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Abstract: We demonstrate a novel second-order spatial interference effect between two in-
distinguishable pairs of disjoint optical paths from a single chaotic source. Beside providing
a deeper understanding of the physics of multi-photon interference and coherence, the effect
enables retrieving information on both the spatial structure and the relative position of two
distant double-pinhole masks, in the absence of first order coherence. We also demonstrate the
exploitation of the phenomenon for simulating quantum logic gates, including a controlled-NOT
gate operation.
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1. Introduction

The second-order interference phenomena investigated in the mid-1950s by Hanbury Brown and
Twiss (HBT) imposed a deep change in the understanding of interference and coherence [1, 2].
In fact, the intense debate raised by HBT interferometry naturally led to the development of
quantum optics [1–4], with its intriguing fundamental studies on multi-photon interference [5–12],
its promising applications (e.g., imaging [13–25], quantum information processing [26–31],
metrology [14, 32–34], etc.), and developments (e.g., N-photon state characterization [11, 35],
entanglement generation [11, 36] and entanglement simulation [37–41]).

In the original HBT interferometer [1], second order interference is observed when light
emitted by a single chaotic source is detected by two separate sensors and correlation measure-
ments are performed while varying either the time delay between the two detectors (temporal
second-order interference) or their relative position (spatial second-order interference). The
two detectors, separately, do not retrieve any (first-order) interference. However, interference
is observed at second-order provided the time delay and the spatial separation are within the
coherence time and the coherence area of the source, respectively.

Recently, Tamma and Seiler have proposed a modification of this scheme [12]: before reaching
the detectors, chaotic light propagates though two unbalanced M-Z interferometers. No first-
order interference exists at the exit of the interferometers, since the unbalancing is larger than
the coherence length of the source. Interestingly, interference between two long and two short
paths is predicted to occur even if the relative time-delay between the two pairs is beyond
the coherence time of the source. This interferometer, substantially different from previous
schemes based on multiple incoherent sources [42–45], thus offers a deeper insight on the
interplay between interference and coherence in multiphoton interferometry. Furthermore, a
controlled-NOT (CNOT) gate operation [46–48] can be simulated by employing this interference
effect [12].

In this paper, we demonstrate that pure second-order interference between pairs of disjoint
optical paths (paths which do not overlap spatially), originated from a single chaotic source, can
also be observed in the spatial domain. The uniqueness of such a spatial interference phenomenon
stands in its potential application for sensing of remote objects. In particular, we consider an
optical interferometer (Fig. 1) where the light from a single chaotic source, after being split
by a balanced beam splitter, propagates through two double-pinhole masks placed in the two
separate output channels of the beam splitter. The separation between the pinholes in each mask
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is such that no first-order interference can be observed by the detectors placed behind each
mask. However, as shown in Section 2, by measuring the correlation between the photon number
fluctuations at given transverse positions of the two detectors, a spatial second-order interference
is predicted to appear. Interference occurs between two pairs of disjoint optical paths, which
are defined by the two pairs of pinholes (1C , 1T ) and (2C , 2T ). In Section 3, we show that the
information about the spatial structure and the relative position of the two masks is encoded
within the relative phase between the two pairs of interfering paths, independently of the distance
between the two masks and the source. In particular, we demonstrate that: 1) this information can
be retrieved in suitable experimental scenarios (Tables 1 and 2); 2) the measurement precision
can be increased by changing some experimental parameters rather than increasing the frequency
of the light (Table 1 and Fig. 2). Finally, in Section 4, we show that the proposed interference
phenomenon can also be used to simulate quantum logic operations, including a CNOT gate.

The novel spatial interference effect introduced in this paper has already triggered two ex-
periments: 1) the experimental characterization of two remote double-slit masks within the
experimental scenarios (v) in Table 1, and (i), (ii) in Table 2 [49]; 2) the experimental simulation
of the CNOT-gate operation based on the spatial interferometer introduced in Fig. 3 [50]. The
more general results reported here provide the complete physical picture of the novel interference
effect, and are likely to inspire further theoretical and experimental works (e.g., monitoring the
relative change in the spatial structure of two distant masks, as predicted in Fig. 2). Intriguing
applications in imaging and sensing of remote objects are in fact at reach with the current
technology.

2. Spatial interference effect

Let us start by introducing the interferometric setup depicted in Fig. 1: chaotic light emitted
by the source S is split by a balanced non-polarizing beam splitter, and two double-pinhole
masks are placed in the output ports of the beam splitter, at the same distance z from the source.
The pinholes are indicated as 1C , 2C for the upper mask and 1T , 2T for the lower mask. The
light transmitted by the masks reaches two point-like detectors, DC and DT , placed at the same
distance f from the masks. A correlation measurement is performed between the fluctuations of
the number of photons detected by DC and DT .

We first consider the correlation in the number of photons on the masks planes, which is given
by the second-order correlation function [23, 51]

G(2) (xp , xq ) ∝ 〈n(xp )n(xq )〉 = 〈n(xp )〉 〈n(xq )〉 + 〈∆n(xp )∆n(xq )〉 , (1)

with p = 1C , 2C and q = 1T , 2T , where n represents the photon number and ∆n ..= n − n̄ the
photon-number fluctuation around the mean n̄. In particular, we consider the case of a quasi-
monochromatic chaotic source, which, for simplicity, is also assumed to be 1 dimensional and
linearly polarized (e.g., along the horizontal H direction). The input chaotic light is described
by [51, 52]

ρ̂H =

∫ ∏
κ

d2ακ,H

 P({ακ,H })
⊗
κ

|ακ,H 〉S〈ακ,H | , (2)

with the Glauber-Sudarshan probability distribution [3, 53]

P({ακ,H }) =
∏
κ

1
π 〈nκ 〉

exp

−
∣∣∣ακ,H ∣∣∣2
〈nκ 〉

 , (3)

where ακ,H are H-polarized coherent states, in the mode κ associated with the x component
of the transverse wave vector, and 〈nκ 〉 is the corresponding average photon number, which is
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Fig. 1. Optical interferometer for sensing two remote double-pinhole masks through the
observation of spatial second-order interference between indistinguishable pairs of disjoint
optical paths. Light emitted by a single 1 dimensional chaotic source, after being split by a
balanced non-polarizing beam splitter, propagates through two double-pinhole masks placed
at the same distance z from the source and reaches two point-like detectors, DC and DT ,
placed at distance f from the masks. A correlation measurement between the fluctuations of
the number of photons at the detectors DC and DT is performed.

assumed for simplicity to be constant [52]. In this case, Eq. (1) reduces to [19]

G(2) (xp , xq ) = G(1) (xp )G(1) (xq ) + |G(1) (xp , xq ) |2 , (4)

where G(1) is the first-order correlation function (see Eq. (9)). Therefore, the second-order corre-
lation function G(2) (xp , xq ) depends on two contributions: the first one, G(1) (xp )G(1) (xq ) ∝〈
n(xp )

〉 〈
n(xq )

〉
, is a constant background; the second one,

∣∣∣G(1) (xp , xq )
∣∣∣2 ∝ 〈∆n(xp )∆n(xq )〉,

is the interesting part of the correlation. The background can be removed by performing a
correlation measurement between the fluctuations of the number of photons [23]. The out-
come of this measurement is different from zero for all the possible pairs of paths (p, q) =

(1C , 1T ), (2C , 2T ), (1C , 2T ), (2C , 1T ), provided the relative distance between each pair of pin-
holes is smaller than the transverse coherence length of the source (lcoh) on the plane of the
masks, which is: |xp − xq | � lcoh . An interesting result comes out by working in the hypothesis
that

A. the corresponding pairs of pinholes of the two masks are within the transverse coherence
length, which is

|x1C − x1T | � lcoh |x2C − x2T | � lcoh ; (5)
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B. the pinholes, in each mask, are separated by a distance larger than the transverse coherence
length of the source, which, given the condition in Eq. (5), implies

|x1C − x2T | � lcoh |x1T − x2C | � lcoh . (6)

In fact, in this case, only the two pairs of paths (1C , 1T ) and (2C , 2T ), each one associated with
two disjoint paths spatially coherent with respect to each other, contribute to the correlation,
while no contribution comes from the two pairs of paths (1C , 2T ) and (2C , 1T ), namely

〈∆n(xp )∆n(xq )〉 , 0⇔ (p, q) = (1C , 1T ), (2C , 2T ). (7)

Multi-photon correlations (“photon bunching”) thus give rise to the non-vanishing expectation
value of the product of the photon-number fluctuations at the two remote pinholes 1C and 1T
(or 2C and 2T ). This result arises from the correlation measurement and cannot be explained
in terms of independent measurements at the two detectors. Interestingly, since the detectors
are placed in the mask planes, the two pairs of disjoint paths (1C ,1T ) and (2C , 2T ) contribute
independently of one another to the correlation measurement.

What happens if we perform correlation measurements after the two-pinhole masks? Since
light passing through the two pinholes of each mask is incoherent (condition in Eq. (6)), one may
expect that the two contributions (1C , 1T ) and (2C , 2T ) add incoherently. However, as we shall
show, they give rise to a counterintuitive spatial interference effect. To demonstrate this result we
evaluate the correlation between the photon-number fluctuations ∆n(xC ) and ∆n(xT ) measured
at equal detection times by the detectors DC and DT , respectively, placed at the transverse
position xC and xT behind the two-pinhole masks, namely

〈∆n(xC )∆n(xT )〉 ∝
∣∣∣G(1) (xC , xT )

∣∣∣2. (8)

Here,

G(1) (xC , xT ) = Tr[ ρ̂H Ê (−)
C

(xC )Ê (+)
T

(xT )] (9)

is the first-order correlation function calculated at xC , xT , where Ê+
d

(xd ) and Ê−
d

(xd ) are,
respectively, the positive and negative frequency part of the electric field operator at the position
xd , namely

Ê (+)
d

(xd ) = K
∫

dκg{κ; S, xd }âS (κ), (10)

where K is a constant and g{κ; S, xd } is the Green’s function that describes the propagation of
the mode κ from the source S to the detector Dd , placed in xd , with d = C,T , and âS (κ) is the
annihilation operator at the source S associated with the mode κ.

As demonstrated in Appendix B, in the paraxial approximation and by using the conditions
given in Eqs. (5) and (6), Eq. (8) becomes

〈∆n(xC )∆n(xT )〉 ∝
∣∣∣G(1)

1C ,1T
(xC , xT ) + G(1)

2C ,2T
(xC , xT )

∣∣∣2 , (11)

where G(1)
1C ,1T

and G(1)
2C ,2T

indicate the contributions to the correlation measurement coming
from the two pairs of disjoint paths (1C , 1T ), (2C , 2T ), respectively, and, as shown in Appendix
A,

G(1)
p ,q (xC , xT ) ∝ B∗p (xC )Bq (xT )FT

{
|A(xS ) |2

} [
(xp − xq )/(λz)

]
, (12)

with the two phase factors B∗p (xC ) and Bq (xT ) defined in Eq. (31) and the Fourier transform
FT

{
|A(xS ) |2

} [
χ
]

of the source intensity profile |A(xS ) |2 calculated at χ = (xp − xq )/(λz).
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The result of Eq. (12) is at the core of the counterintuitive interference phenomenon addressed
in this paper. In fact, it indicates that the contributions G(1)

p ,q , associated with the pairs of paths
(p,q) = (1C , 1T ), (2C , 2T ), (1C , 2T ), (2C , 1T ), strongly depend on the relative distance xp − xq
between the remote pinholes p (of mask C) and q (of mask T) as compared to the transverse
coherence length of the source (lcoh) on the plane of the masks. In our scenario, due to the
conditions given in Eqs. (5) and (6), we obtain

G(1)
1C ,1T

(xC , xT ) ∝ B∗1C (xC )B1T (xT ) , G(1)
2C ,2T

(xC , xT ) ∝ B∗2C (xC )B2T (xT )

G(1)
1C ,2T

(xC , xT ) = G(1)
2C ,1T

(xC , xT ) = 0. (13)

Therefore, as reported in Eq. (11), the correlation between the fluctuations of the number of
photons enables to retrieve the interference between the two possible “photon bunching” con-
tributions G1C ,1T and G2C ,2T associated with the pairs of disjoint paths (1C , 1T ) and (2C , 2T ).
In fact, these two contributions add coherently and cannot be distinguished in the correlation
measurement. As mentioned above, these two contributions can be distinguished when perform-
ing correlation measurements on the mask planes. In this case, these two contributions lead to
independent bunching events due to both the statistical properties of the chaotic source and the
experimental conditions in Eqs. (5) and (6). In contrast, when correlation measurements are
performed after the two masks, the two pairs of path (1C , 1T ) and (2C , 2T ) become indistin-
guishable. Multi-photon correlations emerge from the resulting interference between the two
pairs of disjoint paths, even if the pinholes in each mask are separated much further than the
coherence length of the source.

3. Sensing applications

As shown in Appendix B, the correlation in the fluctuation of the number of photons in Eq. (11)
can be written as

〈∆n(xC )∆n(xT )〉 ∝
∣∣∣1 + eiφ (sC ,dC ,sT ,dT ,xC ,xT )

∣∣∣2 , (14)

with

φ(sC , dC , sT , dT , xC , xT ) =
2π
λ

( sT dT − sCdC

h
−

xT dT − xCdC

f

)
, (15)

where h is defined by the condition 1/h = 1/z + 1/ f , d j
..= x2 j

− x1 j
is the pinhole separation

for the j-th mask and s j ..= (x1 j
+ x2 j

)/2 is the transverse coordinate of the center of the j-th
mask, with j = C,T . Remarkably, the interference effect described by Eq. (14) holds for any
value of the parameters z and f , namely, for any distance of the masks from the beam splitter
and from the corresponding detectors.

Interestingly, for a fixed wavelength λ, the phase φ(sC , dC , sT , dT , xC , xT ) is determined
by the pinhole separations dC and dT weighted either by the average transverse positions s j
of the two pinholes divided by h, or by the detection angles x j/ f evaluated with respect to the
optical axis. Therefore, the correlation measurement of Eq. (14) is sensitive to the position and
the transverse structure of the two masks.

In Table 1, we consider five different experimental scenarios exploiting correlation measure-
ment for monitoring small variations in: (i) the difference dC − dT of the two pinhole separations,
(ii) the sum dC + dT of the two pinhole separations, (iii) the pinhole separation d j in one mask
j = C,T if the separation in the other mask is fixed, (iv) the relative position sT − sC of the
masks, (v) the transverse position s j of one mask j = C,T if the position of the other mask is
fixed. Interestingly, as reported in the third column of Table 1, in all scenarios it is possible to
increase the precision of the measurement without either increasing the frequency of the light or
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Table 1. Summary of the conditions for monitoring the transverse spatial structure and
position of two remote double-pinhole masks by performing the correlation measurement
of Eq. (14) in the setup in Fig. 1. In each of the five experimental scenarios one variable
parameter is monitored, and the other parameters are fixed in order to “magnify” the effect
of small variations of the monitored parameter; the corresponding “magnification” factors
are reported in the third column of the table.

Experimental conditions Variable parameter “Magnification”
in addition to Eqs. (5) and (6) to monitor factors
(i) xT = xC , sT = sC dT − dC sC/h − xC/ f
(ii) xT = −xC , sT = −sC dT + dC −sC/h + xC/ f
(iii) |sT | , |sC | dT,C sT,C/h − xT,C/ f
(iv) dT = dC sT − sC dC/h
(v) dT , dC sT,C dT,C/h

- 0.015 - 0.010 - 0.005 0.005 0.010 0.015
dT - dC [mm]

0.2

0.4

0.6

0.8

1.0

<Δn(xC)Δn(xT )>

sC  = sT = 0,  xC  = xT = 0.02 f
sC  = sT = 0,  xC  = xT = 0.04 f
sC  = sT = -0.04 h,  xC  = xT = 0.04 f

Fig. 2. Simulation of the measurement of the stretching/shrinking dC − dT of one mask with
respect to the other in the setup of Fig. 1 with z = 500mm and f = 100mm. The source is
assumed to have a constant profile, with size a = 2mm, and wavelength λ = 632nm, so that
the coherence length is lcoh = λz/a = 0.158mm. When the two pinholes in each mask are
placed symmetrically with respect to the optical axis (sC = sT = 0), the observable effect
of small variations in dC − dT is enhanced when the transverse position xC = xT of the
two detectors is increased, as demonstrated by the dashed (yellow) curve as compared to the
dash-dot (blue) one. A further enhancement is obtained by displacing equally both masks
with respect to the optical axis in the opposite direction of the detectors, as demonstrated by
the continuous (green) curve.

using entanglement: the trick is to employ the remaining spatial parameters to “magnify” the
effect of the variation of the spatial parameter to be monitored. An analysis of the sensitivity of
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this technique in terms of the number of resources is beyond the scope of this paper and will be
addressed in future research [33].

In Fig. 2, we depict the first experimental scenario reported in Table 1, where, for equal
transverse positions sC = sT of the two masks, the correlation measurement at equal detector
positions xC = xT is sensitive to the stretching/shrinking dc − dT of one mask with respect
to the other. In the simple case where the two pinholes in each mask are placed symmetrically
with respect to the optical axis (sC = sT = 0), the effect of small variations in dC − dT can
be magnified by moving both detectors at larger angles xC/ f with respect to the optical axis
(dashed yellow curve). A further enhancement can be obtained by displacing both masks equally
with respect to the optical axis, but in the opposite direction of the detectors (green continuous
curve).

Table 2. Summary of the experimental conditions for characterizing two remote double-
pinhole masks by measuring in the setup in Fig. 1 the period of the second order interference
pattern given by Eq. (14).

Experimental conditions Experimental Period of the interference
in addition to Eqs. (5) and (6) variable pattern 〈∆n(xC )∆n(xT )〉
(i) xT = xC xC λ f /(dC − dT )
(ii) xT = −xC xC λ f /(dT + dC )
(iii) sT = sC , xC = xT = 0 dT − dC λh/sC
(iv) sT = −sC , xC = xT = 0 dT + dC λh/sC
(v) dT = dC , xC = xT = 0 sT − sC λh/dC

Based on Eqs. (14) and (15), the transverse structure of the two masks can also be retrieved,
indirectly, by measuring the period of the second-order interference pattern 〈∆n(xC )∆n(xT )〉
obtained in the experimental scenarios reported in Table 2. For example, by performing corre-
lation measurements at both equal and opposite positions with respect to the optical axis (first
and second experimental scenarios, respectively, in Table 2) it is possible to retrieve the pinhole
separations dC and dT in each mask.

Interestingly, the sensing capabilities of the present interferometric technique have currently
no counterparts in the temporal domain [12].

4. Simulation of quantum logic gates

In this section, we show that quantum logic operations can be simulated by using the spatial
interference effect described so far. In particular, we address the simulation of a controlled-Uφ

gate, with Uφ described by the matrix [27]

Uφ
..=

(
0 eiφ

eiφ 0

)
. (16)

Let us start by describing a genuine controlled-Uφ gate. Given two-qubit input states
|φC〉C |φT 〉T , where

|φC〉C
..= cos φC |H〉C + sin φC |V 〉C , (17)

and
|φT 〉T

..= cos φT |H〉T + sin φT |V 〉T , (18)

the controlled-Uφ gate operates on the input states, by giving the following output entangled
state [27]

|ψ〉 = cos φC |H〉C |φT 〉T + eiφ sin φC |V 〉C |φ
(F )
T
〉
T
, (19)
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where
|φ(F )
T
〉
T

..= sin φT |H〉T + cos φT |V 〉T . (20)

The polarization-dependent joint detection probability associated with the state |ψ〉 is [27]

PUφ
..=

∣∣∣〈θC , θT |ψ〉∣∣∣2 =
∣∣∣∣ cos φC cos θC cos (φT − θT ) + eiφ sin φC sin θC sin (φT + θT )

∣∣∣∣2. (21)

In particular, for φ = 0, the controlled-Uφ gate reduces to a CNOT gate [27] and the polarization-
dependent joint detection probability in Eq. (21) becomes

PCNOT
..=

∣∣∣〈θC , θT |ψ〉∣∣∣2 =
∣∣∣∣cos φC cos θC cos

(
φT − θT

)
+ sin φC sin θC sin (φT + θT )

∣∣∣∣2. (22)

In order to simulate a controlled-Uφ gate we propose in Fig. 3 a modification of the inter-
ferometer in Fig. 1. The interferometer consists of three parts: the first one prepares the initial
polarization state in the “control” input port C and in the “target” input port T ; the second one
implements polarization transformations along the control and target output channels; the final
part consists of the measurement process.

In the first part of the setup, the H-polarized chaotic light impinges on a balanced non-
polarizing beam splitter and then propagates through two half-wave plates RφC

and RφT
.

The second part of the setup consists of a “control” path, connecting the ports C and C, and a
“target” path, connecting the ports T and T . Similar to the setup in Fig. 1, both in the control and
in the target paths light goes through identical two-pinhole masks. However, in the control path,
two polarizers oriented along the H and V directions are placed just before pinholes 1C and 2C ,
respectively, while in the target path a half-wave plate oriented at π/4 is placed just before the
pinhole 2T .

Let us now describe the detection process. A polarizer, oriented along the direction θd ..=

(cos θd sin θd )T , with d = C,T , is placed in front of each detector. A polarization-dependent
correlation measurement between the fluctuations of the number of photons ∆n(xC , θC ) and
∆n(xT , θT ), detected, respectively, by DC and DT , is then performed.

As shown in Appendix C, if the conditions in Eqs. (5) and (6) are satisfied, in the paraxial
approximation the correlation between the fluctuations of the number of photons is proportional
to the joint detection probability typical of a controlled-Uφ gate, namely

〈
∆n(xC , θC )∆n(xT , θT )

〉
∝

∣∣∣∣G(1)
1C ,1T

(xC , θC , xT , θT ) + G(1)
2C ,2T

(xC , θC , xT , θT )
∣∣∣∣2 ∝ PUφ , (23)

with φ defined in Eq. (15). However, differently from the setup in Fig. 1, the two interfering
contributions G(1)

1C ,1T
and G(1)

2C ,2T
, associated with the propagation through the two pairs of

pinholes (1C , 1T ) and (2C , 2T ), are polarization dependent. In particular:

A. the control path 1C , associated with the polarization mode H, is correlated with the target
path 1T , where the polarization is not modified;

B. the control path 2C , associated with the polarization mode V, is correlated with the target
path 2T , where the polarization is flipped from H to V, and vice versa.

Interestingly, the resulting second-order interference pattern is proportional to the probability
PUφ associated with a controlled-Uφ gate, with φ defined in Eq. (15). In particular, when

|φ(sC , dC , sT , dT , xC , xT ) | � 1, (24)

Eq. (23) reduces to 〈
∆n(xC , θC )∆n(xT , θT )

〉
∝ PCNOT , (25)
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Fig. 3. Interferometer for the simulation of controlled-Uφ gates, with Uφ defined in Eq. (16).
In the first part of the interferometer, the initial polarization state of the light is prepared.
The second part, from the ports C and T to the ports C and T , respectively, performs a
polarization-dependent transformation. Correlation measurements in the fluctuations of
the number of photons are performed at the interferometer output. RφC

and RφT
are two

half-wave plates that rotate the polarization of the angles φC and φT , respectively; F is a
half-wave plate implementing a flip from the horizontal (H) polarization to the vertical (V)
polarization and vice versa; H, V , θC and θT represent the polarization directions of the
corresponding polarizers.

with PCNOT defined in Eq. (22), leading to the simulation of a CNOT gate operation without
recurring to any entanglement processes.

Based on Eq. (15), the condition reported in Eq. (24) can be experimentally obtained, for
example, by performing the detections at equal positions xC = xT with the pinholes in the two
masks placed in the same position with respect to the optical axis (dC = dT , sC = sT ).

By using a generalized N-port beam splitter and N double-slit masks, the scheme in Fig.
3 can be generalized for the simulation of interference features typical of N-order entangled
correlations.

5. Discussions

Based on the setup in Fig. 1, we have theoretically demonstrated a second-order spatial inter-
ference effect between two pairs of disjoint but correlated paths. The two interfering paths are
associated with the pairs of remote pinholes 1C , 1T and 2C , 2T . Interestingly, such interfer-
ence exists even if the pinholes in each mask are separated by a distance much larger than the

                                                                                     Vol. 25, No. 6 | 20 Mar 2017 | OPTICS EXPRESS 6599 



transverse coherence length lcoh of the source. In fact, the interference between the pairs of
paths (1C , 1T ) and (2C , 2T ) arises from the correlation between the two disjoint paths going
through pinholes 1C , 1T and 2C , 2T , respectively; in fact, the transverse distance between the
two pinholes 1C and 1T (or 2C and 2T ) is smaller than the transverse coherence length of the
source. This is not the case for the other two possible pairs of paths, (1C , 2T ) and (2C , 1T ), which
therefore cannot contribute to the interference. This phenomenon,substantially different from all
second-order interference phenomena based on multiple chaotic sources [42–45], thus provides
a deeper understanding of the physics of multi-path interference and spatial coherence.

Furthermore, we have demonstrated that this spatial interference effect has interesting potential
applications for sensing of remote objects in the absence of first-order coherence. In particular,
we have shown that information about both the transverse structure and the relative position
of two remote double-pinhole masks is encoded within the relative phase between the two
interfering pairs of optical paths (Eq. (15)). These spatial parameters can be retrieved through
the measurement of the period of the second order interference pattern given by Eq. (14) (Table
2). Remarkably, the effect produced on the correlation measurement by small variations of these
spatial parameters can be enhanced without increasing the frequency of the light, as demonstrated
in Table 1 and in the example in Fig. 2. This may lead to novel applications in sensing biological
samples without exposure to high-frequency light [54]. Moreover, this technique can be applied
independently of the distances between the two masks and the source and between the masks and
the corresponding detectors. Therefore, this effect can be potentially employed for monitoring
the relative spatial structure and position of distant objects.

In addition, we have demonstrated how to exploit this novel spatial interference phenomenon
for simulating entanglement correlations, including the simulation of a CNOT gate (Fig. 3).
This technique can be used, to simulate typical interference features of high-order entanglement
correlations with potential applications in novel optical algorithms [55–60].

In conclusion the proposed spatial interference effect provides a deeper understanding of
the physics of spatial coherence and multi-photon interference, and can naturally lead to novel
interferometric techniques for sensing distant objects and simulating small-scale quantum circuits.
This interference phenomenon may also be extended to atomic interferometers with thermal
bosons, for example, to measure the effect of external forces (e.g., gravity) on bosons of given
mass in remote spatial regions.

A. Green’s propagator for the setup in Fig. 1

Given the optical setup in Fig. 1 we calculate here the Green’s propagator g{κ; S, xd }, associated
with the x component κ of transverse wave-vector, from the source S with amplitude profile
A(xS ) to the detector transverse position xd , with d = C,T . In particular, we obtain [19, 61, 62]

g{κ; S, xd } =
1
√

2
eiϕ (d)

∫
dxSdxM A(xS )M (xM )eiκxS

{
−iω
2πc

eiωz/c

z
G( |xS − xM |)[ω/(cz)]

}
×

{
−iω
2πc

eiω f/c

f
G(|xM − xd |)[ω/(c f )]

}
, (26)

where ω is the frequency of the light,

M (xM ) ..=
∑
xp

δ(xM − xp ) (27)

is the mask transfer function, defined by the transverse position xp of the pinholes p = 1C , 2C
for the upper mask and p = 1T , 2T for the lower mask,

G( |α |)[β]
..= ei

β
2 |α |

2
(28)
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is the Fresnel propagator, and the factor 1√
2
eiϕ (d) takes into account the propagation through the

beam splitter, with ϕ(C) = 0 for the transmitted beam and ϕ(D) = π/2 for the reflected beam.
By using the definition (28) and the property

G(|α + α′ |)[β] = G( |α |)[β]G( |α′ |)[β′]eiβαα
′

(29)

of the Fresnel propagator, and the mask transfer function in Eq. (27), Eq. (26) becomes

g{κ; S, xd } =
∑

p=1d ,2d

Bj (xd )
∫

dxS A(xS )G(|xS |)[ω/(cz )]ei[κ−ωxp /(zc)]xS , (30)

where

Bp (xd ) ..= −
1
√

2

(
ω

2πc

)2 ei[ϕ (d)+ω (z+ f )/c]

z f
G(|xd |)[ω/(c f )]G( |xp |)[ω/(ch)]e−iωxd xp /( fc) . (31)

The Green’s function in Eq. (30) can be finally written as the sum

g{κ; S, xd } =
∑

p=1d ,2d

gp {κ; S, xd }, (32)

of the two Green’s propagators

gp {κ; S, xd } ..= Bp (xd )
∫

dxS A(xS )G(|xS |)[ω/(cz)]ei[κ−ωxp /(zc)]xS , (33)

from the source S to the detector position xd , with d = C,T , through the pinhole located in xp ,
with p = 1d , 2d .

B. Correlation measurement for the setup in Fig. 1

In the present appendix we present a detailed derivation of the correlation in the fluctuation of
the numbers of photons in Eqs. (11) and (14) measured at the output of the setup in Fig.1.

By substituting in Eq. (9), the definition of the electric field operator (Eq. (10) with the Green’s
propagator in Eq. (32), we obtain the first order correlation function

G(1) (xC , xT ) =
∑

p=1C ,2C
q=1T ,2T

|K |2Tr
[
ρ̂H

∫
dκdκ′g∗p {κ; S, xC }gq {κ′; S, xT }â

†

S
(κ)âS (κ′)

]
. (34)

This expression corresponds to the sum

G(1) (xC , xT ) =
∑

p=1C ,2C
q=1T ,2T

G(1)
p ,q (xC , xT ). (35)

of the four contributions

G(1)
p ,q (xC , xT ) ..= |K |2Tr

[
ρ̂H

∫
dκdκ′g∗p {κ; S, xC }gq {κ′; S, xT }â

†

S
(κ)âS (κ′)

]
, (36)

from the corresponding four pairs of optical paths (p, q) =

(1C , 1T ), (2C , 2T ), (1C , 2T ), (2C , 1T ).
By using the property of chaotic sources [52]

Tr
[
ρ̂a† (κ)a(κ′)

]
= 〈nκ 〉 δ(κ − κ′), (37)
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where the average photon number 〈nκ 〉 in the mode κ is assumed to be constant, and the Green’s
propagators in Eq. (33), Eq. (36) reduces to

G(1)
p ,q (xC , xT ) = K ′B∗p (xC )Bq (xT )FT

{
|A(xS ) |2

} [
ω(xp − xq )/(2πcz)

]
, (38)

where K ′ ..= |K |2 〈nκ 〉 and FT
{
|A(xS ) |2

} [
χ
]

represents the Fourier transform of the source
intensity profile, calculated in ω(xp − xq )/(2πcz). If |xp − xq | � lcoh , this Fourier transform
is approximately zero, so that no contribution to the correlation function in Eq. (35) arises from
the pair of paths (p, q). On the contrary the pair of path (p, q) gives its maximum contribution if
|xp − xq | � lcoh . This implies that, in the conditions given in Eqs. (5) and (6), the correlation
function in Eq. (35) reduces to the sum

G(1) (xC , xT ) = G(1)
1C ,1T

(xC , xT ) + G(1)
2C ,2T

(xC , xT ) (39)

of the only two contributions associated with the pairs of paths (1C , 1T ) and (2C , 2T ). By
substituting this expression in Eq. (8), we obtain the correlation in the photon-number fluctuations
〈∆n(xC )∆n(xT )〉 in Eq. (11).

By using the conditions in Eqs. (5) and (6) and Eq. (38), Eq. (11) can be written explicitly as

〈∆n(xC )∆n(xT )〉 =
∣∣∣K ′FT

{
|A(xS ) |2

}
(0)

[
B∗1C (xC )B1T (xT ) + B∗2C (xC )B2T (xT )

] ∣∣∣2.(40)

By inserting the expressions in Eq. (31) with the definition of the Fresnel propagator (Eq. (28)),
we finally obtain

〈∆n(xC )∆n(xT )〉 = K ′′
∣∣∣e−iω/(2ch)(x2

1C
−x2

1T
)eiω/(c f )(xC x1C −xT x1T )

+ e−iω/(2ch)(x2
2C
−x2

2T
)eiω/(c f )(xC x2C −xT x2T )

∣∣∣2 , (41)

with K ′′ ..=
∣∣∣ (i/2)

[
1/ (z f )

]2 K ′ [ω/ (2πc)]4 FT
{
|A(xS ) |2

}
(0)

∣∣∣2, which reduces easily to Eq.
(14).

C. Correlation measurement for the setup in Fig. 3

In the present appendix we derive the correlation in the fluctuations of the number of photons in
Eq. (23), measured at the output of the interferometer in Fig. 3 for arbitrary polarization angle
θC and θT . For a H-polarized quasi-monochromatic 1-dim chaotic source (thermal state ρ̂H in
Eq. (2)), this correlation is given by [3]〈

∆n(xC , θC )∆n(xT , θT )
〉

=
∣∣∣G(1) (xC , θC ; xT , θT )

∣∣∣2 (42)

where

G(1) (xC , θC ; xT , θT ) = Tr
[
ρ̂H Ê

(−)
C ,S

(xC ) Ê (+)
T,S

(xT )
]

= K ′
∫

dκL∗C (κ)LT (κ), (43)

is the first-order correlation function determined by the field operator

Ê
(+)
d ,S

(xd ) ..= K
∫

dκ e−iωt Ld (κ) â(H )
S

(κ), (44)
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with d = C,T , where K is a constant factor, K ′ ..=
∣∣∣K ∣∣∣2 〈nκ 〉 and

LC (κ) ..=
1
√

2

[
g1C {κ; S, xC } cos θC cos φC + g2C {κ; S, xC } sin θC sin φC

]
, (45)

LT (κ) ..=
i
√

2

[
g1T {κ; S, xT } cos(θT − φT ) + g2T {κ; S, xT } sin(θT + φT )

]
(46)

are the effective propagation functions. By substituting the expressions in Eqs. (45) and (46), the
correlation function in Eq. (43) becomes

G(1) (xC , θC ; xT , θT ) =
i
2

K ′
∫

dκ
[

cos θC cos φC cos(θT − φT )g∗1C {κ; S, xC }g1T {κ; S, xT }

+ sin θC sin φC sin(θT + φT )g∗2C {κ; S, xC }g2T {κ; S, xT }

− cos θC cos φC sin(θT + φT )g∗1C {κ; S, xC }g2T {κ; S, xT }

− sin θC sin φC cos(θT − φT )g∗2C {κ; S, xC }g1T {κ; S, xT }
]
. (47)

By using the result in Eq. (38) and by applying the conditions given in Eqs. (5) and (6) in an
analogous way as in Appendix B, Eq. (47) reduces to Eq. (23).
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