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Transcriptome signatures from discordant sibling
pairs reveal changes in peripheral blood immune
cell composition in Autism Spectrum Disorder
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Abstract
Notwithstanding several research efforts in the past years, robust and replicable molecular signatures for autism
spectrum disorders from peripheral blood remain elusive. The available literature on blood transcriptome in ASD
suggests that through accurate experimental design it is possible to extract important information on the disease
pathophysiology at the peripheral level. Here we exploit the availability of a resource for molecular biomarkers in ASD,
the Italian Autism Network (ITAN) collection, for the investigation of transcriptomic signatures in ASD based on a
discordant sibling pair design. Whole blood samples from 75 discordant sibling pairs selected from the ITAN network
where submitted to RNASeq analysis and data analyzed by complementary approaches. Overall, differences in gene
expression between affected and unaffected siblings were small. In order to assess the contribution of differences in
the relative proportion of blood cells between discordant siblings, we have applied two different cell deconvolution
algorithms, showing that the observed molecular signatures mainly reflect changes in peripheral blood immune cell
composition, in particular NK cells. The results obtained by the cell deconvolution approach are supported by the
analysis performed by WGCNA. Our report describes the largest differential gene expression profiling in peripheral
blood of ASD subjects and controls conducted by RNASeq. The observed signatures are consistent with the
hypothesis of immune alterations in autism and an increased risk of developing autism in subjects exposed to prenatal
infections or stress. Our study also points to a potential role of NMUR1, HMGB3, and PTPRN2 in ASD.

Introduction
Autism Spectrum Disorder (ASD) is a group of neuro-

developmental disorders with onset in early childhood,
characterized by a triad of core symptoms (impaired social
interaction, poor language development and commu-
nication and repetitive and narrow pattern of behaviors
and interests. The heritability of ASD is relatively well
established, and it is now thought that 10–20% of the
cases are genetically defined1. Yet, the genetic etiology is

not fully understood, and genome-wide investigations
support a complex genetic architecture based on major
genes and polygenic factors having different extent of
contribution across the ASD spectrum2. Several etiologi-
cal hypotheses for ASD exist, as for example altered
synaptic dysfunction leading to an imbalance of excitatory
and inhibitory neurotransmission3, although a unifying
etiological theory is still missing. Abnormalities in brain
tissue at the molecular level, including transcriptional and
splicing dysregulations, have been shown to correlate with
neuronal dysfunctions4–6. The investigations on post-
mortem tissue from ASD patients have shed light on the
molecular mechanisms underlying the disorder at brain
level, confirming the importance of transcriptional ana-
lysis in disease characterization. However, the search for a
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reliable molecular signature for ASD based on peripheral
samples, which might help clinicians in early diagnosis
and in the identification of ASD subgroups, is still
ongoing. Several attempts in this direction have been
performed by gene expression analysis of lymphoblastoid
cell lines7–15 and blood samples16–25 (see for a review
ref. 26). Overall, these studies suggest the implication of
several signaling pathways and the immune response in
ASD, but a consistent set of diagnostic biomarkers
remains elusive. A recent meta-analysis of blood-based
transcriptome investigations in ASD remarks the
hypothesis of implication of the immunologic function27.
Indeed, the predominant signature observed in the ASD
blood transcriptome was characterized by reduced
expression of transcripts related to innate immune and
inflammatory signaling, including type I and type II
interferon-stimulated signaling cascades. Additional
findings were under-expression of EGF-, PDGF-, PI3K-
AKT-mTOR-, and RAS-MAPK-signaling cascades, and
over-expression of modules enriched in ribosomal trans-
lation and NK-cell-related functions.
The Italian Autism Network (ITAN) consists of a col-

lection of families formed by ASD probands, unaffected
siblings when available, and parents recruited through
thirteen clinical centers across Italy28. The network has an
associated repository of genomic DNA, blood RNA,
plasma, and lymphoblastoid cell lines to enable integrated
genetic and biomarker research.
Here we present the first transcriptome analysis con-

ducted on the ITAN cohort aimed at identifying periph-
eral signatures for ASD. The study was conducted on a
selected subset of the available discordant sibling pairs,
consisting in a total of 150 subjects. Blood samples were
subjected to RNA Sequencing and data were analyzed by
exploiting a matched pairs design. In order to disentangle
the complexity of the molecular changes potentially
arising from differences in blood composition in disease
vs healthy state, we applied two different cell deconvolu-
tion algorithms and validated our findings with a com-
plimentary WGCNA analysis.

Material and methods
Participants
The ITAN collection comprehends more than 800 sub-

jects belonging to 256 families recruited across thirteen
centers28. The study protocol was in first instance approved
by the Verona Hospital Ethical Review board (study pro-
tocol AUT-SFK001, CE1419), and subsequently by the
Ethical Review Committees of each recruiting site. All adult
subjects participating in this project gave their written
consent (or the consent for their children); assent to par-
ticipate to the study from the children was obtained
whenever obtainable. Diagnosis of autism spectrum dis-
order according to DSM IV29, was assessed by experienced

child psychiatrists using standard tools: Broader Phenotype
Autism Symptom Scale (BPASS), Autism Diagnostic
Interview—Revised (ADI-R), Autism Diagnostic Observa-
tion Schedule (ADOS), and Krug Asperger Disorder Index
screening. We selected families with at least two siblings
discordant for ASD diagnosis, with the affected children
between 4 and 18 years of age. After the selection process,
75 sibling pairs were sequenced, for a total of 150 subjects.
Demographic parameters, age, gender, and ethnicity for
each subject are shown in Table 1.

RNA sequencing
Total RNA from blood samples, randomized by Roche

statisticians, was submitted to Poly-A RNA sequencing on
Illumina RNASeq Platform. Pre-alignment/mapping
quality control (using Illumina sequencing accuracy
quality scoring to estimate the base calling error prob-
abilities, thresholds of all bases >Q30) was performed to
confirm that key laboratory quality metrics criteria were
met. To estimate expression at gene level, paired-end
RNAseq reads were mapped to the human genome (hg19)
by using the short-read aligner GSNAP30. The number of
mapped reads for all RefSeq transcript variants of a gene
counts were combined into a single value by using
SAMTOOLS31. Technical features such as RIN, sequen-
cing batch number, sequencing lane and pool, RIN,
µgRNA were collected for subsequent statistical analysis.
The RNA Sequencing data that support the findings of
this study are available from the ITAN Foundation (see
https://www.fondazioneitan.org for details) upon sub-
mission of an official request. Data are released only for
research purposes, upon assessment of a project proposal
by the ITAN Scientific Committee.

HLA typing and HLA and KIR variants expression from
RNASeq
We inferred HLA genotypes and quantified HLA allele

expression from RNA Sequencing data we used a recently

Table 1 Demographic information on the subset of the
ITAN collection used in this study.

Sibling pairs Autism PDD-NOS ASP Total

Gender

concordance

(N of subjects)

Male 27 5 6 38

Female 4 1 0 5

Discordant 24 4 4 32

Ethnicity

(N of subjects)

CEU 41 8 6 55

Other 14 2 4 20

Age Cases 10.02 10.00 12.7 10.33

CTRL 11.34 10.5 15.1 11.7

PDD-NOS Pervasive development disorder not otherwise specified, ASP Asperger
syndrome.
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developed computational pipeline called HLAPers32. The
pipeline consists in two steps: (i) the HLA typing step,
where reads are aligned on a curated database of HLA
variants available as transcript sequences to infer the subject
genotype; (ii) the quantification step, where expression is
estimated based on the number of reads aligning to each
reference, using a model accounting for the occurrence of
reads mapping to multiple HLA references corresponding
to different HLA alleles or genes. We thus realigned original
ITAN RNASeq data onto the International Immunoge-
netics/HLA (IMGT) database release 3.31.033 to extract
highly specific HLA transcripts and, based on the best
aligned sequences, inferred the subject genotype for the
HLA variants available in the IMGT database.
For KIR genes, we used the gene counts combined into

single value by using SAMTOOLS to quantify specific the
expression of KIR genes, since the KIR sequences data-
base34 does not provide transcript sequences for different
genotypes.

Statistical analysis
A diagram representing our full analysis workflow is

shown in Supplementary Fig. 1. After the preprocessing
step, we filtered genes with count-per-million (CPM)
greater than 1 in 25% of the samples, then gene expression
was normalized and log-transformed using functions
implemented in edgeR35. To account for differences in
sequencing depths and RNA composition across samples,
gene counts were normalized using the trimmed mean
normalization method, while for the estimation of the
biological coefficient of variation (BCV) under the
assumption of a negative binomial distribution we used
the estimateDisp function from edgeR (see Supplemen-
tary Fig. 2 where the BCV estimate is reported). A pre-
liminary multivariate analysis was conducted to identify
data structure, outliers and other factors potentially
affecting expression levels. We used the non-affected
sibling as the control, thus exploiting the high degree of
kinship with the ASD subject, by using a paired design to
correct for sample dependence. We estimated the beta
coefficients for each technical and demographic feature,
including diagnosis, using a generalized linear model. The
technical features included in the model are described in
the previous section, while the demographic features are:
gender, ethnicity, age, family id and diagnosis. A
moderated gene-wise variance was then computed based
on an empirical Bayes procedure36 to extract the
differential gene expression (DGE) signature. The same
model was also run by including an estimation score for
blood cell composition for each sample (see below) as
covariate in the DGE analysis. For all DGE analyses we
used a paired design comparing the affected subjects with
the related discordant siblings. All analyses were con-
ducted with R 3.4.3.

Enrichment analysis of the differentially expressed
genes (DEGs) was performed by using the online web-
service KOBAS 3.037. We run the analysis with default
parameters on five human pathway databases (KEGG,
BioCyc, Reactome, Panther, GO) using all blood expres-
sed genes from our RNASeq dataset as background list for
the enrichment. Additional enrichment analysis was
conducted by using Open Target38 and StringDB39 to
identify diseases, drugs and literature associated with the
DEG list.

Cell composition estimate
Two complementary deconvolution methods were used

to estimate blood cell composition, ie CIBERSORT and
xCell. CIBERSORT allows the extraction of cell mixture
proportions from gene expression profiles based on sup-
port vector regression of a cell-specific signature matrix40.
We have used the on-line version of the tool41, which
allows the estimation of a cell mixture based on a sig-
nature matrix validated with curated signatures from 22
human hematopoietic cell types (LM22). The algorithm
takes the gene expression profile matrix as an input and
returns a proportion between 0 and 1 for the 22 cell types
and an empirical p-value. xCell42 improves previous
deconvolution algorithms by correcting the biases due to
overlapping signatures between similar cell types. The
signature matrix is based on lists of genes extracted from
multiple gene expression analysis and validated by cell
sorting studies. Differently from previous methods, xCell
uses single sample enrichment to estimate a score linearly
correlated with the abundances of cell types in the cell
mixture. We adapted a R package publicly available on
GitHub43 by using a subset of the original xCell signature
consisting in 14 cell types relative to blood (based on the
studies SDY311 and SDY42044 from the ImmPort data-
base45). Input data of the cell enrichment algorithm was
the voom normalized gene expression46. xCell returns a
cell-specific enrichment score (linearly correlated with
cell abundance in the mixture) and an associated FDR
adjusted p-value. As suggested by the original paper42, we
selected cell types with a corrected p-value < 0.2. For both
methods, differences in cell composition between dis-
cordant siblings were assessed by t-test with matched
pairs design.

WGCNA
We followed the pipeline proposed by Langfelder et al.44

in their CRAN package to infer gene co-expression net-
works and identify network modules within R 3.4.3 sta-
tistical environment. Further details of the methods used
throughout this analysis can be found in the original
manuscript47 and on the website48. Networks were
inferred using the TOMsimilarityFromExpr function with
“bicor” as correlation measure. The soft-threshold
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parameter was optimized with the function pickSoft-
Threshold and the best threshold (α= 12) selected by
visual inspection, as suggested by the WGCNA pipeline.
Correlations between modules eigengenes, diagnosis and
cell mixture estimation score were computed. Modules
with the highest correlation and significant p-value (α <=
0.05) were selected for further analysis.

Results
Identification of DEGs
An exploratory analysis of the RNASeq data through the

PCA analysis did not reveal any noticeable outliers (see
Supplementary Fig. 3). A close similarity of expression was
observed for siblings, supporting the choice of a discordant
sib-pair experimental design. When assessing the fraction of
the variance explained by the first five PCA components for
each covariate, the family component was indeed confirmed
to be the predominant factor (see Supplementary Fig. 4 and
Supplementary Table 1). The DGE analysis revealed subtle
differences in expression between discordant siblings (see
Supplementary Table 2 for the full list of DEGs). Setting a
threshold on the FDR corrected p-value to 0.1 or 0.05 result
with a shorter list of 21 and 10 genes, respectively (see Table
2a). The volcano plot in Fig. 1(a) shows that the DEGs are
predominantly downregulated in ASD, in accordance with
previous findings18. The QQ plot shows a deviation from the
null model even at p-values below significance, with a cal-
culated lambda value of 1.23, suggesting an inflation of the
type I error rate, possibly due to hidden variability. Based on
prior evidence of sex differences in blood transcriptomic
signatures of ASD15,49, we performed a separate analysis for

male sibling pairs, for which an adequate number was
available (see Supplementary Fig. 5, and Supplementary
Table 3). The results suggest a strong correlation between
the gender-covariate analysis conducted on the full datasets
and the male-specific analysis, with most genes (86%)
maintaining the same direction of expression change, and no
discordant sign for the first 900 genes of the ranked list of
DGE in the full datasets (see also Supplementary Fig. 6).

Enrichment analysis
We performed enrichment analysis by submitting the full

list of nominally significant DEGs to the KOBAS algo-
rithm37. Enrichment analysis with KOBAS shows five sta-
tistically significant enriched pathways with FDR < 0.05 (See
Supplementary Table 4). The first two pathways are Natural
Killer-cell mediated cytotoxicity and immunoregulatory
interactions between a Lymphoid and a non-Lymphoid cell,
suggesting a dysregulation in the immune functions in ASD.
When submitting the list of significant genes at FDR <

0.25 to Open Target batch search to look for diseases
associated to our signature, the top finding was cytome-
galovirus infection (see Supplementary Table 5). Cyto-
megalovirus infection was still the top finding when
restricting the analysis to the shorter 21 gene list (FDR <
0.1). Similarly, when searching for published signatures
similar to our list of FDR < 0.25 significant genes (by using
StringDB) we identified the enrichment in CMV-specific
CD4+ T cells signatures from chronically infected healthy
donors50 as the top hit (P value = 8.86 E−10).

Cell composition
Despite the limited number of DEGs between dis-

cordant siblings, our enrichment analysis indicates a clear
dysregulation in immune functions. To verify if such
differences are related to differences in immune cell
populations between the autism and control groups, we
submitted the gene expression dataset to two compli-
mentary methods to estimate cell composition in blood.
By using CIBERSORT and the LM 22 signature matrix to
estimate blood cell proportion, and comparing discordant
siblings with a paired design, we were able to show sta-
tistically significant differences (p-value 0.05) for four cell
types, including NK cells, Tgd, B cells and CD4+ TEM
cells (see Table 3a). The results from the analysis with
xCell are consistent with CIBERSORT, in particular for
NK cells and B cells (see Table 3b). Indeed, we found high
degree of correlation between the scores for NK cells (r2
= 0.7, p= 1e−24) and naïve B cells (r2= 0.8, p= 1e−56)
from the two algorithms (see Supplementary Fig. 7).

Effect of HLA alleles and KIR gene expression on NK cell
proportion
Since a number of investigations has shown a potential

relation between specific HLA allele groups and NK cell

Table 2 DGE model results ordered by FDR.

(a) Standard model (b) xCell enrichment

Name LogFC P Value FDR LogFC P Value FDR

HMGB3 −0.306 6.15e-08 8.99e−04 −0.250 2.02e-05 1.54e−01

NMUR1 −0.345 3.30e-06 2.41e−02 −0.224 2.11e-05 1.54e−01

PTPRN2 0.294 6.47e-06 2.84e−02 0.290 3.36e-05 1.63e−01

NKG7 −0.355 8.01e-06 2.84e−02 −0.207 6.71e-04 9.93e−01

PIF1 −0.413 105e-05 2.84e−02 −0.299 7.54e-04 9.93e−01

KLRD1 −0.240 1.23e-05 2.84e−02 −0.145 7.39e-04 9.93e−01

FKBP11 −0.210 1.36e-05 2.84e−02 −0.159 1.31e-03 9.93e−01

GLNY −0.451 1.75e-05 3.20e−02 −0.302 5.76e-04 9.93e−01

CLIC3 −0.415 2.07e-05 3.36e−02 −0.269 1.69e-03 9.98e−01

MANF −0.176 2.69e-05 3.93e−02 −0.141 1.36e-03 9.93e−01

(a) Results obtained by the paired design, including technical and demographic
covariates (“standard model”).
(b) Results obtained by including in the standard model the cell composition
score derived by cell deconvolution analysis with xCell as additional covariate.
Only results for FDR < 0.05 from the standard model are shown in the table.
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activity in the context of ASD51–53, we have applied a
recently developed computational tool which allows to
perform in silico HLA typing (reported in Supplementary
Table 6), and use the inferred HLA genotype to create a
personalized index to quantify HLA expression32. We

have then tested the correlation between HLA allele
expression and the enrichment score for NK cells
obtained by XCell, focusing on the major HLA alleles for
which expression was detected for more than 30% of the
subjects. The results (supplementary Fig. 8a) suggest that

Fig. 1 Differential gene expression analysis. Volcano plots and QQ-plots for the standard model (a, b) and for the model with cell composition
score as covariate (c, d). The inclusion of cell enrichment scores in the DGE model results with a decrease of the inflation rate as measured by the
lambda (lambda= 1.23 in (b); lambda = 0.975 in (d)).

Table 3 Differential composition and cell type enrichment by using two different deconvolution approaches.

(a) CIBERSORT differential cell composition (b) xCell differential cell composition

Cell types logFC enrich P Value FDR Cell types logFC enrich P Value FDR

NK.cells.resting −0.0215673 3.66e−04 8.05e−03 NK cells −0.0030001 7.45e−03 6.81e−02

Neutrophils 0.0340265 1.11e−02 1.22e−01 Tgd cells −0.0008546 9.08e−03 6.81e−02

B.cells.naïve 0.0084004 4.30e−02 2.68e−01 naïve B cells 0.0038983 3.69e−02 1.39e−01

T.cells.CD8 −0.0134798 5.95e−02 2.68e−01 CD4+ Tem −0.0029231 3.70e−02 1.39e−01

Macrophages.M0 0.0006095 6.10e−02 2.68e−01 B cells 0.0064601 5.44e−02 1.63e−01

(a) On the left, using CIBERSORT with LM 22 base matrix.
(b) On the right, using xCell algorithm FDR correction with the Benjamini–Hochberg method.
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the alteration in NK proportion has a poor correlation,
and in most cases not significant, for every HLA allele
tested. We explored in more details HLA-Cw7, an HLA
allele previously associated with ASD51, but we could not
detect significant differences in NK cell estimate within
diagnostic categories based on specific allele groups (see
Supplementary Fig. 8b) nor in allele frequency between
ASD subjects and unaffected related siblings (see Sup-
plementary Table 6).
Finally, since genes coding for activating Killer-cell

immunoglobulin-like receptor (KIR) proteins influence
NK cell activity, and their frequency has been found to be
significantly increased in ASD54,55, we tested for the
correlation between estimated NK cell proportion and the
expression of KIR genes extracted from the original
RNASeq dataset. The results (shown in Supplementary
Figs. 9, 10) are consistent with the positive regulatory
effect of KIR genes on NK cells, but do not suggest an
increase frequency of specific KIR genes in ASD based on
their expression. Therefore, putative differences in KIR
gene frequency are unlikely to be at the basis of the
observed altered NK cell proportion in ASD.

DGE analysis with cell composition estimate as covariate
We hypothesized that part of the unexplained variance in

the previous DGE model could be driven by altered immune
cell composition in ASD and not uniquely by transcriptome
dysregulation. Thus, including an estimation of cell compo-
sition in the model would enable to uncover dysregulated
gene expression withstanding the systematic imbalance in
blood cell proportion between the discordant sibling pairs.
Based on the results obtained with xCell, we selected the
most differential enriched cell types (pvalue < 0.05, i.e. NK
cells, Tgd, naïve β cells and CD4+ Tem), and included their
scores for each individual sample as additional covariates in
the model. As a result, the number of significantly de-
regulated genes was largely decreased compared with the
standard model, and the inflation previously observed the
drastically reduced (see QQ plot in Fig. 1b, lambda = 0.975).
As shown in Table 2 (b), when accounting for cell compo-
sition, only three genes (PTPRN2 and HGMB and NMUR1)
remained significantly different at FDR < 0.25 (see also Sup-
plementary Fig. 11). We then compared our results with a
recently published meta-analysis on brain gene expression in
autism56. Notably, whilst for NMUR1 and PTPRN2 we could
not identify a statistically significant signal, for our top
finding, HMGB3, we found a significant downregulation in
human brain tissues of autistic patients (FDR= 0.03), with
consistent downregulation in both cortex and cerebellum
(See Supplementary Fig. 12).

WGCNA analysis
To corroborate the evidence of an effect of the imbal-

ance in immune cell composition on the ASD gene

expression signature, we conducted a further analysis
based on WCGNA. Out of the network modules extracted
by WGCNA, we identified two clusters of genes that are
highly correlated with ASD diagnosis, and, at the same
time, with the abundance of NK cell (ME10) or naïve Bcell
(ME13) (see Fig. 2a). Whilst the expression heatmap
constructed by using all expressed genes did not reveal
any sample structure (not shown), the expression heat-
map for ME10 obtained by unsupervised hierarchical
clustering identifies three clusters, with the middle one (in
blue) significantly enriched in ASD subjects (p < 0.003).
The three clusters correspond to three groups with dif-
ferent NK cell proportion, as shown in Fig. 2b, top panel.
Interestingly, by looking at the distribution of the

eigengene values for ME10 and ME13 across samples,
differences between the three diagnostic subgroups can be
observed (see Fig. 2c). In particular, a shift of the dis-
tribution peak for ME10 on the left was found for autism
and Asperger, while PDD-NOS are closer to controls,
suggesting that the decrease in NK cell proportion
observed in ASD is not driven by PDD-NOS subjects.
Similarly, the distribution of the eigengene values for
ME13 is shifted towards the right for autism samples (but
not for PDD-NOS and only marginally for Asperger),
suggesting that the main difference in B cell composition
is driven by autism subjects.

Discussion
Although previous applications of RNASeq efforts have

been described in an integrated analysis of blood tran-
scriptome57 or in LCL15, our report, to the best of our
knowledge, describes the largest differential gene expression
profiling in peripheral blood of ASD subjects conducted by
RNASeq. In this study, we exploited the availability of a well
characterized family collection and a discordant sibling
design to uncover peripheral transcriptional signatures for
ASD. The high degree of kinship between siblings and the
shared environment should minimize differences in tran-
scriptome not strictly related to ASD. We have used a robust
model accounting for numerous demographic and technical
covariates, and we have found relatively subtle differences
between ASD cases and unaffected siblings, with most var-
iance in gene expression being driven by the family com-
ponent. Nevertheless, we were able to identify a gene
expression signature, with ten DEGs below FDR threshold of
0.05. Our results are consistent with most published gene
expression investigations by microarrays in the blood or in
blood cells of ASD subjects, where the number of DEG
surviving to multi test correction is usually small, with
some exceptions21. A recent meta-analysis27, reports a list of
more than 1500 DEGs significant at FDR level, however
a more accurate inspection shows a substantial inflation
(with a calculated lambda of 1.87), likely due to unexplained
variance, which is not corrected by SVA analysis
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Fig. 2 WGCNA Module analysis. a Module eigengene correlation with sample traits. b Expression heatmap for module 10—“brown”. At the bottom,
the eigengene values for each sample. Hierarchical clustering on the top shows three groups for NK cell composition, with the right group enriched
for ASD samples. c Distribution of the module eigengene for brown module 10 and red module 13. The top panel shows a shift of the distribution
peak on the left for autism and Asperger, while PDD-NOS are closer to controls.
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(lambda= 2.32, ca 2300 DEGs). A cell-specific investigation
in leukocytes of ASD subjects25 reports a list of ca 110 DEGs
with FDR< 005, a relatively high number which might be
somehow explained by the lack of covariates in the model.
Indeed, when assessing differential expression in blood leu-
kocytes in a sample of 118 subjects including part of the
previous cohort, and adjusting for batch effects, sex, and RIN,
no DEG resisted to multiple test correction for any pairwise
group comparison58. A previous blood transcriptome analy-
sis by microarrays on ASD discordant siblings reported the
identification of a single gene with FDR< 0.05 after con-
trolling for age, gender, and difference among families22, in
line with our findings.
Enrichment analysis on our ASD signature suggests a

dysregulation of immune-inflammatory pathways, con-
sistently with previous evidence of immune imbalance in
ASD59–62. In particular, the top-enriched pathways are
NK cell mediated cytotoxicity, and Immunoregulatory
interactions between a lymphoid and a non-lymphoid cell,
which also involves receptors and cell adhesion molecules
playing a key role in modifying the response of B, T, and
NK cells to antigens and pathogenic organisms. Interest-
ingly, when searching for disease gene sets associated with
signature, we identified Cytomegalovirus infection as the
top hit. CMV infections have been associated with ASD
since long, and recent evidences suggest a high prevalence
of congenital CMV infection in ASD cases as measured by
PCR using dried blood spots on filter paper63. In the
Italian population, the infection rate was found to be
about 10-fold higher in ASD than in the general popula-
tion64. Given the known involvement of NK cells in
congenital CMV infection65, is it tempting to speculate a
possible relationship between our findings and the
increased prenatal exposure to viral infections, or other
pathogens triggering similar mechanism, in ASD subjects.
The enrichment in immune-inflammatory pathways in

blood gene expression signatures in ASD has been previously
observed by other investigators16,19,21,22,24, and confirmed by
two recent meta-analyses of previous studies27,66. Studies
conducted on whole blood RNA extracted with our same
procedure (PAXgene) have shown a deregulation of immu-
noinflammatory pathways, such as chemokine signaling and
FC gamma R-mediated phagocytosis21,22. In particular, che-
mokine signaling was among the top downregulated path-
ways when comparing blood samples from 20 discordant
sibling pairs of the Simons Simplex Collection21, consistent
with our finding of a network of downregulated chemokines
among top DEGs (See Supplementary Fig. 13). Of note, gene-
expression classifiers of ASD identified based on microarray
studies are enriched with genes related to immune
response19 or immune/inflammatory functions25. The ASD
signature identified by the most comprehensive meta-
analysis of blood transcriptome investigations is also char-
acterized by downregulation of innate immune and

inflammatory signaling transcripts27, supporting the notion
of overall decreased peripheral immune-inflammatory func-
tions in ASD.
Deregulation of immune-inflammatory functions have

been also reported in the brain of ASD subjects, in parti-
cular with the identification of an over-expressed module,
named asdM16, enriched in astrocyte and activated
microglial markers, and genes involved in immune and
inflammatory responses4, which was related to “activated”
M2 microglial and “immune response” genes by a sub-
sequent RNASeq-based investigation in ASD cortical brain
tissue5. More recently, in the largest transcriptome analysis
of post-mortem brain tissue in ASD so far, upregulated
modules in ASD were found to be enriched in genes
associated with inflammatory pathways6. Different hypoth-
eses have been postulated to explain why blood and brain
signatures in ASD converge; however with opposite
deregulation, on immunological functions, including the
contribution of decoupling mechanisms, tissue-related dif-
ferences in feedback response or post-mortem related
mechanisms, warranting further investigations27.
To explore the immune cell repertoire in ASD subjects

and estimate the effect of its dysregulation on the blood
transcriptome, we exploited recent methods to infer cel-
lular proportions from expression signatures of complex
tissues. Using two complimentary methods, we were able
to show a subtle, but statistically significant, decrease in
NK cells paralleled by an increase in naïve B cells in ASD.
The evidence from the cell deconvolution approach is
corroborated by WGCNA analysis, which clearly identi-
fies three clusters based on blood cell composition, pos-
sibly driven by different ASD subtypes.
Based on previous evidence of the effect of specific HLA

allele groups and KIR gene variants on NK cell activity, we
tested the hypothesis that differences in their frequency in
ASD vs healthy controls could contribute to the alteration in
NK cell proportion detected by cell deconvolution. We
inferred HLA genotypes form RNASeq data and quantified
expression of specific HLA alleles and KIR genes using
recently developed pipelines. We could not correlate the
alteration in NK cellular proportion between ASD and
healthy siblings with any of the HLA alleles or KIR genes
tested. Regarding HLA-Cw7, and other HLA allele groups
having a role in stimulating NK cells, we could not find a
significant difference in frequency between ASD subject and
matched siblings in our collection, differently from Harville
et al.51 who found an increased frequency in ASD vs unre-
lated subjects. Whilst we cannot rule out an increased overall
increased activation of NK cell in ASD subjects, our data
suggest a decrease in NK cell proportion over total blood
cells according to signature deconvolution results irrespective
from the HLA alleles or the KIR genes tested.
Our findings are consistent with the evidence of immune

abnormalities in ASD, and the hypothesis of specific cellular
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immune-phenotypes related to different ASD subtypes62,67.
Previous studies on NK cells in ASD, in particular on their
proportion in blood and their activity, have produced mixed
results, possibly due to the different CD markers used to
determine cell counts. Two studies identified an increase in
absolute number of NK cells in children with autism17,68,
whilst one report provides evidence of a decrease in CD57+
NK cells69. On the other hand, when investigating NK cell
cytotoxic activity ex-vivo, there seems to be a convergence
on findings on a reduction of NK cell activity17,68,70, in
agreement with early findings71. Of note, a recent work
conducted in a group of adults with high functioning (hf)
ASD reported no difference in the frequency of NK cells
with respect to healthy controls; however, flow cytometric
analysis revealed a hf-ASD signature based on NK cell-
specific phenotypic markers, which was also associated with
core ASD clinical dimensions65. Our work brings further
evidence for a dysfunction in NK cell-related mechanisms
in children with ASD. As suggested previously17, abnorm-
alities in NK cells may play a role in ASD etiology by pre-
disposing to adverse neuroimmune interactions and/or
autoimmunity mechanisms during critical development
periods. Likewise, we observed an increase in naïve B cells
in ASD children compared with their unaffected siblings.
Increase in mature or memory B cells in ASD children was
previously reported72,73 even though most literature on B-
cell number and function in ASD does not support sig-
nificant abnormalities62.
Whilst numerous peripheral blood gene expression

investigations have highlighted dysregulation in immu-
noinflammatory pathways in ASD68, little work has been
conducted so far to investigate the consequence of
immune cell imbalance in ASD signatures. In a recent
transcriptome analysis of leukocytes in ASD, differences
in proportion estimates of different leukocyte cell types
were tested by using a deconvolution approach step58. No
differences across diagnostic groups were identified;
however, the authors used a different deconvolution
algorithm and RNA extracted from whole blood after a
cellular fractionation step58. A deconvolution analysis was
also reported in a recent meta-analysis of blood ASD
transcriptome investigations27, which suggest increased
expression of genes specific to NK cells and T-helper cells,
consistent with earlier finding by Gregg et al.16 showing
gene expression differences in genes predominately
associated with NK and CD8+ cells. The reported
increase of NK cell-specific genes27 is not consistent with
our finding of reduced NK cells component. We are
unable to provide further insights on the above dis-
crepancy, since details on the results of the deconvolution
analysis are not reported for the meta-analysis27. Given
that our findings have been supported by two indepen-
dent approaches, the disagreement with the previous
report is unlikely to be due to methodological issues, but

rather to differences in the demographic characteristics of
our cohort or in the sibling pair design.
Finally, to identify genes that are differentially expressed

irrespective from ASD-related differences in the proportion
of circulating blood cells, we included the cell composition
estimates from deconvolution analysis as covariates in our
generalized linear model. Three genes survived to the DGE
analysis when conditioning to cell composition scores,
namely HMGB3, PTPRN2, and NMUR1.
HMGB3 was significantly downregulated in our study as

well in human brain tissues of autistic patients. HMGB3 is
a member of the high mobility group superfamily, and it
has never been reported to be related to ASD, although
there are several evidences for a role of a member of the
same family, HMGB1, in ASD-associated inflammation74.
We found a significant up-regulation of PTPRN2, coding

for a Receptor-Type Protein Tyrosine Phosphatase N2,
which is required for normal accumulation of secretory
vesicles in hippocampus pancreatic islets and in the hippo-
campus75. PTPRN2 is also part of a set of protein complexes
of which are tightly co-regulated during neuronal develop-
ment76. A role for PTPRN2 in regulating brain development
and function has been suggested, based on genetic disrup-
tions linked to attention deficits, addiction and mood dis-
orders, Down Syndrome and HOXA1 spectrum disorder75

suggesting a pivotal role in regulating brain development and
function. More recently, copy-number variations in PTPRN2
have been identified in children with developmental coordi-
nation disorder77. Of note, PTPRN2 has been shown to be a
target of autoantibodies in Type I diabetics and a regulator of
insulin secretion78. Since intrauterine hyperglycemia and
neonatal hypoglycemia have been shown to be a risk factor
for ASD79, further investigations in cohorts with information
on neonatal glycemia, maternal lifestyle or history of type I
diabetes would be needed to test the hypothesis of a corre-
lation between altered PTPRN2 expression in ASD and
abnormalities in glucose or in prediabetes markers.
NMUR1 is the peripheral receptor for neuromedin, a

neuropeptide with pleiotropic roles with multiple func-
tions. In particular, a key role for neuromedin in reg-
ulating food intake, circadian rhythms and inflammatory
response has been described80. Of note, NMUR1 has been
found to be downregulated in children from mothers
exposed to psychosocial stress during pregnancy, with
concomitant methylation of an enhancer region in the
NMR1 gene dependent on the maternal stress score and
altered immune response at birth81. Since neuromedin U
activation of NMUR1 elicits production of cytokines by T-
cells82, further investigations can be envisaged to address
a potential role for neuromedin U in mediating the
interplay between neuroendocrine system and immune
response in ASD.
Our study has a number of limitations and our results

must be interpreted with caution. Although the
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discordant sibling design may help minimizing environ-
mental or family-related confounders, our sample is
rather heterogeneous, both in terms of ASD diagnosis and
demographic factors, given our choice to include all
available discordant pairs to maximize statistical power.
Our statistical model, based on an empirical Bayes pro-
cedure, allowed us to estimate the beta coefficients for
each technical and demographic covariate separately,
including gender, ethnicity and diagnosis, resulting with a
limited portion of unexplained variance, which can be
fully ascribed to cell proportion according to QQ plot
analysis. However, we cannot completely rule out subtle
age, gender or ethnicity specific effects. This issue might
be addressed by introducing gender-diagnosis, ethnicity-
diagnosis or age-diagnosis interaction terms, which we
opted out given the high complexity reached by of our
generalized linear model. As far as gender is concerned,
we have conducted a separate analysis for male sibling
pairs, which corroborates our findings on the full cohort
(the limited number of sibling pairs has hindered us to
conduct a similar analysis on female subjects). Among
demographic factors, a key element limiting the general-
izability of our findings is the broad age range of our
subjects, compared to some other investigations which
have focused more specifically on toddlers or children
within a narrow age range19,24,25. An Additional limitation
is the lack of cell count data, which would have allowed an
ultimate validation of our convergent findings of altered
blood cell proportion in ASD, and placing full reliance on
RNA Sequencing for the quantification of gene expression
and for HLA genotyping. Finally, and more importantly,
our findings should be seen as the result of an original
investigation on a family cohort, which would need to be
replicated in independent collections.
Despite the above limitations, taken together, our

results suggest that subtle changes occur in the ASD
blood transcriptome, which can be ascribed mainly to
shifts in cellular composition, seemingly the major com-
ponent driving gene expression changes when working
with whole blood RNA. We identified three genes sur-
viving cell deconvolution analysis which could be seen as
novel suggestive biomarkers to be investigated in inde-
pendent cohorts. Cell deconvolution analysis supports the
hypothesis of a role of NK cells in the pathophysiology of
autism, possibly related to increased prenatal exposure to
infections in ASD subjects. While exploratory in nature,
our findings are consistent with a growing body of evi-
dence supporting immune-pathologies in ASD. The pos-
sibility of identifying subgroups with predominant
immune system dysregulation, or to associate cellular
immuno-phenotypes to different symptom dimensions
might be a promising path forward in the development of
non-invasive ASD biomarkers.
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