
Assessment of de novo copy-number variations in 

Italian patients with schizophrenia: Detection of 

putative mutations involving regulatory enhancer 

elements 

 
Giulio Piluso, Palmiero Monteleone, Silvana Galderisi, Teresa Giugliano, Alessandro Bertolino, Paola 
Rocca, Alessandro Rossi, Armida Mucci, Eugenio Aguglia, Ileana Andriola, Antonello Bellomo, Anna 
Comparelli, Francesco Gambi, Andrea Fagiolini, Carlo Marchesi, Rita Roncone, Emilio Sacchetti, Paolo 
Santonastaso, Alberto Siracusano, Paolo Stratta, Alfonso Tortorella, Luca Steardo Jr., Paola Bucci, 
Vincenzo Nigro, Mario Maj &Italian Network for Research on Psychoses. 

 

Abstract 

Objectives: Variants appearing de novo in genes regulating key neurodevelopmental processes and/or in 

non-coding cis-regulatory elements (CREs), as enhancers, may increase the risk for schizophrenia. However, 

CREs involvement in schizophrenia needs to be explored more deeply. 

Methods: We investigated de novo copy-number variations (CNVs) in the whole-genomic DNA obtained from 

46 family trios of schizophrenia probands by using the Enhancer Chip, a customised array CGH able to 

investigate the whole genome with a 300-kb resolution, specific disease loci at a ten-fold higher resolution, 

and which was highly enriched in probes in more than 1,250 enhancer elements selected from Vista Enhancer 

Browser. 

Results: In seven patients, we found de novo CNVs, two of which overlapped VISTA enhancer elements. De 

novo CNVs encompass genes (CNTNAP2, MAGI1, TSPAN7 and MET) involved in brain development, while 

that involving the enhancer element hs1043, also includes ZIC1, which plays a role in neural development 

and is responsible of behavioural abnormalities in Zic mutant mice. 

Conclusions: These findings provide further evidence for the involvement of de novo CNVs in the 

pathogenesis of schizophrenia and suggest that CNVs affecting regulatory enhancer elements could 

contribute to the genetic vulnerability to the disorder. 

 

In the last few years, different strategies have been combined to investigate the genetic contribution to the 

pathogenesis of schizophrenia. Large genome-wide association studies (GWASs) and high-throughput DNA 

sequencing technologies have identified common and rare single-nucleotide variants as well as rare copy-

number variations (CNVs) as potential risk factors (for review see Chen et al. 2015). everal case-control 

studies have also reported an increased genomic burden in the case population for duplications and deletions 

sized 100 kb and larger at recurrent loci (International Schizophrenia Consortium 2008; Walsh et al. 2008). 

To date, at least 15 distinct genomic regions with changes in their copies have been associated with an 

increased risk for schizophrenia (Rees et al.2014). 

In this scenario, it has been postulated that genetic variants may appear de novo to increase the population 

risk for the disorder (Xu et al. 2011, 2012; Fromer et al. 2014). The analysis of de novo variants in 

schizophrenia has included not only CNVs but also single-nucleotide and small InsDel variants (Girard et al.; 

Xu et al. 2011, 2012; Mulle et al. 2010). Specifically, rare de novo CNVs that disrupt genes involved in 
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signalling and neurodevelopmental pathways as well as in synaptic plasticity have been associated to 

schizophrenia (Walsh et al. 2008; Kirov et al. 2012). Moreover, some lines of evidence have suggested that 

sequence variants or CNVs in non-coding regions of the human genome, as those occurring in cis-regulatory 

elements (CREs) such as promoters or enhancers, could contribute to a wide spectrum of psychiatric 

conditions, including schizophrenia (Visel et al. 2004; Walsh et al. 2008; International Schizophrenia 

Consortium 2008; Cooper et al. 2011; Malhotra et al. 2011; Xiao et al. 2017; Li and Weiberger 2017), very 

probably by altering transcriptional regulation in the brain (Roussos et al. 2014). A CRE is a non-coding DNA 

sequence regulating the spatiotemporal expression of target genes localised near or distant to the CRE itself. 

GWASs have identified many disease- and trait-associated non-coding genetic variants enriched in regulatory 

DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs), which lie within non-coding CREs 

(Maurano et al. 2012). These disease- and trait- associated variants can perturb transcription factor 

recognition sequences, the allelic chromatin state and regulatory networks (Won et al.). Furthermore, 

Roussos et al. (2014 ) recently demonstrated that, in post-mortem human brain tissue, the risk variant of the 

L-type calcium channel (CACNA1C) gene, a well-established schizophrenia risk locus (Ripke et al. 2013), 

interacts physically with a distal enhancer and this is responsible for a reduced gene expression and 

transcriptional activity. Thus, it seems plausible that CRE mutations may contribute to the genetic risk for 

schizophrenia. 

CREs elements have been conserved across species, and range from some hundred to few thousand base 

pairs (Bejerano et al. 2004). The detection of CNVs affecting these sequence motifs could be hampered by a 

size-dependent reduction in sensitivity and specificity of GWAS or whole-genome SNP-CGH array approaches 

(Zhang et al. 2011). We recently developed the Enhancer Chip (Savarese et al. 2012), a customised array CGH 

design that is specifically oriented to investigate CNVs in evolutionarily conserved genomic regions 

corresponding to putative enhancer sequence motifs. The Enhancer Chip not only allows the analysis of all 

the human genome with a 300-kb resolution, but also permits to investigate specific disease loci, including 

those related to psychiatric conditions, at a ten-fold higher resolution. In addition, it is also able to test, at 

high resolution, over 1,250 enhancer elements selected from the Vista Enhancer Browser (Visel et al. 2007). 

These evolutionarily conserved sequence motifs were experimentally validated for their capacity to drive, in 

vivo, the expression of a reporter gene in transgenic mouse embryos at day 11.5 (E11.5) in a well-established 

enhancer assay that links the human conserved fragment to a minimal mouse heat shock promoter fused to 

a lacZ reporter gene (Kothary et al. 1989; Nobrega et al. 2003; Pennacchio et al. 2006). 

In the present study, we used this tool to analyse the whole-genomic DNA of an Italian cohort of 

schizophrenia patients and their parents. The analysis of these family trios provides further evidence for the 

involvement of de novo CNVs in the pathogenesis of schizophrenia, and suggests that copy-number changes 

affecting regulatory enhancer elements of the human genome should be considered as potential contributors 

to the genetic vulnerability to schizophrenia. 

Materials and methods 

Subjects 

Study participants were part of a wider multicenter study, involving an Italian cohort of schizophrenia 

patients living in the community and consecutively seen at the outpatient units of 26 Italian university 

psychiatric clinics and/or mental health departments (Galderisi et al. 2014). According to that study, patients 

were enrolled on the basis of the following inclusion and exclusion criteria. Inclusion criteria were: (a) a 

diagnosis of schizophrenia according to DSM-IV, confirmed with the Structured Clinical Interview for DSM-IV 

– Patient version (SCID-I-P); (b) age range between 18 and 66 years; (c) no family history of schizophrenia; 

(d) living and available parents. Exclusion criteria were: (a) history of head trauma with loss of consciousness; 

(b) history of moderate to severe mental retardation or of neurological diseases; (c) history of alcohol and/or 



substance abuse in the last 6 months; (d) current pregnancy or lactation; (e) inability to provide an informed 

consent. 

Fifty-seven patients, 42 males and 15 females, aged 19–50 years (mean ± SD 31.2 ± 7.0 years), with their 

parents were included in the study. Patients were on stable antipsychotic treatment for at least 3 months: 

nine of them were treated with haloperidol (1–6 mg/day), ten with aripiprazole (15–30 mg/day), eight with 

clozapine (100–300 mg/day), twelve with olanzapine (5–25 mg/day), seven with paliperidone (6–12 mg/day), 

ten with risperidone (2–6 mg/day) and one with ziprasidone (160 mg/day). Patients underwent a 

comprehensive clinical assessment (Galderisi et al. 2014) that included: (a) the Positive and Negative 

Syndrome Scale (PANSS, Kay et al. 1987  that rates symptom severity; (b) the Brief Negative Symptom Scale 

(BNSS), which explores five negative symptoms domains (anhedonia, asociality, avolition, blunted affect and 

alogia) (Mucci et al. 2015); (c) the MATRICS (Measurement and Treatment Research to Improve Cognition in 

Schizophrenia) Consensus Cognitive Battery (MCCB), which assesses seven distinct cognitive domains 

(processing speed, attention/vigilance, working memory, verbal learning, visual learning, social cognition, 

and reasoning and problem solving) (Kern et al. 2008; Nuechterlein et al. 2008). 

 

The study was approved by the Ethics Committee of the University of Campania ‘Luigi Vanvitelli’ and was 

carried out in accordance with the Declaration of Helsinki for experiments involving humans. All the 

participants signed a written informed consent to participate after receiving a comprehensive explanation of 

the study procedures and goals. 

All the participants provided blood samples for genomic DNA extraction according to standard procedures. 

Concentration and purity of all DNA samples were assessed using spectrophotometer (Nanodrop ND 1000, 

Thermo Scientific Inc., Rockford, IL, USA) and the Amelogenin PCR test was carried out to exclude any 

erroneous sex assignation during data/sample collection. In addition, DNA samples were also genotyped with 

a panel of six autosomal highly heterozygous STR markers to validate kinship relationships in family trios. 

According to the above criteria, whole-genomic DNA was obtained from 57 family trios, but only 46 of them 

passed quality control and were further investigated in this study. 

 

Array CGH analysis 

Genomic DNA was analysed using the Enhancer Chip, a customised array CGH developed using the Agilent 

SurePrint G3 8X60K format (Savarese et al. 2012), and able to investigate the whole genome with a 300-kb 

resolution, specific disease loci at a ten-fold higher resolution (for more details see Supplemental Table S2 in 

Savarese et al. 2012), and more than 1,250 highly enriched in probes in VISTA enhancer motifs for their 

potential pathogenic role. 

Ten sex-matched anonymous DNA samples from healthy individuals were pooled at equimolar concentration 

and used as male or female reference DNA samples in all the array CGH experiments. Labelling and 

hybridisation were performed according to the manufacturer’s specifications (Agilent Oligonucleotide Array-

Based CGH for Genomic DNA Analysis protocol, version 6.1; Agilent Technologies, USA) and as previously 

reported (Piluso et al. 2011; Savarese et al. 2012). Scanned array images were analysed using Feature 

Extraction software (version 10.5.1.1; Agilent Technologies). Graphical overview and analysis of data were 

obtained using DNA Analytics as part of Agilent Genomic Workbench software (version 7.0.4.0; Agilent 

Technologies). 

To identify copy-number changes we used the Aberration Detection Method 2 (ADM-2) algorithm (Agilent 

Technologies) for data that passed QC metrics testing. The ADM-2 algorithm identifies all aberrant intervals 



in a given sample with consistently high or low log ratios based on the statistical score. The statistical score 

represents the deviation of the average of the log ratios from the expected value of zero, in units of standard 

deviation. The algorithm searches for intervals in which a statistical score based on the average quality 

weighted log ratio of the sample and reference channels exceeds a user specified threshold. The threshold is 

normally set to 6. In our experiments, the threshold was set between 5 and 7 and it was empirically chosen 

for each test, considering the noise reduction in control hybridisations (reference vs reference). The 

aberration filter was set to select aberrant regions with at least three targets showing the same direction in 

copy-number change, and to exclude aberrant regions if the average log2 ratio within the region was less 

than the value of Derivative Log Ratio Spread. 

Identified CNVs were compared with the Database of Genomic Variants (http://dgv.tcag.ca/) and with the 

Decipher database (https://decipher.sanger.ac.uk/) to facilitate interpretation. 

 

Validation experiments 

Potentially pathogenic CNVs were further validated by reanalysing DNA samples on Enhancer Chip after dye-

swapped labelling or alternatively using Agilent SurePrint G3 CGH ISCA v2 8x60K platform, when regions of 

interest were adequately covered by probes. In addition, CNV validation was also performed by quantitative 

amplification of specific genomic regions (primer pairs available in Supplementary Table S1 available online) 

on CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, USA) using iQ SYBR Green Supermix (Bio-

Rad Laboratories), according to the manufacturer's instructions. Each assay was performed in triplicate and 

results were normalised and analysed using CFX Manager Software Version 1.5 (Bio-Rad Laboratories). For 

some of the identified CNVs, 5′ and 3′ breakpoint boundaries were further refined by Real-Time PCR 

(Supplementary Table S1). 

 

Bioinformatic analysis 

For genes in CNVs never described previously as potentially associated to psychiatric conditions, GeneMANIA 

(www.genemania.org) was used to generate protein-protein interaction (PPI) and co-expression networks 

(Mostafavi et al. 2008; Warde-Farley et al. 2010). This interface is able to create interaction networks, 

highlighting the most representative pathways, on the basis of data obtained from currently available 

genomics and proteomics databases. The algorithm contains two import components: a linear regression-

based algorithm that is used to calculate a single, composite functional association network from multiple 

networks that were derived from different proteomic or genomic data sources and a component that 

predicts gene functions (Warde-Farley et al. 2010). Network nodes scores and gene list-specific weights are 

reported in Supplementary Tables S2 and S3. 

 

Results 

Evaluating array CGH results, all mechanisms of inheritance were considered. No rearrangements were found 

in accordance with an autosomal recessive or X-linked model of inheritance. We then considered de novo 

CNVs spanning more than 20 kb, in which no copy-number polymorphisms were present. To our knowledge, 

de novo CNVs here described were not previously reported. 

We found two deletions and five duplications in seven unrelated schizophrenia patients (Table 1). In 

particular, a de novo heterozygous deletion of about 50 kb in size was found at 7q35 in the patient S-23 

(Supplementary Figure S1). This deletion encompassed the intron 12 of CNTNAP2, for which 

haploinsufficiency was previously associated to epilepsy and schizophrenia (Friedman et al. 2008). The closer 



CNTNAP2 exon fell in the 3′ breakpoint boundary, but it did not show to be deleted by using qPCR 

(Supplementary Figure S1). Patient S-36 showed a de novo duplication about 350 kb long at 3p14.1, involving 

MAGI1 (Supplementary Figure S1). This gene and the closely related MAGI2 have already been associated to 

schizophrenia (Karlsson et al. 2012; Koide et al. 2012). Male patient S-60 had a de novo duplication of about 

50 kb in size at Xp11.4, involving the last six exons of TSPAN7, a gene recently associated to X-linked 

intellectual disability, as well as autism and schizophrenia (Noor et al. 2009; Piton et al. 2011; Utine et al. 

2012) (Supplementary Figure S1). 

Table 1. CNVs in schizophrenia family trios. 

 

 

For CNVs identified in patients S-40 and S-75, 5′ and 3′ breakpoint boundaries were further defined by qPCR 

(Table 1 and Supplementary Figure S2). We therefore investigated whether genes included in these de novo 

putatively damaging copy-number changes were clustered in functional or PPI networks, in some way related 

to schizophrenia. By performing GeneMANIA in silico analysis (Koide et al. 2012; Utine et al. 2012), we 

observed that, among 31 genes located in these CNVs, only eight appeared to be interconnected, defining 

two distinct functional and PPI networks (Figure 1). Interestingly, the heterozygous 700-kb long deletion at 

7q31.2 (patient S-75), encompassed three genes (CAV1, CAV2 and MET), which are implicated in neuronal 

migration and development and whose variants have been associated with schizophrenia (Burdick et al. 

2010; Allen et al. 2011). The other genes investigated seem to be in part co-expressed and integrated in 

interesting functions, such as Wnt signalling pathway, glycosylation, endocytosis and cell migration (Wurst 

and Prakash, 2014) (Figure 1). 



 

Enhancer Chip also permitted to identify two de novo CNVs overlapping VISTA enhancer elements. Patient S-

45 showed a heterozygous 234-kb long duplication at 3q24, which includes ZIC1 and the regulatory element 

hs1043, while patient S-131 presented a heterozygous duplication of about 55 kb at Xq21.1, which involves 

the regulatory element hs582 (Table 1 and Supplementary Figure S3). 

 

When patients carrying de novo CNVs were compared to those not carrying de novo CNVs, no significant 

differences emerged in PANSS, BNSS and MCBB scores. 

 

Discussion 

To our knowledge, this is the first genetic study of schizophrenia that includes an analysis of copy-number 

changes in CRE of the human genome. Our cohort of family trios from schizophrenia patients was 

investigated using the Enhancer Chip (Savarese et al.), a customised array CGH designed not only to analyse, 

at high resolution, the whole human genome, but also the potential pathogenic role of over 1,250 VISTA 

enhancer sequence motifs (Pennacchio et al. 2006). Array CGH analysis identified a total of seven de novo 

rearrangements in unrelated patients with schizophrenia. In two cases, a VISTA enhancer element was 

involved. 

 

One patient (S-23) showed a de novo heterozygous deletion affecting only part of the intron 12 of CNTNAP2. 

This gene is highly conserved and expressed in different areas of the brain, where it encodes for Caspr2 

protein, which has been implicated in neuronal migration (Allen et al. 2011). Mutations in CNTNAP2 have 

already been described in members of Old Order Amish families presenting a neuropathological phenotype 



with cortical dysplasia and focal epilepsy, as well as in two other unrelated families with Pitt-Hopkins-like 

syndrome (Strauss et al. 2006; Wurst and Prakash, 2014). In addition, several studies indicate that CNTNAP2 

is an autism susceptibility gene (Alarcón et al. 2008; Zweier et al. 2009). Recently, Friedman et al. (2008) first 

demonstrated an association between CNTNAP2 and schizophrenia, describing different gene deletions in 

three unrelated patients with schizophrenia and autism. Like our patient who showed a deletion involving 

only the intron 12 of CNTNAP2, one of Friedman’s patients had a small deletion of the CNTNAP2 intron 3. 

The pathogenic significance of these intronic rearrangements remains to be clarified. For patient S-23, the 

deleted region of intron 12 seems to be enriched in putative transcription factor binding sites conserved in 

the human/mouse/rat alignment, as well as DNaseI hypersensitivity clusters that could perturb CNTNAP2 

expression or act at distance, affecting other genes (http://genome.ucsc.edu). 

 

However, functional analysis of this intronic CNTNAP2 deletion has been hampered by the CNTNAP2 

expression pattern restricted to the nervous system (Poliak et al. 1999). At present, this rearrangement 

should only be considered as a variant of uncertain significance. 

 

The de novo microduplication at 3p14.1, identified in patient S-36, encompasses MAGI1. MAGI1 encodes a 

postsynaptic scaffolding protein interacting with a multitude of molecules that have been implicated in the 

pathogenesis of bipolar disorders or schizophrenia, such as neuroligins, β-catenin, neuregulin receptor ErbB4 

and glutamate receptors (Nishimura et al. 2002; Iida et al. 2004; Buxbaum et al. 2008; Emtage et al. 2009). 

Deletions and duplications of MAGI1 have recently been described in a study of 277 DNA samples from 48 

families with a clinical diagnosis of bipolar disorder or schizophrenia (Karlsson et al. 2012). In this study, the 

authors followed up an apparently highly penetrant CNV from a family-based analysis, investigating 4,084 

unrelated cases and carrying out a pooled analysis on a total of 10,925 patients and 16,747 controls. 

Statistical data analysis supported the hypothesis that 3p14 could be a region of interest for schizophrenia 

(Karlsson et al. 2012). 

 

For the de novo duplication at Xp11.4, which involves TSPAN7 and was observed in patient S-60, it is worth 

noting that this gene is related to synaptic functions and encodes a cell-surface protein of the tetraspanin 

family, involved in cell growth and motility (Bassani et al. 2012). Rare variants of TSPAN7 have been found to 

be associated with X-linked intellectual disability in patients with autism spectrum disorders, and have been 

suggested to have a role also in schizophrenia (Noor et al. 2009; Piton et al. 2011; Utine et al.). 

 

In patient S-75, the de novo heterozygous deletion at 7q31.2 included CAV1, CAV2 and MET, whose variants 

have been already associated to schizophrenia in different ways. In particular, the CAV1 and CAV2 genes 

encode caveolins, which are multi-functional scaffolding proteins of the inner surface of caveolae, small 

invaginations of the plasma membrane, and are involved in essential cellular functions including vesicular 

trafficking, lipid homeostasis and signal transduction (Ostrom 2002; Cohen et al. 2004). Recently, an 

insertional mutation disrupting CAV1 has been identified as a rare structural variant associated with 

schizophrenia (Allen et al. 2011). Moreover, it has been observed that CAV1 knockout mice exhibited 

increased sensitivity to the psychotomimetic effects of phencyclidine (Allen et al.), a phenomenon also 

observed in patients with schizophrenia (Lahti et al. 1995), and that they were unresponsive to the 

normalising effects of the atypical antipsychotics clozapine and olanzapine on phencyclidine-induced 

disruption of pre-pulse inhibition, a deficit that has been linked to abnormalities of sensorimotor gating 

observed in patients with schizophrenia (Javitt and Freedman 2015). These findings support a role for this 



gene in the pathophysiology of schizophrenia. The MET proto-oncogene, instead, is a cancer-related gene 

involved in the metastasis of several forms of cancer, the repair and development of peripheral organs 

(Birchmeier et al. 2003; Tahara et al. 2003), as well as in the cortical and cerebellar development (Ieraci et al. 

2002). Interestingly, MET seems to be sensitive to the haploinsufficiency, with a loss-of-function index (pLI) 

equal to 1 in the ExAC Browser (exac.broadinstitute.org). Recently, Burdick et al. (2010) examined 21 SNPs 

of this gene in a cohort of schizophrenic patients and found that individuals carrying at least one copy of the 

most common haplotype were significantly less likely to develop schizophrenia as compared with those 

carrying no copies. Furthermore, MET haplotype carriers had significantly better cognitive performance than 

non-carriers, although the results did not reach statistical significance. 

 

For patient S-40, the de novo heterozygous duplication at 19p13.13 encompassed 22 genes (Table 1), some 

of which clustered in glycobiology pathway, including sphingolipid metabolism and glycosyltransferases 

(Figure 1(B)). Disruption of sphingolipid metabolism could result in widespread effects, related to diverse 

pathological deficits already described in schizophrenia, including myelination and oligodendrocyte function 

(Narayan et al. 2009). Three fucosyltransferase genes (FUT3, FUT5 and FUT6) map in the duplicated region 

(Costache et al. 1997), and plasma α1,3-fucosyltransferase deficiency was detected in Japanese patients with 

schizophrenia (Yazawa et al. 1999; Tanaka et al. 2001). Post-translational protein modifications can have a 

role in the pathophysiology of schizophrenia. α1,6-fucosyltransferase (Fut8–/–)-deficient mice exhibited 

multiple behavioural abnormalities consistent with a schizophrenia-like phenotype (Fukuda et al. 2011), 

while dysregulated fucosyltransferase expression was observed in the superior temporal gyrus of elderly 

patients with schizophrenia compared with healthy controls (Mueller et al. 2017). 

 

In schizophrenia, most of the reported rare de novo mutations seem to be enriched in genes related to 

chromatin remodelling, synaptic organisation and plasticity, as well as to be associated to autism or 

intellectual disability (Fromer et al. 2014; McCarthy et al. 2014). Some of genes encompassed in de novo 

CNVs reported here (CNTNAP2, MAGI1, TSPAN7, CAV1 and CAV2) seem to have similar characteristics 

(Horresh et al. 2008; Head et al. 2010; Zheng et al. 2011; Bassani and Passafaro 2012). 

 

The most innovative finding of our study is that the Enhancer Chip allowed us to detect rearrangements 

covering enhancer elements. The 234-kb long duplication at 3q24, which we detected in patient S-45, 

includes the enhancer element hs1043 and its flanking gene ZIC1. Interestingly, ZIC1 is a member of a zinc-

finger protein family that plays a crucial role in neural development (Aruga 2004). In addition, behavioural 

abnormalities have been observed in Zic mutant mice, resembling human neurological and psychiatric 

conditions (Ogura et al. 2001). In addition, ZIC1 and other 11 genes were found differentially expressed in 

the mouse brain after treatment with valproate at human therapeutic concentrations (Chetcuti et al. 2006). 

Therefore, ZIC1 dysregulation could be involved in the therapeutic action of this drug, which acts as mood 

stabiliser in people with bipolar or schizoaffective disorder. Interestingly, the regulatory enhancer element 

hs1043 was able to drive reporter gene expression in hindbrain (rhombencephalon) and neural tube of 

transgenic mouse embryos at stage E11.5 (experimental data for hs1043 are freely available at 

https://enhancer.lbl.gov/). 

 

The 55-kb long duplication found at Xq21.1 (patient S-131) seems deserted of genes, only including the 

regulatory element hs582, representing the unique evolutionarily conserved sequence motif in this interval. 

To the present, we can only speculate on pathogenic significance of this arrangement. Nevertheless, hs582 



was able to drive reporter gene expression in forebrain of transgenic mouse embryos at stage E11.5 

(experimental data for hs582 are freely available at https://enhancer.lbl.gov/). 

 

Interestingly, the increased density of probes in enhancer elements also permitted to better characterise the 

5′ breakpoint boundary that, for both rearrangements, falls into the enhancer element, possibly perturbing 

its function (Supplementary Figure S3). 

 

At present, it is not simple to explain the possible role of enhancer elements in the pathophysiology of human 

brain disorders, because little is known about their gene targets. However, previous studies have established 

the important regulatory role of the enhancers on transcriptome organisation during neurodevelopment and 

adulthood (Wenger et al. 2013; Andersson et al. 2014). Moreover, Roussos et al. (2014) suggested that risk-

allele-specific changes in enhancer elements could affect the spatiotemporal organisation of the 

transcriptome that, when combined with other derangements, could lead to schizophrenia. 

 

Very recently, a high-resolution three-dimensional analysis of chromatin contacts during human 

corticogenesis permitted large-scale annotation of previously uncharacterised regulatory elements, 

identifying hundreds of genes that physically interact with enhancers and that are associated with human 

cognitive function (Won et al. 2016). Some non-coding variants identified in GWAS schizophrenia studies 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014) were enriched in some of these 

selected chromatin regions, supporting their role in the dysregulation of specific genes related to human 

brain development and cognition. Enhancer elements that we found in CNVs, seem to be not enriched in the 

above reported experimental model. 

 

The lack of precise data on copy-number changes affecting enhancer elements is due to the absence of 

appropriate methods for their identification. Our study represents a first attempt in using a dedicated tool, 

the Enhancer Chip, to investigate the role of regulatory elements in the pathogenesis of schizophrenia. 

However, the relevance of mutations in enhancer elements for the pathophysiology of schizophrenia needs 

to be established in larger studies including also control groups. 

 

As for data presented here, rare CNVs can only explain a very limited number of schizophrenia cases and do 

not seem to confer peculiar phenotypic aspects, since patients carrying these de novo CNVs did not differ 

from those not carrying them on symptom severity, psychopathological negative dimensions and cognitive 

functions. Whole-exome sequencing (WES) studies are now providing the most extensive datasets of de novo 

mutations in schizophrenia (Xu et al. 2011; Fromer et al. 2014; Iossifov et al. 2014; McCarthy et al. 2014; 

Kranz et al. 2015; Rees et al. 2015), extending the number of genes and biological pathways likely involved 

in this and related disorders. WES is the future perspective to complete the genetic investigation of this 

cohort of schizophrenia patients. 

 

GWA, CNVs and NGS studies have permitted to identify recurrent and rare genetic variants that contribute 

to schizophrenia and, in some cases, overlap other psychiatric disorders and neurodevelopmental syndromes 

(Modai and Shomron, 2016). Genetic analysis strongly suggests that schizophrenia is biologically 

heterogeneous, but it also provides the way to better classify patients in unique subgroups, useful to test 



new drugs or the efficacy of those now in use (Giegling et al. 2017; Matsumoto et al. 2017). Relatively 

homogeneous groups, defined using WES and array CGH, could constitute an initial step for building more 

accurate risk-prediction models in the attempt to develop personalised medicine approaches (Fraguas et al. 

2017). 

 

In conclusion, in a cohort of Italian schizophrenia patients, we found a total of seven de novo CNVs consisting 

of two deletions and five duplications. Two of these rearrangements that involved MAGI1 and TSPAN7 genes 

have been already described in association to schizophrenia and/or bipolar disorder as well as to X-linked 

intellectual disability with autistic spectrum. For the others, some of the involved genes are known to play 

critical roles in brain development, neuronal migration and synaptogenesis, which are processes supposed 

to be involved in the risk of schizophrenia. Only in two cases did we observe rearrangements of enhancer 

modulatory elements whose function in the human brain still await to be identified. These findings provide 

a significant contribution to the identification of rare CNVs associated to schizophrenia and pave the way to 

further investigations of the role of enhancer elements in the pathophysiology of this disorder. 

 

Acknowledgements 

None. 

Statement of interest 

None to declare. 

Appendix 

Members of the Italian Network for Research on Psychoses who participated in this study include: Valentina 

Montefusco, Giuseppe Plescia, Giuseppe Piegari, Eleonora Merlotti, Monica Cimmino, (University of 

Campania ‘Luigi Vanvitelli’, Naples); Marco Savarese (Telethon Institute of Genetics and Medicine, Naples); 

Enrico D’Ambrosio (University of Bari); Anna Rita Atti (University of Bologna); Paolo Valsecchi (University of 

Brescia); Maria Salvina Signorelli (University of Catania); Tiziano Acciavatti (University of Chieti); Mario 

Altamura (University of Foggia); Costanza Arzani (University of Genoa); Gaetano Callista, Francesca Pacitti 

(University of L’Aquila); Lucio Oldani (University of Milan); Carla Gramaglia (University of Eastern Piedmont, 

Novara); Elena Tenconi (University of Padua); Annalisa Camerlengo (University of Parma); Liliana Dell’Osso 

(University of Pisa); Roberto Brugnoli, Fabio Di Fabio (Sapienza University of Rome); Cinzia Niolu (Tor Vergata 

University of Rome); Giulio Corrivetti (Department of Mental Health, Salerno); Simone Bolognesi (University 

of Siena); Cristina Montemagni (University of Turin). 

 

 

References 

Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter 

DH, et al. 2008. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-

susceptibility gene. Am J Hum Genet. 82:150–159.   

Allen JA, Yadav PN, Setola V, Farrell M, Roth BL. 2011. Schizophrenia risk gene CAV1 is both pro-psychotic 

and required for atypical antipsychotic drug actions in vivo. Transl Psychiatry. 1:e33.   

Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, 

et al. 2014. An atlas of active enhancers across human cell types and tissues. Nature. 507:455–461.   



Aruga J. 2004. The role of Zic genes in neural development. Mol Cell Neurosci. 26:205–221.   

Bassani S, Cingolani LA, Valnegri P, Folci A, Zapata J, Gianfelice A, Sala C, Goda Y, Passafaro M. 2012. The X-

linked intellectual disability protein TSPAN7 regulates excitatory synapse development and AMPAR 

trafficking. Neuron. 73:1143–1158.   

Bassani S, Passafaro M. 2012. TSPAN7: a new player in excitatory synapse maturation and function. 

Bioarchitecture. 2:95–97. 

Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D. 2004. Ultraconserved 

elements in the human genome. Science. 304:1321–1325.   

Birchmeier C, Birchmeier W, Gherardi E, VandeWoude GF. 2003. Met, metastasis, motility and more. Nat Rev 

Mol Cell Biol. 4:915–925.   

Burdick KE, DeRosse P, Kane JM, Lencz T, Malhotra AK. 2010. Association of genetic variation in the MET 

proto-oncogene with schizophrenia and general cognitive ability. Am J Psychiatry. 167:436–443.   

Buxbaum JD, Georgieva L, Young JJ, Plescia C, Kajiwara Y, Jiang Y, Moskvina V, Norton N, Peirce T, Williams 

H, et al. 2008. Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia 

susceptibility gene. Mol Psychiatry. 13:162–172.   

Chen J, Cao F, Liu L, Wang L, Chen X. 2015. Genetic studies of schizophrenia: an update. Neurosci Bull. 31:87–

98.   

Chetcuti A, Adams LJ, Mitchell PB, Schofield PR. 2006. Altered gene expression in mice treated with the mood 

stabilizer sodium valproate. Int J Neuropsychopharmacol. 9:267–276.   

Cohen AW, Hnasko R, Schubert W, Lisanti MP. 2004. Role of caveolae and caveolins in health and disease. 

Physiol Rev. 84:1341–1379.   

Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, Williams C, Stalker H, Hamid R, Hannig V, et al. 

2011. A copy number variation morbidity map of developmental delay. Nat Genet. 43:838–846.   

Costache M, Apoil PA, Cailleau A, Elmgren A, Larson G, Henry S, Blancher A, Iordachescu D, Oriol R, Mollicone 

R. 1997. Evolution of fucosyltransferase genes in vertebrates. J Biol Chem. 272:29721–29728.   

Emtage L, Chang H, Tiver R, Rongo C. 2009. MAGI-1 modulates AMPA receptor synaptic localization and 

behavioral plasticity in response to prior experience. PLoS One. 4:e4613.   

Fraguas D, Díaz-Caneja CM, State MW, O’Donovan MC, Gur RE, Arango C. 2017. Mental disorders of known 

aetiology and precision medicine in psychiatry: a promising but neglected alliance. Psychol Med. 47:193–197.   

Friedman JI, Vrijenhoek T, Markx S, Janssen IM, van der Vliet WA, Faas BH, Knoers NV, Cahn W, Kahn RS, 

Edelmann L, et al. 2008. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol 

Psychiatry. 13:261–266.   

Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, Georgieva L, Rees E, Palta P, 

Ruderfer DM, et al. 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature. 506:179–

184.   

Fukuda T, Hashimoto H, Okayasu N, Kameyama A, Onogi H, Nakagawasai O, Nakazawa T, Kurosawa T, Hao Y, 

Isaji T, et al. 2011. Alpha1,6-fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities 

associated with a schizophrenia-like phenotype: importance of the balance between the dopamine and 

serotonin systems. J Biol Chem. 286:18434–18443.   



Galderisi S, Rossi A, Rocca P, Bertolino A, Mucci A, Bucci P, Rucci P, Gibertoni D, Aguglia E, Amore M, et al. 

2014. The influence of illness-related variables, personal resources and context-related factors on real-life 

functioning of people with schizophrenia. World Psychiatry. 13:275–287.   

Giegling I, Hosak L, Mössner R, Serretti A, Bellivier F, Claes S, Collier DA, Corrales A, DeLisi LE, et al. 2017. 

Genetics of schizophrenia: a consensus paper of the WFSBP task force on genetics. World J Biol Psychiatry. 

18:492–450.[Taylor & Francis Online], [Web of Science ®], , [Google Scholar]OpenURL Universita Degli Studi 

di Torino 

Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, Dionne-Laporte A, Spiegelman D, Henrion E, Diallo 

O, et al. 2011. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet. 43:860–

863.   

Head BP, Peart JN, Panneerselvam M, Yokoyama T, Pearn ML, Niesman IR, Bonds JA, Schilling JM, Miyanohara 

A, Headrick J, et al. 2010. Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS One. 5:e15697.   

Horresh I, Poliak S, Grant S, Bredt D, Rasband MN, Peles E. 2008. Multiple molecular interactions determine 

the clustering of Caspr2 and Kv1 channels in myelinated axons. J Neurosci. 28:14213–14222.   

Ieraci A, Forni PE, Ponzetto C. 2002. Viable hypomorphic signaling mutant of the Met receptor reveals a role 

for hepatocyte growth factor in postnatal cerebellar development. Proc Natl Acad Sci USA. 99:15200–15205.   

Iida J, Hirabayashi S, Sato Y, Hata Y. 2004. Synaptic scaffolding molecule is involved in the synaptic clustering 

of neuroligin. Mol Cell Neurosci. 27:497–508.   

International Schizophrenia Consortium. 2008. Rare chromosomal deletions and duplications increase risk of 

schizophrenia. Nature. 455:237–241.   

Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, 

Patterson KE, et al. 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 

515:216–221.   

Javitt DC, Freedman R. 2015. Sensory processing dysfunction in the personal experience and neuronal 

machinery of schizophrenia. Am J Psychiatry. 172:17–31.   

Karlsson R, Graae L, Lekman M, Wang D, Favis R, Axelsson T, Galter D, Belin AC, Paddock S. 2012. MAGI1 copy 

number variation in bipolar affective disorder and schizophrenia. Biol Psychiatry. 71:922–930.   

Kay SR, Fiszbein A, Opler LA. 1987. The positive and negative syndrome scale (PANSS) for schizophrenia. 

Schizophr Bull. 13:261–276.   

Kern RS, Nuechterlein KH, Green MF, Baade LE, Fenton WS, Gold JM, Keefe RS, Mesholam-Gately R, Mintz J, 

Seidman LJ, et al. 2008. The MATRICS consensus cognitive battery, part 2: co-norming and standardization. 

Am J Psychiatry. 165:214–220.   

Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, Moran J, Chambert K, Toncheva D, 

Georgieva L, et al. 2012. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling 

complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 17:142–153.   

Koide T, Banno M, Aleksic B, Yamashita S, Kikuchi T, Kohmura K, Adachi Y, Kawano N, Kushima I, Nakamura 

Y, et al. 2012. Common variants in MAGI2 gene are associated with increased risk for cognitive impairment 

in schizophrenic patients. PLoS One. 7:e36836.   

Kothary R, Clapoff S, Darling S, Perry MD, Moran LA, Rossant J. 1989. Inducible expression of an hsp68-lacZ 

hybrid gene in transgenic mice. Development. 105:707–714.[PubMed], [Web of Science ®], , [Google 

Scholar]OpenURL Universita Degli Studi di Torino 



Kranz TM, Harroch S, Manor O, Lichtenberg P, Friedlander Y, Seandel M, Harkavy-Friedman J, Walsh-

Messinger J, Dolgalev I, Heguy A, et al. 2015. De novo mutations from sporadic schizophrenia cases highlight 

important signaling genes in an independent sample. Schizophr Res. 166:119–124.   

Lahti AC, Koffel B, LaPorte D, Tamminga CA. 1995. Subanesthetic doses of ketamine stimulate psychosis in 

schizophrenia. Neuropsychopharmacology. 13:9–19.   

Li M, Weiberger DR. 2017. Illuminating the dark road from schizophrenia genetic associations to disease 

mechanisms. National Sci Rev. 4:240–251. 

Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, Cichon S, Corvin A, Gary S, Gershon ES, 

et al. 2011. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 72:951–963.   

Matsumoto M, Walton NM, Yamada H, Kondo Y, Marek GJ, Tajinda K. 2017. The impact of genetics on future 

drug discovery in schizophrenia. Expert Opin Drug Discov. 12:673–686. 

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody 

J, et al. 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science. 

337:1190–1195.   

McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, Mistry M, Pavlidis P, Solomon R, Ghiban E, et al. 

2014. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap 

with autism and intellectual disability. Mol Psychiatry. 19:652–658.   

Modai S, Shomron N. 2016. Molecular risk factors for schizophrenia. Trends Mol Med. 22:242–253.   

Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. 2008. GeneMANIA: a real-time multiple association 

network integration algorithm for predicting gene function. Genome Biol. 9(Suppl 1):S4.   

Mucci A, Galderisi S, Merlotti E, Rossi A, Rocca P, Bucci P, Piegari G, Chieffi M, Vignapiano A, Maj M; Italian 

Network for Research on Psychoses. 2015. The brief negative symptom scale (BNSS): independent validation 

in a large sample of Italian patients with schizophrenia. Eur Psychiatry. 30:641–647.   

Mueller TM, Yates SD, Haroutunian V, Meador-Woodruff JH. 2017. Altered fucosyltransferase expression in 

the superior temporal gyrus of elderly patients with schizophrenia. Schizophr Res. 182:66–73.   

Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC, Sobreira NL, Valle D, Rudd MK, Satten 

G, et al. 2010. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet. 87:229–236.   

Mulle JG, Pulver AE, McGrath JA, Wolyniec PS, Dodd AF, Cutler DJ, Sebat J, Malhotra D, Nestadt G, Conrad 

DF, et al. 2014. Reciprocal duplication of the Williams-Beuren syndrome deletion on chromosome 7q11.23 is 

associated with schizophrenia. Biol Psychiatry. 75:371–377.   

Narayan S, Head SR, Gilmartin TJ, Dean B, Thomas EA. 2009. Evidence for disruption of sphingolipid 

metabolism in schizophrenia. J Neurosci Res. 87:278–288.   

Nishimura W, Yao I, Iida J, Tanaka N, Hata Y. 2002. Interaction of synaptic scaffolding molecule and Beta-

catenin. J Neurosci. 22:757–765.   

Nobrega MA, Ovcharenko I, Afzal V, Rubin EM. 2003. Scanning human gene deserts for long-range enhancers. 

Science. 302:413.   

Noor A, Gianakopoulos PJ, Fernandez B, Marshall CR, Szatmari P, Roberts W, Scherer SW, Vincent JB. 2009. 

Copy number variation analysis and sequencing of the X-linked mental retardation gene TSPAN7/TM4SF2 in 

patients with autism spectrum disorder. Psychiatr Genet. 19:154–155.   



Nuechterlein KH, Green MF, Kern RS, Barch DM, Cohen JD, Essock S, Fenton WS, Frese FJ, 3rd, Gold JM, 

Goldberg T, et al. 2008. The MATRICS consensus cognitive battery, part 1: test selection, reliability, and 

validity. Am J Psychiatry. 165:203–213.   

Ogura H, Aruga J, Mikoshiba K. 2001. Behavioral abnormalities of Zic1 and Zic2 mutant mice: implications as 

models for human neurological disorders. Behav Genet. 31:317–324.   

Ostrom RS. 2002. New determinants of receptor-effector coupling: trafficking and compartmentation in 

membrane microdomains. Mol Pharmacol. 61:473–476.   

Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, 

Lewis KD, et al. 2006. In vivo enhancer analysis of human conserved non-coding sequences. Nature. 444:499–

502.   

Piluso G, Dionisi M, Del Vecchio Blanco F, Torella A, Aurino S, Savarese M, Giugliano T, Bertini E, Terracciano 

A, Vainzof M, et al. 2011. Motor chip: a comparative genomic hybridization microarray for copy-number 

mutations in 245 neuromuscular disorders. Clin Chem. 57:1584–1596.   

Piton A, Gauthier J, Hamdan FF, Lafrenière RG, Yang Y, Henrion E, Laurent S, Noreau A, Thibodeau P, Karemera 

L, et al. 2011. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and 

schizophrenia. Mol Psychiatry. 16:867–880.   

Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, Trimmer JS, Shrager P, Peles E. 1999. Caspr2, a 

new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and 

associates with K + channels. Neuron. 24:1037–1047.   

Rees E, Walters JT, Georgieva L, Isles AR, Chambert KD, Richards AL, Mahoney-Davies G, Legge SE, Moran JL, 

McCarroll SA, et al. 2014. Analysis of copy number variations at 15 schizophrenia-associated loci. Br J 

Psychiatry. 204:108–114.   

Rees E, Kirov G, Walters JT, Richards AL, Howrigan D, Kavanagh DH, Pocklington AJ, Fromer M, Ruderfer DM, 

Georgieva L, et al. 2015. Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia. 

Transl Psychiatry. 5:e607.   

Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer 

M, et al. 2013. Multicenter genetic studies of schizophrenia consortium; psychosis endophenotypes 

international consortium; wellcome trust case control consortium 2. Genome-wide association analysis 

identifies 13 new risk loci for schizophrenia. Nat Genet. 45:1150–1159.   

Roussos P, Mitchell AC, Voloudakis G, Fullard JF, Pothula VM, Tsang J, Stahl EA, Georgakopoulos A, Ruderfer 

DM, Charney A, et al. 2014. A role for noncoding variation in schizophrenia. Cell Rep. 9:1417–1429.   

Savarese M, Piluso G, Orteschi D, Di Fruscio G, Dionisi M, Blanco Fdel V, Torella A, Giugliano T, Iacomino M, 

Zollino M, et al. 2012. Enhancer chip: detecting human copy number variations in regulatory elements. PLoS 

One. 7:e52264.   

Schizophrenia Working Group of the Psychiatric Genomics Consortium. 2014. Biological insights from 108 

schizophrenia-associated genetic loci. Nature. 511:421–427.   

Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, Stephan DA, Morton DH. 2006. 

Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med. 

354:1370–1377.   



Tahara Y, Ido A, Yamamoto S, Miyata Y, Uto H, Hori T, Hayashi K, Tsubouchi H. 2003. Hepatocyte growth 

factor facilitates colonic mucosal repair in experimental ulcerative colitis in rats. J Pharmacol Exp Ther. 

307:146–151.   

Tanaka S, Yazawa S, Noguchi K, Nishimura T, Miyanaga K, Kochibe N, Poland DC, Van Dijk W, Matta KL. 2001. 

Molecular analysis of plasma alpha 1,3-fucosyltransferase deficiency and development of the methods for its 

genotyping. Exp Clin Immunogenet. 18:1–12. 

Utine GE, Kiper PO, Alanay Y, Haliloğlu G, Aktaş D, Boduroğlu K, Tunçbilek E, Alikaşifoğlu M. 2012. Searching 

for copy number changes in nonsyndromic X-Linked intellectual disability. Mol Syndromol. 2:64–

71.[PubMed], , [Google Scholar]OpenURL Universita Degli Studi di Torino 

Visel A, Thaller C, Eichele G. 2004. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. 

Nucleic Acids Res. 32:D552–D556.   

Visel A, Minovitsky S, Dubchak I, Pennacchio LA. 2007. VISTA enhancer browser-a database of tissue-specific 

human enhancers. Nucleic Acids Res. 35:D88–D92.   

Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra 

D, Bhandari A, et al. 2008. Rare structural variants disrupt multiple genes in neurodevelopmental pathways 

in schizophrenia. Science. 320:539–543.   

Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, 

et al. 2010. The GeneMANIA prediction server: biological network integration for gene prioritization and 

predicting gene function. Nucleic Acids Res. 38:W214–W220.   

Wenger AM, Clarke SL, Notwell JH, Chung T, Tuteja G, Guturu H, Schaar BT, Bejerano G. 2013. The enhancer 

landscape during early neocortical development reveals patterns of dense regulation and co-option. PLoS 

Genet. 9:e1003728.   

Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK, Gandal MJ, Sutton GJ, Hormozdiari 

F, Lu D, et al. 2016. Chromosome conformation elucidates regulatory relationships in developing human 

brain. Nature. 538:523–527.   

Wurst W, Prakash N. 2014. Wnt1-regulated genetic networks in midbrain dopaminergic neuron 

development. J Mol Cell Biol. 6:34–41.   

Xiao X, Chang H, Li M. 2017. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic 

studies. Mol Psychiatry. 22:497–511.   

Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. 2011. Exome sequencing 

supports a de novo mutational paradigm for schizophrenia. Nat Genet. 43:864–868.   

Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, Levy S, Gogos JA, Karayiorgou M. 2012. De novo gene 

mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet. 44:1365–1369.   

Yazawa S, Tanaka S, Nishimura T, Miyanaga K, Kochibe N. 1999. Plasma alpha1,3-fucosyltransferase 

deficiency in schizophrenia. Exp Clin Immunogenet. 16:125–130.[Crossref], [PubMed], , [Google 

Scholar]OpenURL Universita Degli Studi di Torino 

Zhang D, Qian Y, Akula N, Alliey-Rodriguez N, Tang J, Bipolar Genome Study, Gershon ES, Liu C. 2011. Accuracy 

of CNV Detection from GWAS Data. PLoS One. 6:e14511.   

Zheng CY, Seabold GK, Horak M, Petralia RS. 2011. MAGUKs, synaptic development, and synaptic plasticity. 

Neuroscientist. 17:493–512.   



Zweier C, de Jong EK, Zweier M, Orrico A, Ousager LB, Collins AL, Bijlsma EK, Oortveld MA, Ekici AB, Reis A, et 

al. 2009. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and 

determine the level of a common synaptic protein in Drosophila. Am J Hum Genet. 85:655–666.   

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 



 

 



 

 



 

 



 


