] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, Akinori Ihara,
and Kenichi Matsumoto. 2015. The Impact of Mislabelling on the Performance
and Interpretation of Defect Prediction Models (ICSE ’15). IEEE Press, 812–823.

[47] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas.
2010. Sentiment Strength Detection in Short Informal Text. J. Am. Soc. Inf. Sci.
Technol. 61, 12 (Dec. 2010), 2544–2558.

[48] Gias Uddin and Foutse Khomh. 2017. Opiner: An Opinion Search and Summa-
rization Engine for APIs (ASE 2017). IEEE Press, 978–983.

[49] Anthony Viera and Joanne Garrett. 2005. Understanding Interobserver Agree-
ment: The Kappa Statistic. Family medicine 37 (06 2005), 360–3.

[50] Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep Learning for Sentiment
Analysis: A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery (01 2018). https://doi.org/10.1002/widm.1253

168

