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LIMITS OF SOME WEIGHTED CESARO AVERAGES

VITONOFRIO CRISMALE, FRANCESCO FIDALEO, AND YUN GANG LU

Abstract. We investigate the existence of the limit of some high
order weighted Cesaro averages.
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1. introduction

Motivated by potential applications to several branches of the math-
ematics, we study the possible convergence of high order weighted Ce-
saro means of the type

(1.1)
1

np

n∑

k=1

bkf(k/n) ,

where p > 0 and f : (0, 1] → R, provided (bk)k∈N ⊂ C is a p-mean
convergent sequence:

lim
n

1

np

n∑

k=1

bk = b ∈ C .

Averages like those in (1.1) naturally appear in Ergodic Theory. They
also play a role in Probability, for example in the investigation of the
central limit (see e.g. [10]), as well as in Infinite Dimensional Analysis
in managing the so-called Lévy Laplacian (cf. [12]) and exotic, i.e. high
order ones, see e.g. [3] and the references cited therein. Cesaro aver-
ages as above might find natural applications also in Harmonic Anal-
ysis, Linear Algebra and Matrix Theory, Numerical Analysis, Number
Theory and in other sectors of pure and applied mathematics.
The convergence of the mean in (1.1) depends on the conditions

imposed on the function f , which are listed in our main result in Section
2. For example, we get convergence for the simple cases

f(x) = xq , f(x) = (1− x)q , q > 0 ,
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which leads to the results in Section 3 concerning averages of multi-
indices sequences.
The weighted averages of multi-indices sequences appear in manag-

ing some quantum central limit theorems, when the sequence of mean
covariances is not constant but at least convergent, and an order struc-
ture on some indices affects the value of the so-called mixed moments.
Indeed, Propositions 3.1 and 3.2, which quite surprisingly lead to re-
sults which cannot be reflected, may be naturally exploited in Anti-
Monotone and Monotone cases (see e.g [6, 7, 13]). In order to get a
flavour of the several kinds of mixed moments naturally emerging in
Quantum Probability and the associated problem of their computation,
the reader is referred to [1, 2, 5, 8] and the references cited therein.
The last section is devoted to counterexamples which explain that

all the conditions imposed on our results are essentially optimal.
We end by noticing that particular cases of averages considered here

appear in Section 5 of [4] (see also [3]), where also several continuous
versions of averages are investigated.

2. limits of weighted cesaro means

In the present note we suppose that the set of natural numbers does
not contain 0:

N := {1, 2, . . . , n, . . . } .
We start with some elementary notations by denoting for each func-

tion f : (0, 1] → R, a sequence b := (bn)n∈N ⊂ C, and finally p ∈
(0,+∞),

Mb,f ;p(n) :=
1

np

n∑

k=1

bkf(k/n)

some useful high order weighted Cesaro means. For any sequence b, by
|b| we denote the sequence (|bn|)n∈N. A sequence b is said to be p-mean

convergent if the sequence (Mb,1;p(n))n∈N of its Cesaro p-averages is
convergent, where 1 stands for the constant function f = 1 identically.
When p = 1, we recover the usual setting concerning the arithmetic
means. It is easy to show that, if b is p-mean convergent then bn =
o(np) for n → +∞.
Let f : (0, 1] → R be a monotone function. Define on (0, 1] the

possible infinite Borel measure |df | induced by the Stieltjes integral
with respect to f if it is increasing, of by −f if f is decreasing, see e.g.
[14], Section 12.3.
The following result is useful in the sequel:
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Lemma 2.1. Let a and b be convergent and p-mean convergent se-

quences with limn an = a and limn Mb,1;p(n) = b, respectively. Suppose

that

(2.1) M|b|,1;p(n) ≤ B , n ∈ N ,

then the product sequence ab is p-mean convergent with

lim
n

Mab,1;p(n) = ab .

Proof. Fix ε > 0 and choose l0 such that n > l0 implies |an − a| < ε.
We get for n > l0,

∣
∣
∣
∣
Mab,1;p(n)− ab

∣
∣
∣
∣
≤

(
l0
n

)p(∣∣
∣
∣
Mab,1;p(l0)

∣
∣
∣
∣
+

∣
∣
∣
∣
aMb,1;p(l0)

∣
∣
∣
∣

)

+

∣
∣
∣
∣
a

(

Mb,1;p(n)− b

)∣
∣
∣
∣
+ εB .

We then have

lim sup
n

∣
∣
∣
∣
Mab,1;p(n)− ab

∣
∣
∣
∣
≤ εB ,

which leads to the assertion being ε arbitrary. �

Here, there is our main result:

Theorem 2.2. Fix a p-mean convergent sequence b with limn Mb,1;p(n) =
b, and a monotone function f : (0, 1] → R such that f ∈ L1((0, 1], xp−1dx)
and xp ∈ L1((0, 1], |df |). Then

lim
n

Mb,f ;p(n) = bp

∫ 1

0

xp−1f(x)dx .

Proof. We can suppose, without loosing generality, that f is decreasing
by passing possibly to the opposite function, and positive by possibly
adding a constant. Under the last hypotheses, for each ε > 0 there
exists n0 such that, if n > n0

0 ≤
[ n

n0
]

∑

k=1

f

(
k

n

)[(
k

n

)p

−
(
k − 1

n

)p]

≤ p

∫ 1/n0

0

xp−1f(x)dx ≤ ε ,
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where [x] is the unique integer such that [x] ≤ x < [x] + 1 for any
arbitrary real x. We then argue that

0 ≤p

∫ 1

0

xp−1f(x)dx−
n∑

k=1

f

(
k

n

)[(
k

n

)p

−
(
k − 1

n

)p]

≤p

∫ 1/n0

0

xp−1f(x)dx+

[ n

n0
]

∑

k=1

f

(
k

n

)[(
k

n

)p

−
(
k − 1

n

)p]

+

{

p

∫ 1

1/n0

xp−1f(x)dx−
n∑

k=[ n

n0
]+1

f

(
k

n

)[(
k

n

)p

−
(
k − 1

n

)p]}

≤2ε+

{

p

∫ 1

1/n0

xp−1f(x)dx−
n∑

k=[ n

n0
]+1

f

(
k

n

)[(
k

n

)p

−
(
k − 1

n

)p]}

→2ε

for n → +∞, since one recognises the last term as the Riemann-
Stieltjes sum of

∫ 1

0

f(x)dxp = p

∫ 1

0

f(x)xp−1dx .

As ε > 0 is arbitrary, we conclude that

(2.2) lim
n

n∑

k=1

f

(
k

n

)[(
k

n

)p

−
(
k − 1

n

)p]

= p

∫ 1

0

xp−1f(x)dx .

With

cn := Mb,1;p(n)− b , n ∈ N ,

we get

Mb,f ;p(n) = cnf(1) + b
n∑

k=1

f

(
k

n

)[(
k

n

)p

−
(
k − 1

n

)p]

+
n∑

k=2

ck−1

(
k − 1

n

)p[

f

(
k − 1

n

)

− f

(
k

n

)]

.
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For each ε > 0, let n0 such that n > n0 implies |cn| < ε. Then for
every n sufficiently big,

∣
∣
∣
∣

n∑

k=2

ck−1

(
k − 1

n

)p[

f

(
k − 1

n

)

− f

(
k

n

)]∣
∣
∣
∣

≤
n0+1∑

k=2

|ck−1|
(
k − 1

n

)p[

f

(
k − 1

n

)

− f

(
k

n

)]

+
n∑

k=n0+2

|ck−1|
(
k − 1

n

)p[

f

(
k − 1

n

)

− f

(
k

n

)]

< sup
n

|cn|
∫ n0+1

n

0

xp|df(x)|+ ε

∫ 1

0

xp|df(x)| ,

which goes to 0 as n → +∞, because ε > 0 is arbitrary. Collecting the
last computation with (2.2), we get the result. �

3. some multi-dimensional cases

The present section is devoted to the investigation of some ergodic
limits of multi-dimensional Cesaro averages which may appear in the
study of Quantum Central Limit Theorems as those considered in [7].

Proposition 3.1. Let b be a p-mean convergent sequence satisfying

(2.1) with limn Mb,1;p(n) = b, and (ak1,...,km)k1,...,km∈N ⊂ C a multi-

indices sequence such that for q > 0,

lim
n

1

nq

∑

1≤k1,...,km≤n

ak1,...,km = a .

Then

lim
n

1

np+q

n∑

k=1

bk
∑

1≤k1,...,km≤k

ak1,...,km =
abp

p+ q
.

Proof. Notice that

1

np+q

n∑

k=1

bk
∑

1≤k1,...,km≤k

ak1,...,km = Mab,xq;p(n) ,

where

ak :=
1

kq

∑

1≤k1,...,km≤k

ak1,...,km , k ∈ N ,

defines the sequence a which is supposed to be convergent. The proof
now follows from Lemma 2.1 and Theorem 2.2. �
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Recall that the Euler’s Beta and Gamma functions are defined re-
spectively as

(
¯
z, t) :=

∫ 1

0

xz−1(1− x)t−1dx , Re(z),Re(t) > 0 ,

Γ(z) :=

∫ +∞

0

xz−1e−xdx , z ∈ C\{0,−1,−2, . . .} .

Such special functions are related by the celebrated identity

(3.1) (
¯
z, t) =

Γ(z)Γ(t)

Γ(z + t)
,

see e.g. [9].
The functions above appear in the following result concerning the

tail-average.

Proposition 3.2. Let (ak1,...,km)k1,...,km∈N and b be a multi-indices se-

quence and a sequence respectively, satisfying all the hypotheses of

Proposition 3.1. If in addition,

(3.2) ak1−h,...,km−h = ak1,...,km

for any k1, . . . , km ∈ N and h < min{k1, . . . , km}, then

(3.3) lim
n

1

np+q

n∑

k=1

bk
∑

k+1≤k1,...,km≤n

ak1,...,km = ab
Γ(p + 1)Γ(q + 1)

Γ(p+ q + 1)
.

Proof. Notice that (3.2) gives

∑

k+1≤k1,...,km≤n

ak1,...,km =
∑

1≤k1,...,km≤n−k

ak1,...,km

and, consequently,

1

np+q

n∑

k=1

bk
∑

k+1≤k1,...,km≤n

ak1,...,km

=
1

np+q

n∑

k=1

bk(n− k)q
[

1

(n− k)q

∑

1≤k1,...,km≤n−k

ak1,...,km − a

]

+
a

np+q

n∑

k=1

bk(n− k)q .
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From Proposition 2.2, one has

lim
n

1

np+q

n∑

k=1

bk(n− k)q = bp

∫ 1

0

xp−1(1− x)qdx

= b
Γ(p+ 1)Γ(q + 1)

Γ(p+ q + 1)
,

the last equality coming from (3.1) and Γ(z + 1) = zΓ(z).
The thesis then follows once one shows

1

np+q

n∑

k=1

bk(n− k)q
[

1

(n− k)q

∑

1≤k1,...,km≤n−k

ak1,...,km − a

]

is infinitesimal for n → ∞. Indeed, since for any ε > 0, there is l0 ∈ N

such that for any h ≥ l0
∣
∣
∣
∣

1

hq

∑

1≤k1,...,km≤h

ak1,...,km − a

∣
∣
∣
∣
≤ ε,

one has for each k = 1, . . . , n− l0,
∣
∣
∣
∣

1

(n− k)q

∑

1≤k1,...,km≤n−k

ak1,...,km − a

∣
∣
∣
∣
≤ ε.

Thus, denoting by M > 0 a uniform bound for the sequence of the
multiple of Cesaro means of (ak1,...,km), by (2.1) one finds

∣
∣
∣
∣

1

np+q

n∑

k=1

bk(n− k)q
[

1

(n− k)q

∑

1≤k1,...,km≤n−k

ak1,...,km − a

]∣
∣
∣
∣

≤ ε

np

n−l0∑

k=1

|bk|
(
n− k

n

)q

+

∣
∣
∣
∣

1

np

n∑

k=n−l0+1

bk

(
n− k

n

)q[
1

(n− k)q

∑

1≤k1,...,km≤n−k

ak1,...,km − a

]∣
∣
∣
∣

≤
[

ε+ 2M

(
l0
n

)q]

B .

The proof is achieved as ε is arbitrary. �

4. some counterexamples

We end the present note by showing some counterexamples concern-
ing the average-convergence of sequences.
We start by noticing that in Theorem 2.2, the case with b identically

equal to 1 and p = 1 corresponds simply to ask whether the sequence
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of the Riemann sums of a L1-function f , made partitioning the interval
[0, 1] in n subintervals of uniform length 1/n and Riemann integrable on
all the subintervals [ε, 1], converges to the integral of f . The following
simple counterexample (which can be easily modified to achieve the
continuous case)

f =

+∞∑

n=1

n2χ{1/n}

tells us that it is not always the case, even if one imposes mild natural
conditions on f .
Now we pass to see that the convergence of 1

n

∑n
k=1 |bk| does not

imply that b is mean-convergent. Let b be the sequence defined as

b :=

20
︷︸︸︷

1 ,

21
︷ ︸︸ ︷

−1,−1 ,

22
︷ ︸︸ ︷

1, 1, 1, 1 ,

23
︷ ︸︸ ︷

−1, . . . ,−1 , . . . .

Define, for each integer n,

mn := 2 · 4n − 1 , hn := 4n+1 − 1 .

On one hand, it is easy to check that

1

n

n∑

k=1

|bk| = 1.

On the other hand, for the subsequences indexed by mn and hn respec-
tively, one finds

Mb,1;1(mn) =
1

mn

( n∑

k=0

22k − 1

2

n∑

k=1

22k
)

=
1

3
,

and

Mb,1;1(hn) =
1

hn

( n∑

k=0

22k − 1

2

n+1∑

k=1

22k
)

= −1

3
.

What follows is a simple counterexample for the general failure of
Lemma 2.1 if condition (2.1) is not satisfied. Let b = (bk)k∈N and
a = (ak)k∈N be defined as follows:

b2n−1 := −
√
2n , b2n := 1 +

√
2n , n ∈ N ,

a2n−1 := − 1√
2n

, a2n :=
1√
2n

, n ∈ N .

Then a = limn an = 0, and b = limn Mb,1;1(n) = 1
2
. Furthermore, as

n → +∞, first

1

2n

2n∑

k=1

|bk| =
1

2
+

1

n

n∑

k=1

√
2k → +∞ ,
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and second

Mab,1;1(2n) = 1 +
1

2n

n∑

k=1

1√
2k

→ 1 > 0 = ab .

Finally, one can wonder if (3.3) holds true under all the assumptions
of Proposition 3.1 but (3.2). The answer is negative as the following
example shows for the case p = 1, m = 2, and q = m. Indeed, take

bk = 1 , ak1,k2 = (
√

k1 −
√

k1 − 1)
√

k2 , k, k1, k2 ∈ N .

Then b = 1 and a = 2
3
as

lim
n

1

n2

∑

1≤k1,k2≤n

ak1,k2 = lim
n

1

n2

∑

1≤k1,k2≤n

(
√

k1 −
√

k1 − 1)
√

k2

= lim
n

1

n2

√
n

n∑

k2=1

√

k2 = lim
n

1

n

n∑

k2=1

√

k2
n

=

∫ 1

0

x
1

2dx =
2

3
.

Computing the left hand side of (3.3), we get

lim
n

1

n3

n∑

k=1

bk
∑

k+1≤k1,k2≤n

ak1,k2 = lim
n

1

n3

n∑

k=1

(
√
n−

√
k)

n∑

k2=k+1

√

k2

= lim
n

1

n2

n∑

k=1

(

1−
√

k

n

) n∑

k2=k+1

√

k2
n

=

∫ 1

0

dx(1 −
√
x)

∫ 1

x

dy
√
y

=
4

15
ab 6= ab

3
.

Note added in proof

The authors are grateful to O. Kouba who has drawn their attention
to Theorem 1 in his note [11] while the present article was in press.
The statement of such a theorem is the same as our Theorem 2.2,
provided that the involved function f and the sequence (bn)n∈N are
uniformly continuous on (0, 1] and positive, respectively. By using
Weierstrass’ Density Theorem as in [11], the former is a corollary of
the latter, and can be extended to general p-mean convergent complex-
valued sequences (bn)n∈N, provided that the sequence of their moduli
(|bn|)n∈N satisfies (2.1).
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