
Integrating Security and Privacy in Software
Development

Maria Teresa Baldassarre1, Vita Santa Barletta1*, Danilo Caivano1, Michele Scalera1

1 University of Bari Aldo Moro
Department of Computer Science, Via Orabona 4 - 70125 Bari, Italy

{mariateresa.baldassarre,vita.barletta,danilo.caivano,
michele.scalera}@uniba.it

Abstract. As a consequence to factors such as progress made by the attackers,
release of new technologies and use of increasingly complex systems, threats to
applications security have been continuously evolving. Security of code and
privacy of data must be implemented in both design and programming practice
to face such scenarios. In such a context, this paper proposes a software devel-
opment approach, Privacy Oriented Software Development (POSD), that com-
plements traditional development processes by integrating the activities needed
for addressing security and privacy management in software systems. The ap-
proach is based on 5 key elements (Privacy by Design, Privacy Design Strate-
gies, Privacy Pattern, Vulnerabilities, Context). The approach can be applied in
two directions forward and backward, for developing new software systems or
re-engineering an existing one. This paper presents the POSD approach in the
backward mode together with an application in the context of an industrial pro-
ject. Results show that POSD is able to discover software vulnerabilities, identi-
fy the remediation patterns needed for addressing them in the source code and
design the target architecture to be used for guiding privacy-oriented system
reengineering.

Keywords: Privacy by Design; Security by Design; Secure Software Develop-
ment; Secure Architecture; System Reengineering; Cybersecurity; Application
Security.

1 Introduction

Nowadays software systems and services impact technological layers and different
application domains [1]. The growing dimension and complexity of software increase
the range of cyber-attacks, the risk of information exfiltration and data breach. In this
context, Security and Privacy play a major role in preserving the confidentiality, in-
tegrity and availability of data.
 The number of attacks on information systems has been growing constantly in
recent years [2]. The aim is to steal information and data by exploiting the vulnerabili-
ties within the code [3]. This implies the need to identify and understand (at least) the

2

most common threats to software security, disseminate security best practices, and
address the security problem from the early stages of software development.
 Security should be a basic feature of software applications such as automatically
enabling complex password building mechanisms rather than procedures for renewing
passwords periodically. The lack of system security can compromise privacy and for
this reason privacy emerges as a proactive, integrative and creative approach to
strengthen security requirements, starting from the design of new systems and protec-
tion of information assets and data in case of existing ones.

It becomes necessary to consider and pursue privacy throughout all the software
life cycle phases. Today we can identify several approaches that address security,
however they seldom consider the data privacy side of the problem. The same can be
said for the current privacy-oriented approaches, i.e. privacy and security are ad-
dressed separately by the existing approaches. The challenges that companies and
developer communities need to face within this context are many, but to start imple-
menting defenses operatively, three major issues have to be addressed: (i) Translate
best practices for both, secure application development and data privacy, into opera-
tional guidelines that can be traced back to code structures and software architectures;
(ii) Share security and privacy competences within the development team. Privacy
and security require specific skills that developers, even talented ones, often do not
have. Therefore, it is necessary to share and transfer knowledge effectively [4, 5]; (iii)
Integrate new methodologies for data privacy and secure software development into
existing business processes. This must be done without affecting the legacy processes
that are often peculiar to each company and consolidated over time [6].

This paper extends our previous work [7] and coherently, the main contributions it
makes are summarized as follows: (i) proposal of an approach, Privacy Oriented
Software Development (POSD), that is able to operationally support software devel-
opment by integrating privacy and security requirements. It works on existing systems
as well as on systems to be developed; (ii) introduction of a Privacy Knowledge Base
(PKB), a knowledge base that supports decision making in all phases of the software
lifecycle. PKB formalizes the relationship between 5 key elements and creates a navi-
gation guide among them: Principles of Privacy by Design [8], Privacy Design Strate-
gies [9], Privacy Pattern [10], Vulnerabilities [11], Context; (iii) the possibility to
integrate the approach within the legacy processes used by companies without revolu-
tionizing the latter but strengthening the process of secure development.

The paper is organized as follows: section 2 discusses related works on the topic of
privacy and security in software development. In Section 3 the Privacy Knowledge
Base is presented; Section 4 describes the approach adopted for the privacy-oriented
software development in backward mode; Section 5 describes an application to a real
case that shows how to apply POSD in backward mode. Sections 6 and 7, illustrate
respectively the discussion of the results, the limitations of the work and conclusions.

3

2 Related Work

The security of software systems is constantly threatened by the increasing number of
attacks. The aim of an attack is to exploit the vulnerabilities within the system’s re-
sources such as channels, methods, and data items [12]. Vulnerability is intended as
one or more weaknesses that can be accidentally triggered or intentionally exploited
and result in a violation of desired system properties [13]. Currently there are more
than 140,000 vulnerabilities recorded [2]. Therefore, software development requires
security principles to maintain the confidentiality, integrity and availability of the
applications and the need to train professionals with respect to this dimension [14].
The concepts of security and privacy in software development are strictly related to
each other and in recent years have become of pressing relevance due to the effect of
the GDPR [15].

A considerable effort has been made for integrating security principles in software
development processes. Some researchers have proposed strategies and frameworks
for integrating security practices within the software development life cycle (SDLC)
[16], but whatever model is adopted for secure software development, there is still the
need for improvements in terms of metrics [17], penetration testing, training in secure
development [18], as well as the need to practically integrate security policies for data
into software application transactions during the development phases [19]. For exam-
ple, Hilbrich et al. [20] propose a strategy for a clear and engineer like decision mak-
ing process and to include security and privacy requirements in software development
processes. The model definition specifies what has to be documented and how it has
to be documented to avoid misunderstandings, support reproducibility, analysis and
formal controls. Furthermore, Yanbing et. al [21] propose a Framework of a Soft-
ware-Defined Security Architecture (SDSA) which can effectively decouple security
executions with security controls, reduce the cost of software developments, and en-
hance the scalability of systems. In [22] an integrated security testing framework for
Secure Software Development Life Cycle (SSDLC) was proposed to transform activi-
ties of SDLC into physical and executable test cases and thus to minimize the vulner-
abilities. To quantitatively evaluate the security dimensions during the software pro-
duction phase and enhance the overall security, Farhan et al. [23] add further steps to
SDLC, i.e. follow the organization process, apply peer review, take care of testing and
tracking the measure of security on SDLC. However, despite considerable efforts in
this direction, many systems are being compromised and vulnerabilities are increas-
ing. As so, the gap between the strategies and frameworks proposed and their actual
application is impacted by the growth of attacks.

With respect to privacy, Privacy by Design (PbD) [8] is an approach to address da-
ta protection during software development and to integrate privacy throughout the
system development lifecycle. The key problem in this approach is the lack of guide-
lines on how to map legal data protection requirements into system requirements and
components. Privacy Design Strategies [9] represent an attempt to reduce the gap
between “What to do” and “How to do it”. Moreover, in [24] the authors try to corre-
late and map the available strategies with the “Privacy Patterns” needed to implement
them, but the results obtained are limited in scope and far from being used in practice.

4

Privacy Patterns [25] represent a general solution to the most frequent privacy
problems in software development. A further step in this direction was made by Su-
phakul et al. [26] where the proposed design patterns include information about priva-
cy principles addressed and relevant software models in the UML notations to use
[27]. In [28] authors propose a set of privacy process patterns for creating a clear
alignment between privacy requirements and Privacy Enhancing Technologies (PET)
[29], and encapsulate expert knowledge of PET implementation at the operational
level.

Privacy must be integrated into the design to have strong security [30]. Six protec-
tion goals are analyzed in [31] and a common scheme for addressing the legal, tech-
nical, economic and social dimension of privacy and data protection in complex IT
systems is provided. PRIPARE (Preparing Industry to Privacy by Design by support-
ing its Application in Research) [32] begins to highlight how privacy requirements
can be incorporated into the SDLC. The study introduces a systematic methodology
for privacy engineering, while Privacy-Friendly Systems Design [33] incorporate
privacy through steps: elicitation of privacy requirements; analysis of the impact on
the process; identification of supporting techniques. In these methodologies, and also
in PriS [34], privacy is addressed during construction or early design activities instead
of in all the phases.

Privacy by Design in itself lacks concrete tools to help software developers design
and implement privacy friendly systems. It also lacks clear guidelines regarding how
to map specific legal data protection requirements on the system [35]. In today’s envi-
ronment, privacy needs to be integrated into software development to protect sensitive
data in growing systems and to enhance software quality. The principle of Full Func-
tionality of the Privacy by Design [8] underlines this need, as well as the need to inte-
grate the privacy and security dimensions.

However, most of the published literature deals with a single dimension, integrat-
ing either privacy elements or security elements into software development. There are
obvious weaknesses in these approaches as they: are unable to implement solutions
that are applicable in real contexts as they remain general in the definition and are far
from being operative; focus their attention on software systems under development
and do not address existing ones; represent new approaches to software development
and can be adopted in place of those already in use.

The approach presented in this work (POSD) strives to overcome these weakness-
es: (i) POSD integrates privacy and security practices by providing guidelines to de-
velopers that can be translated into operational practices, software architecture and
software code. (ii) POSD can be used both when developing a software system and
reengineering an existing one. (iii) POSD can be used jointly with the legacy devel-
opment processes adopted.

3 Privacy Knowledge Base

The proposed approach, named Privacy Oriented Software Development (POSD),
provides operational guidelines for integrating security and privacy management into

5

any development process. It uses a Privacy Knowledge Base (PKB) to support deci-
sion making in system development and reengineering. PKB is based on the following
5 Key Elements (Fig. 1): Principles of Privacy by Design, Privacy Design Strategies,
Privacy Patterns, Vulnerabilities and Context.

Fig. 1. The relationship between the Key Elements in PKB

The PKB defines which Principles of the Privacy by Design are violated by a specific
vulnerability and which Privacy Design Strategies must be adopted to mitigate it.
Operatively, given a selected strategy, a set of Privacy Patterns are associated to it so
that the privacy requirements can be implemented. PKB has been developed follow-
ing a Model-View-Controller architecture: the model provides all the methods to ac-
cess the elements of the PKB; the view visualizes the relations between the 5 ele-
ments and manages interaction with the developer; the controller receives user re-
quests and fulfills them changing the status of the two components.
 Furthermore, the PKB engine integrates the results of static code analysis so that
each vulnerability identified in the legacy system is associated to a privacy pattern
and the architectural defects are fixed. Thanks to a connector, the PKB can analyze
the vulnerabilities identified by various static code analysis tools. Each identified
pattern can then be exported, by means of the Translator, in a specific language (Fig.
2).

Fig. 2. Privacy Knowledge Base Engine

6

 Thus, PKB provides guidelines to developers at all stages of the software lifecycle.
These guidelines can be translated into operation by providing the necessary elements
for system architecture design and coding. PKB can also be used on existing systems
and on systems to be developed. It can be seen as a guided navigation between the
key elements starting from any of these (Fig. 3).

Fig. 3. Privacy Knowledge Base

In the next paragraphs the key elements of the PKB are illustrated.

3.1 Principles of Privacy by Design

Privacy by Design (PbD) integrates the principles of privacy and data protection with-
in all stages of the software development process. PbD is based on seven principles,
each of which specifies actions and responsibilities for evaluating “Privacy by Design
Compliance” [8]:
• Proactive not Reactive: PbD anticipates and prevents privacy threats rather than

reacting to privacy breaches once they have occurred.
• Privacy as the default setting: PbD seeks to deliver the maximum degree of pri-

vacy by ensuring that personal data are automatically protected in any given IT
system or business practice. The privacy built into the system should not require
any further user setup.

• Privacy Embedded into Design: Privacy becomes a core functionality being de-
livered. Therefore, it should not be implemented in response to a given event,
but embedded in the design, IT system architecture and business logic.

• Full Functionality: PbD needs both, privacy and security. It aims to protect all
the stakeholder’s legitimate interests and objectives in a positive-sum “win-win”

7

perspective, thus avoiding that the interests of one party prevail over those of
others by providing zero-sum solutions that imply an unnecessary trade-off.

• End-to-End Security: Strong security measures are essential to privacy, from
start to finish. PbD ensures secure lifecycle management of information, end-to-
end.

• Visibility and Transparency: Component parts and operations remain visible and
transparent to users and providers. This ensures all stakeholders that whatever
the business practice or technology involved, it will operate according to the
agreed modalities and objectives.

• Respect for User Privacy: It requires architects and operators to treat the inter-
ests of the individual by offering specific solutions for a strong privacy default,
appropriate notice and empowering user-friendly options.

3.2 Privacy Design Strategies

A design strategy describes a way to achieve a certain design goal with certain prop-
erties that distinguish it from other (basic) approaches for achieving the same goal [9].
Eight privacy design strategies, based on the legal perspective of privacy, have been
proposed. They are divided in two different categories [36]: Data Oriented Strategies
and Process Oriented Strategies.

Data Oriented Strategies focus on the privacy-friendly processing of the data:

• Minimize: Limit the processing of personal data as much as possible.
• Hide: Protect personal data or make it unlikable or unobservable. Make sure it

does not become public or known.
• Separate: Separate the processing of personal data as much as possible.
• Abstract: Limit the detail in which personal data is processed.

Process Oriented Strategies focus on the processes surrounding the responsible han-
dling of personal data:

• Inform: Inform data subjects about the processing of their personal data in a
timely and adequate manner.

• Control: Provide data subjects an adequate control over the processing of their
personal data.

• Enforce: Commit to processing personal data in a privacy-friendly way, and ad-
equately enforce this.

• Demonstrate: Demonstrate personal data is being processed in a privacy-
friendly manner.

3.3 Privacy Patterns

Privacy Patterns provide the knowledge collected from experts in a structured, docu-
mented and reusable manner [36, 38] and they contribute to a build secure infor-

8

mation system. The solutions offered for using these patterns involve: detailing the
information assets and the level of criticality of these assets; including the deployment
details in a real environment, bearing in mind the architecture and the technologies
that should be used; carrying out a qualitative analysis of the most important techno-
logical aspects with regard to the proposed solution [39]. Based on these considera-
tions, privacy patterns that integrate privacy and security mechanisms [10, 25] were
included in the PKB. This need was also expressed in [9] which highlights the im-
portance of the patterns during the design phase. Therefore, privacy patterns support
documenting common solutions to privacy problems; can improve the re-engineering
of existing systems, describing classes, collaborations between objects and their pur-
poses; help designers identify and address privacy concerns. Each pattern is structured
according to the following characteristics:

• Name: represents the problem addressed.
• Context: contains a generic description of the setting and specifies the condi-

tions under which the privacy pattern should be applied.
• Problem: the situation which has led to the need of applying privacy mecha-

nisms and obtain a solution.
• Solution: describes the solution based on the scenario and the problem being

considered.
• Diagram: represents the behavior and the structure of the pattern.

So, in this context a privacy pattern represents an answer to the following questions:
(i) Which privacy design strategies must be implemented? (ii) Which vulnerabilities
are mitigated/eliminated with the privacy solution?

An example of a Privacy Pattern is the following:
• Name: Anonymous Reputation-Based Blacklisting
• Context: A service provider provides a service to users who access anonymous-

ly, and who may make bad use of the service
• Problem: Anonymity may foster misbehavior. A service provider can assign a

reputation score to its users, based on their interactions with the service. Those
who misbehave earn a bad reputation, and they are added to a black list and
banned from using the service anymore. However, these scoring systems tradi-
tionally require the user identity to be disclosed and linked to their reputation
score, hence they conflict with anonymity.

• Solution: First, the service provider provides their users with credentials for
anonymous authentication. Then, every time an authenticated user holds a ses-
sion at the service, the service provider assigns and records a reputation value
for that session, depending on the user behavior during the session. Note that
these reputation values can only be linked to a specific session, but not to a spe-
cific user (as they have authenticated anonymously).
When the user returns and starts a new session at the service, the service provid-
er challenges the user to prove in zero-knowledge that he is not linked to any of
the offending sessions (those that have a negative reputation associated). Zero-
knowledge proofs allow the user to prove this, without revealing their identity to

9

the service provider. Different, alternative proofs have been proposed, e.g. prove
that the user is not linked to any of the sessions in a set of session IDs, prove
that the last K sessions of the user have good reputation, etc.

• Diagram: An example of a diagram is represented in Fig. 4

Fig. 4. Anonymous Reputation-Based Blacklisting

3.4 Vulnerabilities

The lack of sufficient logging mechanisms or not closing the database connection
properly are some examples of vulnerabilities that allow an attacker to compromise
software systems. A list of vulnerabilities classified according to the OWASP Top
10–2017 [9] has been integrated in the PKB. OWASP Top 10 is based primarily on
data and information provided by firms specialized in application security or collected
by using industry surveys. The goal of OWASP is to provide knowledge and infor-
mation on the most common and important application security weaknesses. A short
description of the macro categories of vulnerabilities included in the PKB follows:

A1-Injection: Untrusted data is sent to an interpreter as part of a command or query.
For example, in SQL injection vulnerability, the root cause is the ability of an at-
tacker to change context in the SQL query, causing a value that the programmer in-
tended to be interpreted as data to be interpreted as a command instead. The fol-
lowing code dynamically constructs and executes a SQL query that searches for
items matching a specified name. The query restricts the items displayed to those
where the owner matches the username of the currently authenticated user.

String userName = ctx.getAuthenticatedUserName();
String itemName = request.getParameter("itemName");
String query = "SELECT * FROM items WHERE owner = '"
 + userName + "' AND itemname = '"
 + itemName + "'";
ResultSet rs = stmt.execute(query);

10

 The query that this code intends to execute follows:

However, since the query is constructed dynamically by concatenating a constant
base query string and a user input string, the query only behaves correctly if
itemName does not contain a single-quote character. If an attacker with the user
name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes
the following:

 The addition of the OR 'a'='a' condition causes the where clause to always
 evaluate to true, so the query becomes logically equivalent to the much simpler
 query:

 This simplification of the query allows the attacker to bypass the requirement that
 the query only return items owned by the authenticated user; the query now returns
 all entries stored in the items table, regardless of their specified owner.

A2-Broken Authentication: Authentication and session management not properly im-
plemented allow attackers to compromise data and application. For example, a
J2EE application can make use of multiple JVMs in order to improve application
reliability and performance. In order to make the multiple JVMs appear as a single
application to the end user, the J2EE container can replicate an HttpSession ob-
ject across multiple JVMs so that if one JVM becomes unavailable another can
step in and take its place without disrupting the flow of the application. In order for
a session to be replicated, the values the application stores as attributes in the ses-
sion must implement the Serializable interface.

 The following class adds itself to the session, but because it is not serializable, the
session can no longer be replicated.

A3-Sensitive Data Exposure: Sensitive data are not adequately protected in web appli-

cations and APIs and the attacker may steal or modify them to conduct credit card
fraud, identity theft, or other crimes. For example, the following code contains a
logging statement that tracks the contents of records added to a database by storing

 SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;

SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';

SELECT * FROM items;

public class DataGlob {
 String globName;
 String globValue;
 public void addToSession(HttpSession session) {
 session.setAttribute("glob", this);
 }

}

11

them in a log file. Among other stored values, we can find the return value from
the getPassword() function that returns user-supplied plaintext password associ-
ated with the account.

 The code logs a plaintext password to the application eventlog. Although many
 developers trust the eventlog as a safe storage location for data, it should not be
 trusted implicitly, particularly when privacy is a concern.

A4-XML External Entities (XXE): Many XML processors evaluate external entity

references within XML documents, so these entities can be used to disclose inter-
nal files. External entities can be used to disclose internal files using the URI han-
dler, internal file shares, internal port scanning, remote code execution, and Denial
of Service Attacks (DoS). It is crucial to use less complex data formats and avoid
serialization of sensitive data; patch or upgrade all XML processors and libraries in
use by the application or on the underlying operating system; disable XML exter-
nal entity and DTD processing in all XML parsers in the application; implement
positive server-side input validation, filtering, or sanitization to prevent hostile data
within XML documents, headers, or nodes; etc. Consequently, to identify and mit-
igate this type of vulnerability, it is essential to train developers.

 The following XML document shows an example of an XXE attack.

This example could crash the server (on a UNIX system), if the XML parser at-
tempts to substitute the entity with the contents of the /dev/random file.

A5-Broken Access Control: Attackers can exploit restrictions on authenticated users

not properly enforced. This allows to access unauthorized functionality and/or data,
modify or destroy data, or perform a business function outside of the user’s limits.
For example, database access control errors occur when data enters a program from
an untrusted source; the data is used to specify the value of a primary key in a SQL
query.

The code uses a parameterized statement, which escapes metacharacters and pre-
vents SQL injection vulnerabilities, to construct and execute a SQL query that
searches for an invoice matching the specified identifier. The identifier is selected

<?php
 $pass = getPassword();
 trigger_error($id . ":" . $pass . ":" . $type . ":" .
 $tstamp);
?>

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM file:///dev/random>]>
<foo>&xxe;</foo>

id = Integer.decode(request.getParameter("invoiceID"));
String query = "SELECT * FROM invoices WHERE id = ?";
Query stmt = entmgr.createQuery(query).setParameter(0,id);
List invoices = stmt.getResultList();

12

from a list of all invoices associated with the current authenticated user. On the
other hand, the following example implements the same functionality but imposes
an additional constraint requiring that the current authenticated user have specific
access to the invoice.

A6-Security Misconfiguration: Insecure default configurations, incomplete or ad hoc
configurations, open cloud storage, misconfigured HTTP headers and verbose error
messages contain sensitive information. Not only must all operating systems,
frameworks, libraries, and applications be securely configured, but they must be
patched and upgraded in a timely manner. The work of developers and system ad-
ministrators is necessary to find misconfigurations and fix them such as the use of
automated security scans and a periodic review of application, platform and server
configuration guidelines. For example, processing XML documents can be compu-
tationally expensive. Attackers may take advantage of schemas that allow un-
bounded elements by supplying an application with a very large number of ele-
ments causing the application to exhaust system resources.

 The following is an example of a schema that allows unbounded bar elements.

A7-Cross-Site Scripting (XSS): XSS occurs when an attacker executes scripts in the
victim’s browser which can hijack user sessions, deface web sites, or redirect the
user to malicious sites. The underlying flaws are that applications include untrusted
data in a new web page without proper validation, updates an existing web page
with user-supplied data using a browser API that can create HTML or JavaScript.
The following PHP code segment queries a database for an employee with a given
ID and prints the corresponding employee's name.

userName = ctx.getAuthenticatedUserName();
id = Integer.decode(request.getParameter("invoiceID"));
String query = "SELECT * FROM invoices WHERE id = ? AND
user = ?";
Query stmt = entmgr.createQuery(query).setParameter(0,
id).setParameter(1, userName);

List invoices = stmt.getResultList();

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <xs:element name="foo" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="bar" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

13

This code functions correctly when the values of name are well-behaved, but it

 does nothing to prevent exploits if they are not.
It can appear less dangerous because the value of name is read from a database,

 whose contents are apparently managed by the application. However, if the value
 of name originates from user-supplied data, then the database can be a conduit for
 malicious content. Without proper input validation on all data stored in the data
 base, an attacker may execute malicious commands in the user's web browser.

A8-Insecure Deserialization: It often leads to remote code execution. Deserializations

flaws can be used to perform attacks including replay attacks, injection attacks and
privilege escalation attacks. An example is the following code that shows a PHP
class implementing the __destruct() magic method and executing a system
command defined as a class property. There is also an insecure call to unserial-
ize()with user-supplied data.

The application may be expecting a serialized User object but an attacker may ac-
tually provide a serialized version of SomeAvailableClass with a predefined
value for its command property:

The destructor method will be called as soon as there are no other references to the
$user object and then it will execute the command provided by the attacker. At-
tackers may chain different classes declared when the vulnerable unserialize()
is being called using a technique known as “Property Oriented Programming”. This
technique allows an attacker to reuse existing code to craft its own payload.

<?php...
 $con = mysql_connect($server,$user,$password);
 ...
 $result = mysql_query("select * from emp where id="+eid);
 $row = mysql_fetch_array($result)
 echo 'Employee name: ', mysql_result($row,0,'name');
 ...
?>

class SomeAvailableClass {
 public $command=null;
 public function __destruct() {
 system($this->command);
 }
}
...
$user = unserialize($_GET['user']);
...

GET REQUEST:
http://server/page.php?user=O:18:"SomeAvailableClass":1
{s:7:"command";s:8:"uname -a";}

14

A9-Using Components with Known Vulnerabilities: Applications and APIs that used
components with known vulnerabilities can facilitate an attack. Components, such
as frameworks, libraries and other software modules, run with the same privileges
as the application and if a vulnerable component is exploited, an attack can facili-
tate serious data loss or server takeover. An attacker identifies a weak component
by scanning the system using automated tools or, less commonly, by analyzing the
components manually. So, in software development it becomes necessary to identi-
fy all the components or libraries that applications use and the versions involved;
establish security policies and best practices for component use; monitor known
security vulnerabilities in any published databases, etc., and keep components up-
graded to the latest available versions.

 The following code uses a vulnerable method:

 An attacker could send requests where the parameter d is a value in the range

[2^(-1022)- 2^(-1075) : 2^(-1022) - 2^(-1076)], such as
“0.0222507385850720119e-00306”, to cause the program to hang while pro-
cessing the request. This vulnerability exists for Java version 6 Update 23 and ear-
lier versions.

A10-Insufficient Logging & Monitoring: The breach is often caused by insufficient

logging and monitoring, coupled with missing or ineffective integration with inci-
dent response. Attackers rely on the lack of monitoring and timely responses to
achieve their goals without being detected. It is necessary to periodically test and
validate computer systems, applications, related servers, and networks to rule out
for example unlogged events, malicious activity alerts not detected in real time,
alerts and subsequent responses that are not handled effectively, misconfigurations
in firewalls and routing systems, locally stored logs without cloud backup.

3.5 Context

Data security implies that three fundamental characteristics are guaranteed: confiden-
tiality, integrity, availability. Consequently, it is necessary to design the development
scenario from beginning to end and identify the roles, the most significant scenarios,
the technologies and the security mechanisms.
 To ensure these objectives, a key element in the PKB is the context that integrates
the necessary requirements to preserve the security of the data and the application. It
consists of (i) Architectural Requirements; (ii) Use Cases and Scenario; (iii) Privacy
Enhancing Technologies described below.

(i) Architectural Requirements determine the flow of data within the system,
components, roles and responsibilities.
An example of how privacy patterns implement privacy design strategies
within the selected architecture is given in Fig. 5.

Double d = Double.parseDouble(request.getParameter("d"));

15

Fig. 5. Data Oriented Privacy Design Strategies in Client-Server Architecture

Fig. 5 illustrates the implementation of Data Oriented Strategies in a system
with a Client-Server architecture. The operational flow is described below:
The user interacts with the system via the Graphical User Interface and en-
trusts the personal data management to the system. For principle of minimi-
zation, the system has three fundamental modules to reduce the personal data
that can be shared on the network: Metadata Manager module acts when a
user shares documents or web resources with third party services, it allows
users who are not fully aware of the attached metadata, to manage them and
then delete them; Location Granularity module to share user geographic lo-
cation with a third party service. The system, through interface, and user ap-
proval, understands what granularity to use in sharing; Cookie Filter module
avoids user monitoring.
After minimizing the data, the system separates them so that the user's pro-
file cannot be reconstructed: User Data Confinement module allows a user to
manage personal data directly from his device. The data is separated so a
third-party service cannot manage it.
The system then allows data to be aggregated by means of a module: Trust-
worthy Plug-in module creates a set of aggregated records, they are the set of
all personal data grouped so that the server cannot correlate individual in-
formation with the user profile ensuring privacy.
Before sending the data to the server, the system hides it: Encryption with
user-managed keys module enables encryption with keys managed directly
by the user (asymmetric encryption). This hides all the aggregated records
created; Pseudonymous Identity module generates a pseudonym identity to
ensure anonymity in communication. The identity is generated before the
client establishes a connection to the server so that no private information is

16

known; Onion Routing module allows the identity to be hidden by encapsu-
lating the data in different levels of encryption, limiting the knowledge of
each node along the delivery path.
The Client makes requests to the Server.
The Server responds to the Client's request.

Fig. 6. Process Oriented Privacy Design Strategies in Client-Server Architecture

On the other hand, Fig. 6 illustrates the use of process-oriented strategies in a
client-server architecture:
The user interacts with the system via the Graphical User Interface.
The system provides three modules that are fundamental for the respect of
the Inform principle: Multi-Factor Authentication module is integrated in the
GUI and allows multi-factor authentication using CPU ID, UUID device and
machine IP addresses; Unusual Account Activity module identifies unusual
activities or unauthorized access by means of cookies, metadata, browser,
type of architecture, etc...; Proxy module (P3P) defines a proxy capable of
understanding the policies produced by the server and translating them into a
format that the user can understand.
The system allows the user to control the data by means of two modules:
Privacy Selection module avoids overly general privacy practices and pro-
vides the possibility of defining an adaptive privacy level for the contents
shared with the controller; Web Local Server module defines a local web
server that, by interfacing with a local database, allows the management of
personal tokens to be shared over the network.
The system demonstrates the Control Authority the system’s security (Con-
fidentiality, Integrity, Availability), using a fundamental module: Federated
Privacy Assessment provides an impact assessment on the privacy of the user
applying strategies oriented to processes and data on the system. The as-

17

sessment is made by various members in order to define shared policies and
demonstrate adequacy.
The system allows the enforcement of existing legal obligations by means of
two modules: Sticky Policies are policies directly included in the requests
made to the service provider. They allow to better specify the use of personal
data and their processing; Orchestrator acts on behalf of the user and is con-
trolled only by the latter, it ensures that the Identity Broker cannot correlate
the original request from the service provider with the assertions that are re-
turned by the Identity Provider.
The server responds to the client's request.

(ii) Use cases and scenario define all interactions with the system. The aim is to
protect the information from unauthorized reading and manipulation.
Examples of use cases is given below, showing the threats that can determine
it and the general countermeasures suggested.
Use Case: User Registration/User Cancellation
Threat: user abuse of privileges.
Countermeasures: define a process for granting and revoking an account
that at least includes the use of individual User ID so that users can be made
responsible for their own actions. The use of the group ID should be allowed
only for: business or operational needs after approval and production of sup-
porting documentation; verifying that the level of access requested is in line
with the principle of “need to know”; immediately disabling or removing the
User ID of users who no longer use the system (for example, the end of the
employment relationship); periodically (at least quarterly) verifying the ab-
sence of inconsistent, redundant or obsolete accounts and their elimination.
Use Case: Authentication
Threat: unauthorized access to information; stealing of authentication cre-
dentials; unauthorized use of privileges.
Countermeasures: configure password quality control functions for access
to systems, so that the composition meets the criteria of length, complexity
and uniqueness necessary to have a high robustness. This means that the
password must be composed of an increasing number of characters (at least
8) depending on the criticality of the information to be defended (e.g. 15
characters for administrative users); must contain characters in at least three
of the following four categories: (i) uppercase letters of the Latin alphabet
(from A to Z), (ii) lowercase letters of the Latin alphabet (from a to z), (iii)
numbers to base 10 (from 0 to 9), (iv) special non-alphanumeric characters;
should not refer to something that someone else can easily guess or obtain
using information about the person (e.g. names, phone numbers, etc.).
In addition, the following rules must be observed: prohibit predefined ac-
count names and rename standard accounts such as, for example, the admin-
istrator account; do not show the password on the screen when it is entered
and do not give indications on its length; the temporary password must be

18

changed at the first log-on; it must be forced for all users, and particularly for
administrators, to change the password periodically; the password change
procedure must prevent the re-use of all passwords previously used and in-
clude an effective procedure that takes into account input errors; limit the
number of attempts allowed in a given time period or, alternatively, block
the account for end-user access after a given number of attempts; do not al-
low access until the log-on process has been successfully completed; validate
the log-on information only upon completion of all input data; limit the time
within which the log-on procedure must be completed; consider viewing the
following information successfully after log-on: (i) date and time of the pre-
vious successful log-on, (ii) detail any failed log-on attempts since the last
successful log-on; the persistence and transmission of passwords must be
protected; contrast the possibility provided by the browser cache to allow ac-
cess, implement a policy that allows the user to choose not to save creden-
tials or to force this policy as default; track both successful accesses and
failed access attempts; perform the Audit of unsuccessful accesses to detect
attempts to hack passwords; always check and validate the source IP address
of the client used by the user.

(iii) Privacy Enhancing Technologies (PETs) [29] are a set of tools and technolo-
gies that help to protect the personal information handled by the applications:

Anonymity System is an anonymization technique through which the User's
sensitive data is made inaccessible and encrypted.
Privacy Preserving Authentication is a useful technology to hide sensitive
data of the user.
Privacy preserving cryptographic protocols are widely used for secure ap-
plication-level data transport.
Information retrieval is a technique that has been developed to ensure that
the representation, storage, organization and access to objects containing in-
formation such as documents, web pages, online catalogs and multimedia
objects are managed correctly.
Data Anonymization, that consists in making user data anonymous and im-
possible to recompose in order to go back to personal information.
Pseudonymity Systems, where the user is identified by a pseudonym and not
by his own name.
Encryption techniques describe the set of techniques that apply to ensure
that personal data belonging to a user is stored and made secure against pos-
sible external attacks.
Access control requires to define measures and procedures to prevent unau-
thorized access to locations and information systems where personal data is
held.
Policy and feedback tools to inform the user of the privacy policies and how
the data will be protected while using the service.

19

4 Privacy Oriented Software Development

The Privacy Oriented Software Development (POSD) approach is inspired by the
Software Development Life Cycle framework presented in [16]. It is based on exist-
ing systems as well as on systems to be developed, allowing to integrate privacy and
security elements. This thanks to PKB that identifies the key elements of the two di-
mensions and the relationships between them.

In order to overcome the weaknesses identified in section 2 and provide operation-
al guidelines, inputs, tools and techniques, outputs have been identified at each stage
of the approach. POSD provides the development team all the elements and guide-
lines needed to develop or re-engineer a software system in a secure and privacy-
oriented manner. It can be used in two ways: Forward for developing new systems
and Backward for reengineering existing ones. In this research work the backward
mode is presented and then applied in an industrial case study.

4.1 POSD in Backward Mode

In this section all the phases of the POSD are briefly presented together with their
inputs and outputs (Fig. 7).

Fig. 7. Privacy Oriented Software Development (Backward Mode)

20

Phase I: Analysis. The analysis phase is divided into two parts: Security Assessment
and Privacy Assessment. This derives from the need to analyze the system from both
point of views, security and privacy. The Security Assessment consists in carrying out
a static code analysis of the system to be re-engineered. The output is the Security
Report containing the list of vulnerabilities in the system and a list of Recommenda-
tion Patterns for each category of vulnerability identified. An example is given below
for the “Cross-Site Scripting: Persistent” vulnerability category:

• Context: The method processGet() in JrInvocazioneWS.java sends unvalidated
data to a web browser on line 72, which can result in the browser executing ma-
licious code.
Problem: Cross-site scripting (XSS) vulnerabilities occur when:
Data enters a web application through an untrusted source. In the case of Persis-
tent (also known as Stored) XSS, the untrusted source is typically a database or
other back-end data store, while in the case of Reflected XSS it is typically a
web request. In this case the data enters at getEntity() in CheckMailPec.java at
line 95.
The data is included in dynamic content that is sent to a web user without being
validated. The malicious content sent to the web browser often takes the form of
a JavaScript segment, but may also include HTML, Flash or any other type of
code that the browser may execute. The variety of attacks based on XSS is al-
most limitless, but they commonly include transmitting private data like cookies
or other session information to the attacker, redirecting the victim to web con-
tent controlled by the attacker, or performing other malicious operations on the
user's machine under the guise of the vulnerable site.
Example: The following JSP code segment queries a database for an employee
with a given ID and prints the corresponding employee's name.

This code functions correctly when the values of name are well-behaved, but it
does nothing to prevent exploits if they are not. This code can appear less dan-
gerous because the value of name is read from a database, whose contents are
apparently managed by the application. However, if the value of name origi-
nates from user-supplied data, then the database can be a conduit for malicious
content. Without proper input validation on all data stored in the database, an at-
tacker may execute malicious commands in the user's web browser. This type of
exploit, known as Persistent (or Stored) XSS, is particularly insidious because

<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp
where id="+eid);
if (rs != null) {
 rs.next();
 String name = rs.getString("name");
}

%>
Employee Name: <%= name %>

21

the indirection caused by the data store makes it more difficult to identify the
threat and increases the possibility that the attack will affect multiple users. XSS
got its start in this form with web sites that offered a "guestbook" to visitors. At-
tackers would include JavaScript in their guestbook entries, and all subsequent
visitors to the guestbook page would execute the malicious code.
Diagram: we provide an example of the sequence diagram (Fig. 8) for the vul-
nerability found in the processGet() method in JrInvocazioneWS.java

Fig. 8. Example of Cross-site scripting (XSS) vulnerabilities

• Recommendation: The solution to XSS is to ensure that validation occurs in the
correct places and checks for the correct properties.
Since XSS vulnerabilities occur when an application includes malicious data in
its output, one logical approach is to validate data immediately before it leaves
the application. However, because web applications often have complex and in-
tricate code for generating dynamic content, this method is prone to errors of
omission (missing validation). An effective way to mitigate this risk is to also
perform input validation for XSS.
Web applications must validate their input to prevent other vulnerabilities, such
as SQL injection, so augmenting an application's existing input validation
mechanism to include checks for XSS is generally relatively easy. Despite its
value, input validation for XSS does not take the place of rigorous output vali-
dation. An application may accept input through a shared data store or other
trusted source, and that data store may accept input from a source that does not
perform adequate input validation. Therefore, the application cannot implicitly
rely on the safety of this or any other data. This means that the best way to pre-
vent XSS vulnerabilities is to validate everything that enters the application and
leaves the application designated for the user.
The most secure approach to validation for XSS is to create a whitelist of safe
characters that are allowed to appear in HTTP content and accept input com-
posed exclusively of characters in the approved set. For example, a valid
username might only include alpha-numeric characters, or a phone number
might only include digits 0-9. However, this solution is often infeasible in web
applications because many characters that have special meaning to the browser

Santa Barletta

22

should still be considered valid input once they are encoded, such as a web de-
sign bulletin board that must accept HTML fragments from its users.
A more flexible, but less secure approach is known as blacklisting, which selec-
tively rejects or escapes potentially dangerous characters before using the input.
In order to form such a list, you first need to understand the set of characters that
hold special meaning for web browsers. Although the HTML standard defines
what characters have special meaning, many web browsers try to correct com-
mon mistakes in HTML and may treat other characters as special in certain con-
texts, which is why we do not encourage the use of blacklists as a means to pre-
vent XSS.
Details about special characters in various contexts are listed below:

 In the content of a block-level element (in the middle of a paragraph of text):
• "<" is special because it introduces a tag.
• "&" is special because it introduces a character entity.
• ">" is special because some browsers treat it as special, on the assumption

that the author of the page intended to include an opening "<", but omitted it
in error.

 The following principles apply to attribute values:
• In attribute values enclosed with double quotes, the double quotes are special

because they mark the end of the attribute value.
• In attribute values enclosed with single quote, the single quotes are special

because they mark the end of the attribute value.
• In attribute values without any quotes, white-space characters, such as space

and tab, are special.
• "&" is special when used with certain attributes, because it introduces a

character entity.
In URLs, for example, a search engine might provide a link within the results
page that the user can click to re-run the search. This can be implemented by en-
coding the search query inside the URL, which introduces additional special
characters:
• Space, tab, and new line are special because they mark the end of the URL.
• "&" is special because it either introduces a character entity or separates CGI

parameters.
• Non-ASCII characters (that is, everything above 128 in the ISO-8859-1 en-

coding) are not allowed in URLs, so they are considered to be special in this
context.

• The "%" symbol must be filtered from input anywhere parameters encoded
with HTTP escape sequences are decoded by server-side code. For example,
"%" must be filtered if input such as "%68%65%6C%6C%6F" becomes
"hello" when it appears on the web page in question.

 Within the body of a <SCRIPT> </SCRIPT>:
• Semicolons, parentheses, curly braces, and new line characters should be fil-

tered out in situations where text could be inserted directly into a pre-
existing script tag.

 Server-side scripts:

23

• Server-side scripts that convert any exclamation characters (!) in input to
double-quote characters (") on output might require additional filtering.

In the Privacy Assessment, the vulnerabilities identified during the static code
analysis are provided as input to the PKB in order to identify: the principles of Priva-
cy by Design violated by vulnerabilities (Table 1); the Privacy Design Strategies to be
implemented in the system to respect the principles of Privacy by Design (Table 2);
the privacy patterns that substantiate the Privacy Design Strategies (Table 3 gives an
example). The results of this analysis are reported in the Privacy Report.

 Table 1. Principles of Privacy by Design violated

Table 2. Privacy Design strategies to implement

Table 3. Privacy Pattern that implement Privacy Design Strategies

Principles of Privacy by Design

Vulnerabilities
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
 1. Proactive not Reactive x x x x x x x x x -
 2. Privacy as the Default x x x x x x x - x -
 3. Privacy Embedded into Design x x x x x - x - x x
 4. Full Functionality x x x x x - x x x x
 5. End-to-End Security x x x x x x x x x x
 6. Visibility and Transparency - x x - x - x - x x
 7. Respect for User Privacy - x x - x x - x x x

Principles of Privacy by
Design

Privacy Design Strategies
Minimise Hide Separate Abstract Inform Control Enforce Demonstrate

1 Proactive not Reactive x x x x - - - -
2 Privacy as the Default x x x x - - - -
3 Privacy Embedded into

Design x x x x x x - -

4 Full Functionality x x x x x x - -
5 End-to-End Security x x x x - - - -
6 Visibility and Transparency - - - - x - x x
7 Respect for User Privacy - - - - x x - -

Privacy Pattern
Privacy Design Strategies

Minimise Hide Separate Abstract Inform Control Enforce Demonstrate
1 Strip Invisible Metadata x - - - - - - -
2 Protection Against Tracking x - - - - - - -
3 Location Granularity x - - - - - - -
4 Encryption with User-

Managed keys
- x - - - - - -

5 Pseudonymous Identity - x - - - - - -
6 Onion Routing - x - - - - - -
7 User Data Confinement - - x - - - - -
8 Trustworthy Privacy Plug-in - - - x - - - -
9 Privacy-Aware Network

Client (P3P)
- - - - x - - -

10 Handling Unusual Account
Activities

- - - - X - - -

11 Personal Data Store - - - - - x - -

24

Phase II: Design. This phase involves the design of a Target Architecture in order to
re-engineer the system from a privacy point of view. The input for this phase is the
Privacy Report, which contains, as previously described, the principles of PbD, priva-
cy design strategies and the list of privacy patterns to use. The relationship between
these elements support the team in designing a Secure Software Architecture. The
output of the phase is the Target Architecture, i.e. the result of the application of the
guidelines included in the Privacy Report to the original system. The general strategy
followed by POSD is to integrate these guidelines with the minimum impact on the
legacy system architecture and by preserving the control logic of the original system.
For this reason, all the Privacy Patterns identified by PKB are included in two archi-
tectural components (Fig. 9), Data-Oriented and Process-Oriented components, that
operationally translate the process flow metaphor of the eight privacy design strate-
gies [9].

Phase III: Coding. The coding phase, as for the Analysis phase, is also divided into
two parts: Security Fix and Privacy Coding. Starting from the vulnerabilities and the
list of remediation patterns contained in the Security Report, the Security Fix will
provide the Secure Software System in output, where all the vulnerabilities identified
have been removed. This reduces the threat of attacks to the system. Instead, the Pri-
vacy Coding activity, starting from the Target Architecture defined in the previous
phase and by using the Secure Software System obtained, will provide the Target
System in output.

Phase IV: Verification and Validation. In this phase, before deploying the Target
System, a Penetration Test and a Hardening phase are carried out in order to respec-
tively verify the security level of the overall system and verify the correct setting of
the base platform. The output of the penetration test activity is the Pentest Report,
while for the hardening activity the Hardening Report is produced. Hardening refers
to the set of specific configuration operations of a given IT system (and its related
components) that aim to minimize the impact of possible cyber attacks that exploit its
vulnerability, thereby improving its overall security. Hardening phase makes use of

12 Discouraging Blanket Strat-
egies - - - - - x - -

13 Identity Federation Do Not
Track

- - - - - - x -

14 Sticky Policies - - - - - - x -
15 Federated Privacy Impact

Assessment
- - - - - - - x

16 Added-noise obfuscation - x - - - - - -
17 Data Breach Notification - - - - x - - -
18 Enable/Disable Functions - - - - - x - -
19 Pattern Matching Alghoritm - - - - - - x -
20 Preventing XSS with Filter-

ing Approach
- - - - - - x -

21 Anonymous Reputation-
Based Blaclisting

x x x - - - - -

25

the CIS Benchmark [40] that consists in best practices for secure system configura-
tion. The Penetration Test follows the guidelines of the OWASP testing guide [41].

Fig. 9. Privacy Design Strategies in Target Architecture

5 Application to a Real Case

This section presents an ongoing industrial case study that shows the results of how
POSD has been applied in backward mode for reengineering an existing legacy soft-
ware system. The legacy system is used by a public company for processing the per-
sonal data of about one million users. The two main functionalities of the system are:
acquisition and validation of the data of the subjects requesting the services of the
public company and the verification of the economic financial reliability of the appli-
cants. The legacy is a three tiers java system (Presentation, Business and Data). The
re-engineering of the system involved a team of 5 people for a total of eight months
(March 2019 - October 2019). The people involved in the project were 4 developers
and 1 system administrator with more than 5 years of experience in the field but with
no specific knowledge and competences on software security and privacy.

26

 During the Security Assessment phase, static code analysis was carried out by us-
ing Fortify SCA [42] as source code analyzer. The project meta-information is re-
ported as follows: (i) Number of Files: 371; (ii) Lines of Code: 125,105 (iii) Executa-
ble line of Code: 99,997; (iv) Total Vulnerabilities: 1318.

The number of vulnerabilities detected by the Fortify SCA analysis (Fig. 10) were
further analyzed to exclude false positives. After removing false positives, the number
of vulnerabilities was reduced to 1278.

Table 4 summarizes the number of remaining vulnerabilities classified according to
the OWASP Top 10 2017 categories and severity, i.e. the probability that a vulnera-
bility will be accurately identified and successfully exploited and the impact in terms
of damage that an attacker could determine by successfully exploiting the vulnerabil-
ity.

Fig. 10. Vulnerabilities by severity

The list of vulnerabilities produced by the Security Assessment activity were im-

ported and analyzed in the PKB in order to identify the violated principles of PbD.
The result showed that all 7 principles were violated, and thus the need to implement
both data and process oriented strategies in the system by using the set of Privacy
Patterns identified in the Privacy Assessment phase.

Table 4. Issues by OWASP Top 10 2017 Categories.

The resulting list of Privacy Patterns to be applied for reengineering the system is

shown in (Fig. 11) and the Target Architecture identified by the development team is

Vulnerabilities
Severity Total

Issues Critical High Medium Low
A1Injection 373 20 0 695 1088
A2 Broken Authentication 0 2 0 0 2
A3 Sensitive Data Exposure 21 3 0 1 25
A4 XML External Entities (XXE) 0 2 0 1 3
A5 Broken Access Control 0 33 0 87 120
A7 Cross-Site Scripting (XSS) 38 0 0 0 38
A9 Using Components with Know Vulnerabilities 0 0 0 2 2

27

available at [43]. For what concerns the Coding phase that includes Security Fix and
Privacy Coding, the team had fixed 1200 vulnerabilities by applying the remediation
patterns. The remaining 78 vulnerabilities refer to architectural flaws that affect pri-
vacy of the legacy system. They were removed by implementing the Target Architec-
ture.

At the end of this phase, penetration test and hardening activities were carried out.
The results obtained show that all the security and privacy issues that affected the
original legacy system have been overcome.

Fig. 11. Privacy Patterns applied vs class of vulnerabilities mitigated in the Target System

6 Discussion and limitations

Nowadays a large application park written in various languages and operating on
diversified architectures and platforms is available. Its maintenance requires several
and ample skills that are unlikely to all be found in a single developer.
 Cyber Security is a relatively recent discipline that has received growing attention
due to the impacts of the cyber-attacks received and of the damages (economical,
image, etc.) produced. This is even more critical in the case of privacy. Interest in data
privacy has increased in the past year due to the application of GDPR regulations that
enforce a set of principles to protect users' privacy without providing operational
guidelines on how to apply them.
 In addition, it is also relevant to consider that developers are often not very sensi-
tive to systemic problems underlying the operation of software systems and the provi-

0 1 2 3

Aggregation Gateway
Asynchronous Notice

Attribute-Based Credentials (ABC)
Enable/Disable Functions

Encryption with User-Managed Keys
Federated Privacy Assessment

Unusual Account Activities
Informed Consent
K-Anonymization

Limited Data Retain
Local Granularity

Obligation Management
Onion Routing

Personal Data Store
Privacy-Aware Network Client (P3P)

Protection Against Tracking
Pseudonymous Identity

Sticky policies
Strip Invisible Metadata
User Data Confinement

Privacy Pattern

A1 (Injection) A2 (Broken Authentication)

A3 (Sensitive Data Exposure) A4 (XML External Entities)

A5 (Broken Access Control) A7 (Cross-Site Scripting)

A9 (Using Components with Know Vulnerabilities)

28

sion of services. This latter field is important to software systems that, in turn, tend to
neglect the problems related to development. It is no coincidence that in recent years
development approaches such as DevOps, that attempts to bring the two worlds to-
gether, have emerged. Security and privacy impact both areas significantly.

The existing application park was for the most part designed and developed when
issues related to cyber security and privacy were not perceived in such a way. Legacy
systems have not been designed for privacy and security. Once again, we are called to
fill the gap and remediate. This requires professionals with specific competences spe-
cifically trained for this purpose and, given the heterogeneity of the technologies and
delivery platforms used, it is not easy to find them.

All these factors put together cause an objective difficulty to collect previous expe-
riences and identify sufficient competences able to face security and privacy problems
effectively.

In this scenario POSD and PKB represent a first attempt to fill the knowledge and
competence gap assuring multi-level support, i.e. from analysis to design of architec-
tures and coding, to the operational level. Furthermore, PKB provides knowledge and
pre-configured solutions to known problems, whereas POSD provides operational
guidelines.
 Being integrated with a source code analyzer like Fortify SCA (but not limited to
it) PKB is able to operate with 25 different programming languages among the most
known and used along with the related Remediation Patterns included.
 The Privacy Patterns identified in the PKB, on the other hand, represent architec-
tural solutions that can be adopted beyond the languages and specific technologies
used. The Hardening phase foreseen by the POSD uses multiple scripts (i.e. CIS
Benchmarks) that are currently available for each operating system, application serv-
er, web server, mail server, browser and type of device, effectively guaranteeing an
almost total coverage of the possible delivery platforms.

POSD and PKB represent a useful cookbook that can be used to address security
and privacy problems on behalf of both developers and systems engineers, even in the
absence of specific security and privacy skills.
 The results obtained in the real case application of the POSD, show that it was able
to address both, security and privacy issues. It allowed to fix the vulnerabilities identi-
fied during the static code analysis through the application of remediation patterns
provided in the Security Report and furthermore to addresses the privacy flaws listed
in the Privacy Report. The use of PKB across all the POSD phases has allowed to
share knowledge and operative guidelines among the development team. The team
was able to find vulnerabilities, understand the underlying problems and apply securi-
ty fixes.
 PKB supported the team in the privacy oriented reengineering of the legacy sys-
tem, in assuming design decisions even though the team members had no specific
skills and knowledge about security and privacy.
 The use of POSD did not impact on the development process used within the or-
ganization. All the activities performed by the team, starting from the requirements
provided by POSD, were carried out according to the software processes and proce-
dures already used in the company without altering the modus operandi.

29

 One of the limitations of this work is represented by the number and size of the
software systems used for validation. As of now, only one software system has been
reengineered; it was however, a real industrial system. Consequently, the authors are
confident that the results obtained so far provide useful insights for addressing securi-
ty and privacy issues.

7 Conclusions

This research work proposes an approach named Privacy Oriented Software Devel-
opment (POSD) for addressing privacy and security problems in software systems.

It uses a Privacy Knowledge Base (PKB) that developers can use whenever neces-
sary during software development or reengineering.
PKB is based on 5 interrelated key Elements for supporting decisions and choices in
all phases of the software life cycle: Principles of Privacy Design, Privacy Design
Strategies, Privacy Patterns, Vulnerabilities, Context.
 The proposed approach can be applied forward, for developing a new system, and
backward for reengineering an existing one.
 In this paper the backward mode was presented and applied within an industrial
case study. The results obtained show that it was able to provide best practices for
both, secure application development and data privacy, operational guidelines, soft-
ware architectures and code structures to use. This suggests that the proposed ap-
proach may be successfully used for addressing security and privacy problems also in
absence of specific competences and skills, as in the case of the application case car-
ried out and the team involved.
 Despite the limitations of the validation carried out, this work has allowed us to
start a discussion about this research idea and lay the foundations for future work such
as: validate the POSD approach in forward mode on systems to develop; improve the
PKB effectiveness by adding further knowledge (Remediation Patterns and Privacy
Patterns) and increase the number of supported programming languages. At the mo-
ment the PKB is able to export and provide a Java based structure to users for almost
all the privacy patterns it contains. In the future more programming language will be
added in order to improve the efficacy of the PKB.
 In this first work we preferred to start from a backward mode in consideration of
the enormous amount of legacy systems currently existing on the market. They were
developed in a time when neither security nor privacy were perceived as important as
they are today, and thus represent an important commitment for software engineering
scientific and industrial communities.

Acknowledgements

This study has been partially funded by the Project “Digital Service Ecosystem” (Cod.
PON03PE_00136_1) funded by Italian Minister of University and Research and Pro-
ject “Auriga2020” - (Cod. T5LXK18), funded by Apulia Region.

30

References

1. Baldassarre, M.T., Barletta, V.S., Caivano, D., (2018). Smart Program Management in a
Smart City. 110th AEIT International Annual Conference, AEIT 2018,
https://doi.org/10.23919/AEIT.2018.8577379

2. IBM, X-Force Threat Intelligence Index 2019. Resource document. IBM Security. Ac-
cessed 17 October 2019.

3. Halkidis, S. T., Tsantalis, N., Chatzigeorgiou A. and Stephanides, G. (2008). Architectural
Risk Analysis of Software Systems Based on Security Patterns. In IEEE Transactions on
Dependable and Secure Computing, vol. 5, no. 3, pp. 129-142.

4. Baldassarre, M.T., Caivano, D., Visaggio, G. (2013). Empirical studies for innovation dis-
semination: Ten years of experience. In: 17th International Conference on Evaluation and
Assessment in Software Engineering, EASE 2013. ACM International Conference Pro-
ceedings Series, ACM Press, ISBN: 978-145031848-8,
https://doi.org/10.1145/2460999.2461020

5. Ardimento, P., Caivano, D., Cimitile, M., Visaggio, G. (2008). Empirical Investigation of
the Efficacy and Efficiency of Tools for Transferring Software Engineering Knowledge.
Journal of Information & Knowledge Management, vol. 7 n.3, p. 197-207, ISSN: 0219-
6492

6. Caivano, D., Fernandez-Ropero, M., Pérez-Castillo, R., Piattini, M., Scalera, M. (2018).
Artifact-based vs. human-perceived understandability and modifiability of refactored busi-
ness processes: An experiment. Journal of Systems and Software, Vol. 144, pp. 143-164.

7. Baldassarre M.T., Barletta V.S., Caivano D., Scalera M., (2019). Privacy Oriented Soft-
ware Development. Communications in Computer and Information Science, 1010, pp. 18-
32, https://doi.org/10.1007/978-3-030-29238-6_2

8. Cavoukian, A. (2012). Operationalizing Privacy by Design: A Guide to Implementing
Strong Privacy Practices. Resource document. Global Privacy and Security by Design.
http://www.ontla.on.ca/library/repository/mon/26012/320221.pdf. Accessed 17 October
2019.

9. Hoepman, J.-H. (2014). Privacy Design Strategies. In IFIP, ICT Systems Security and Pri-
vacy Protection (pp 446-459). Springer Berlin Heidelberg.

10. Privacy Patterns, https://privacypatterns.org. Resource document. UC Berkeley, School of
Information. Accessed 17 October 2019.

11. OWASP Top 10 – 2017. The Ten Most Critical Web Application Security Risks. Resource
document. OWASP. https://owasp.org. Accessed 17 October 2019.

12. Hatzivasilis, G., Papaefstathiou, I. and Manifavas, C. (2016). Software Security, Privacy,
and Dependability: Metrics and Measurement. In IEEE Software,vol. 33, no. 4, pp. 46-54.

13. Black, P. E., Badger, L., Guttman, B., Elizabeth Fong, E. (2016). Dramatically Reducing
Software Vulnerabilities. Resource document. National Institute of Standards and Tech-
nology (NIST). https://doi.org/10.6028/NIST.IR.8151 Accessed 17 October 2019

14. Baldassarre, M. T., Barletta, V. S., Caivano, D., Raguseo, D., Scalera, M. (2019). Teach-
ing Cyber Security: The Hack-Space Integrated Model. Proceedings of the Third Italian
Conference on Cyber Security, Vol-2315, CEUR Workshop Proceedings.

15. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016
on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC, (2016). Resource
document. Official Journal of the European Union. https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679. Accessed 18 October 2019.

31

16. Kissel, R. L., Stine, K. M., Scholl, M. A., Rossman, H., Fahlsing, J., Gulick, J. (2008). Se-
curity Considerations in the System Development Life Cycle. Special Publication (NIST
SP) – 800-64 Rev 2.

17. Ardimento, P., Baldassarre, M.T., Caivano, D., Visaggio, G. (2004). Multiview frame-
work for goal oriented measurement plan design. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 3009, pp. 159-173., https://doi.org/10.1007/978-3-540-24659-6_12

18. Jaatun, M. G., Cruzes, D. S., Bernsmed, K., Tøndel, I. A., and Røstad, L. (2015). Software
Security Maturity in Public Organisations. In International Conference on Information Se-
curity, ISC 2015: Information Security (pp 120-138). Springer International Publishing,
Cham. https://doi.org/10.1007/978-3-319-23318-5_7

19. Navarro-Machuca, J., and Chen, L. (2016). Embedding Model-Based Security Policies in
Software Development. IEEE 2nd Int. Conf. on Big Data Security on Cloud (BigDa-
taSecurity), IEEE Int. Conf. on High Performance and Smart Computing (HPSC), and
IEEE Int. Conf. on Intelligent Data and Security (IDS), New York, NY, pp. 116-122.

20. Hilbrich, M., and Frank, M. (2017). Enforcing Security and Privacy via a Cooperation of
Security Experts and Software Engineers: A Model-Based Vision. IEEE 7th International
Symposium on Cloud and Service Computing (SC2), Kanazawa, pp. 237-240.

21. Yanbing, L., Xingyu, L., Yi, J., and Yunpeng, X., (2016). SDSA: A framework of a soft-
ware-defined security architecture. In China Communications, vol. 13, no. 2, pp. 178-188.

22. Tung, Y., Lo, S., Shih, J., and Lin, H. (2016). An integrated security testing framework for
Secure Software Development Life Cycle. 18th Asia-Pacific Network Operations and
Management Symposium (APNOMS), Kanazawa, pp. 1-4.

23. Shehab Farhan, A. R., and Mostafa, G. M. (2018). A Methodology for Enhancing Software
Security During Development Processes. 21st Saudi Computer Society National Computer
Conference (NCC), Riyadh, pp. 1-6. https://doi.org/10.1109/NCG.2018.8593135

24. Colesky, M., Hoepman, J., and Hillen. C. (2016). A Critical Analysis of Privacy Design
Strategies. IEEE Security and Privacy Workshops (SPW), San Jose, CA, pp. 33-40.
https://doi.org/10.1109/SPW.2016.23

25. Thomborson, C. (2016). Privacy patterns. 14th Annual Conference on Privacy, Security
and Trust (PST), Auckland, pp. 656-663.

26. Suphakul, T., and Senivongse, T. (2017). Development of privacy design patterns based on
privacy principles and UML. 18th IEEE/ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD),
Kanazawa, pp. 369-375. https://doi.org/10.1109/SNPD.2017.8022748

27. Fernández-Sáez, A.M., Genero, M., Caivano, D., Chaudron, M.R.V. (2016). Does the level
of detail of UML diagrams affect the maintainability of source code?: a family of experi-
ments. Empirical Software Engineering, Volume 21, Issue 1, 1 February 2016, pp 212-259
https://doi.org/10.1007/s10664-014-9354-4

28. Diamantopoulou, V., Argyropoulos, N., Kalloniatis, C., and Gritzalis, S. (2017). Support-
ing the design of privacy-aware business processes via privacy process patterns. 11th In-
ternational Conference on Research Challenges in Information Science, Brighton, pp.187-
198. https://doi.org/10.1109/RCIS.2017.7956536

29. Van Blarkom, G.W., Borking, J.J., and Olk, J.G.E. (2003). Handbook of Privacy and Pri-
vacy-Enhancing Technologies. The Case of Intelligent Software Agents. College
Bescherming Bersoonsgegevens, ISBN 90-74087-33-7

30. Cavoukian, A. (2016). International Council on Global Privacy and Security, By Design.
In IEEE Potentials, Sept.-Oct. 2016, vol. 35, no. 5, pp. 43-46.

32

31. Hansen, M., Jensen, M., and Rost, M. (2015). Protection Goals for Privacy Engineering.
IEEE Security and Privacy Workshops, San Jose, CA, pp. 159-166 (2015).

32. Notario, N., Crespo, A., Martìn, Y. S., Del Alamo, J. M., Le Métayer, D., Antignac, T.,
Kung, A., et al. (2015). PRIPARE: Integrating Privacy Best Practices into a Privacy Engi-
neering Methodology. IEEE Security and Privacy Workshops, San Jose, CA, pp. 151-158.
https://doi.org/10.1109/SPW.2015.22

33. Spiekermann, S., and Cranor, L. F. (2009). Engineering privacy. IEEE Transactions on
Software Engineering, vol. 35, no. 1, pp. 67–82. https://doi.org/10.1109/TSE.2008.88

34. Kallpniatis, C., Kavakli, E., Gritzalis, S. (2008). Addressing privacy requirements in sys-
tem design: the PriS method. Requirements Engineering, vol. 13, pp 241-255. Springer-
Verlag. https://doi.org/10.1007/s00766-008-0067-3

35. Morales-Trujillo, M. E., Matla-Cruz, E. O., García-Mireles, G. A., & Piattini, M. (2018).
Privacy by design in software engineering: A systematic mapping study. Paper presented
at Avances en Ingenieria de Software a Nivel Iberoamericano, CIbSE. pp.107-120.

36. Colesky, M., Hoepman, J., Hillen, C. (2016). A Critical Analysis of Privacy Design Strat-
egies. IEEE Security and Privacy Workshops (SPW), San Jose, CA, 2016, pp. 33-40.
https://doi.org/10.1109/SPW.2016.23

37. Ortiz, R., Moral-Rubio, S., Garzás, J., Fernández-Medina. E. (2011). Towards a Pattern-
Based Security Methodologiy to Build Secure Information Systems. Proceedings of the 8th
International Workshop on Security in Information Systems WOSIS 2011, pp. 59-69.

38. Baldassarre, M. T., Bianchi, A., Caivano, D., Visaggio, G. (2005). An Industrial Case
Study on Reuse Oriented Development. In: Proceedings of 21st IEEE International Con-
ference on Software Maintenance. p. 283-292, WASHINGTON, DC: IEEE Computer So-
ciety, ISBN:0-7695-2368-4, Budapest Hungary, September 2005.
https://doi.org/10.1109/ICSM.2005.20

39. Moral-García, S., Ortiz, R., Moral-Rubio, S., Vela, B., Garzás, J., Fernández-Medina, E.
(2010). A New Pattern Template to Support the Design of Security Architectures.
PATTERNS 2010: The 2nd Int. Conferences on Pervasive Patterns and Applications, pp.
66-71.

40. Center for Internet Security (2019). CIS Benchmarks. Resource document. CIS.
https://www.cisecurity.org/cis-benchmarks/. Accessed 21 October 2019

41. OWASP Testing Guide, (2016). Resource document. OWASP.
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents. Ac-
cessed 22 October 2019

42. Fortify Static Code Analyze (SCA), (2019). Resource document. Micro Focus.
https://www.microfocus.com, 2018. Accessed 22 October 2019

43. Baldassarre, M. T., Barletta, V. S., Caivano, D., Scalera, M. (2019). Target Architecture in
Privacy Oriented Software Development. SERLAB. https://serlab.di.uniba.it/posd

