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We study the statistics, in stationary conditions, of the work Wτ done by the active force in different

systems of self-propelled particles in a time τ. We show the existence of a critical value W†
τ such that

fluctuations withWτ > W†
τ correspond to configurations where interaction between particles plays a minor

role whereas those with Wτ < W†
τ represent states with single particles dragged by clusters. This twofold

behavior is fully mirrored by the probability distribution PðWτÞ of the work, which does not obey the large-
deviation principle for Wτ < W†

τ. This pattern of behavior can be interpreted as due to a phase transition
occurring at the level of fluctuating quantities and an order parameter is correspondingly identified.
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In equilibrium systems the deviations of an observable
quantity from the average occur with a probability regu-
lated by the Boltzmann-Einstein expression exp fΔS=kBg
[1], where kB is the Boltzmann constant and ΔS is the
entropy increase due to such a fluctuation.
In dynamical contexts one is often confronted with the

related problem of finding the probability distribution of
certain observables measured over a time interval τ. A sound
mathematical framework for a general description of fluc-
tuations, which can be also applied to far-from-equilibrium
systems, is provided by the large deviation theory [2].
When a large deviation principle (LDP) holds, the proba-
bility distribution PðWτÞ of a given quantity Wτ is charac-
terized by a rate function IðWτÞ ¼ −limτ→∞ð1=τÞ lnPðWτÞ.
General predictions are in some cases available for IðWτÞ,
for example in diffusive models [3,4], where Wτ is the
particle current flowing in systems in contact with two
reservoirs at different densities. Probability distributions
exhibiting a nonanalytical behavior interpretable as a phase
transition [4–13] have been encountered, recently attracting
considerable interest.
A possibility to test and extend the above ideas in a new

far-reaching context is offered by active matter. The inher-
ently far from equilibrium systems belonging to this class,
either biological or artificial in nature, display a number
of nontrivial properties without analogue in passive, equi-
librium materials [14–16]. A suspension of self-propelled
particles, for instance, may phase separate into a dense and
a gaseous phase, even in the absence of any attractive
interaction [17–23]. Furthermore, active particles accumu-
late at boundaries [24], follow in the dilute limit a Boltzmann
profile with an effective temperature when sedimenting
[25–27], etc. Addressing the properties of fluctuations
occurring at a mesoscopic level in these systems is funda-
mental for a full characterization of their functions, as, for

instance, in the case of molecular motors [28]. In the context
of active Brownian motion, large deviations have been
studied in experiments with an asymmetric particle interact-
ing with a vibrated granular medium [29]. By considering
the fluctuations of a quantity akin to the work defined in
Eq. (2), one can test a fluctuation relation [30–32] which
quantifies the relative probability of small-scale entropy
consuming events that go beyond the second principle.
In this Letter, we study fluctuations in different systems

of interacting active Brownian particles propelled by a
force directed along their polar axis [18,19,22,33].
Specifically, we will consider the probability PðWτÞ of
the work done by the active force in a time interval τ on
each particle. Our results show that, while for values of Wτ

larger than a critical thresholdW†
τ the LDP holds, it fails for

Wτ < W†
τ because the rate function IðWτÞ vanishes; in this

sector lnPðWτÞ ∝ −Wτ behaves linearly. Such a twofold
behavior can be discussed in terms of a transition between
a phase, for Wτ > W†

τ , where the particles are basically
free and one, for Wτ < W†

τ , where they can be dragged by
moving clusters. Correspondingly, an order parameter
related to the relative orientation between a particle and
the direction of motion of the surrounding aggregate can be
defined. These results hold true for the different types of
particles studied, pointing towards a general character.
We study models consisting of N particles with different

shapes (for more model details, parameters used and
simulation methods see the Supplemental Material (SM)
[34]), either spherical colloids, dumbbells, tetrabells, or
convex rodlike molecules (see Fig. SM5). For concreteness
we describe below the case of dumbbells, a classical
example of anisotropic particles which has been considered
in many active matter studies [40]. Results for other kinds
of particles will be presented in the SM [34].
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Dumbbells are made up of two beads, a head and a tail,
both having diameter σ. These are held together by a
finitely extensible nonlinear elastic (FENE) spring. Any
pair of beads interact via the purely repulsive Weeks-
Chandler-Anderson (WCA) potential [41], namely, a
Lennard-Jones interaction truncated at its minimum.
Denoting with U the full potential (including both WCA
and FENE terms), the evolution of the position xi of the ith
bead is given by a Langevin equation,

m
d2xi

dt2
¼ −γ

dxi

dt
−∇iU þ Fa þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTγ
p

ξiðtÞ; ð1Þ

where γ is the friction, ∇i ¼ ∂=∂xi, T is the temperature of
a thermal bath in contact with the system,m is the mass, Fa
is a tail-head-directed active force with constant magnitude
Fa, and ξiðtÞ is an uncorrelated Gaussian noise with zero
mean and unit variance. We study a two-dimensional
system. We set the parameters [42] as to have a strongly
overdamped dynamics, which is realistic for micro-
swimmers; the stiffness of the FENE springs is also strong
enough [42] that the distance between the head and the tail
is in practice constant and equal to σ. Dimensionless
numbers relevant for the following are the area fraction
covered by the particles, ϕ ¼ Nπσ2=2A, where A is the
area of the simulation domain, and the Péclet number
Pe ¼ 2Faσ=kBT [22].
The phase diagram and other properties of this active

dumbbell system have been studied in Refs. [22,43–45].
When ϕ exceeds a Péclet dependent threshold, an initial
homogeneous state phase separates [46]. On the other
hand, for sufficiently low values of ϕ, particles form small
aggregates that do not coalesce. This is the situation that we
find in all our simulations. In some cases, as specified in the
caption of Fig. 2, the system was reported [22,46] to be
slightly inside the binodal line, suggesting that macroscopic
aggregation could be observed on much longer times than
those addressed in this Letter.
An instance of the kind of configurations we work with

is shown in Fig. 1. One observes groups of dumbbells
travelling together due to steric effects and aggregates
rarely exceeding ten units. For this system, under stationary
conditions (see SM, Sec. IA [34]), we evaluate the
observable

Wτ ¼
2

τ

Z

tþτ

t
Faðt0Þ · viðt0Þdt0 ð2Þ

representing, for each dumbbell, the work (per unit time)
done by the active force. Being proportional to the
time averaged projection of the center of mass velocity
vi along the main direction of the dumbbell, this quantity is
akin to that measured in the experiments mentioned above
[29], and it also represents the entropy production for
individual particles (see SM [34]). We call such an

observable active work, and the main aim of our study
is to characterize the probability PðWτÞ of its outcomes.
This can be evaluated analytically only for a single non-
interacting particle (see SM for details [34]). Denoting it as
P0ðWτÞ, this distribution turns out to be Gaussian with
average hWτi0¼2F2

a=γ and variance hW2
τi0 ¼ 4F2

akBT=τγ.
The distribution is shown in Fig. 2 (continuous black curve)
where, in order to have a better representation, we plot
ffiffiffiffiffiffiffiffiffiffiffiffi

hW2
τi0

p

PðWτÞ vs ðWτ − hWτi0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi

hW2
τi0

p

. In the same
figure, data obtained by numerical integration of Eq. (1) for
two finite particle densities are also displayed. The plots
show that, irrespective of ϕ, the Wτ distribution becomes
Gaussian in the small Pe limit. The curves for Pe ¼ 1 are
indeed indistinguishable from the analytical ones. The
same is true for any Pe, in the limit of very small area
fractions (see Fig. SM2). On the other hand, the character
of the distribution changes dramatically by increasing Pe at
a fixed finite value of ϕ. The curve remains peaked around a
value close to the noninteracting one hWτi0, is still
Gaussian on the whole region to the right and immediately
on the left of it, but changes abruptly as to have an
approximately linear behavior of lnPðWτÞ for Wτ smaller
than a critical threshold W†

τ > 0, represented by a vertical
arrow in Fig. 2. This feature, which represents the central
and new result of this Letter, is clearly manifest for Pe≳ 50.
Similar results are found for the different kind of particles
before mentioned, and are shown in Fig. SM6. It is worth
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FIG. 1. A typical stationary configuration at ϕ ¼ 0.1 and
Pe ¼ 200, just inside the binodal line [22], (only a portion of
the system of size L ¼ 200 is shown). For each dumbbell, the color
represents the value of Wτ defined in Eq. (2) (with τ ¼ 10)
according to the color code in the bar on the right. The black arrow
indicates the value of W†ðτÞ. The inset is a magnification of the
highlighted box, where also the arrows representing the active
force directions have been drawn [see movies M1–M5 in the SM
[34] to visualize the evolution of the system (for dumbbells,
colloids, tetrabells, and rods of different aspect ratio, respectively)].
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mentioning that rods with an aspect ratio similar to the one
used in this Letter lack a macroscopic phase-separation
transition [47], but display an even more pronounced
discountinuity at W†

τ . This suggests that the fluctuation
phenomenon we observe is not straightforwardly related to
the macroscopic motility induced phase separation.
Let us now consider the effect of changing τ. The linear

decay to the left of the maximum is observable from τ ∼ 5
until τ≃ 1000. This is because for τ ≲ 5 the distribution
resembles more a Gaussian while for τ ≳ 1000 the tail cannot
be detected with a significative statistics. In Fig. 3 we
plot ð1=τÞ ln½PðWτÞ=Aτ� vs Wτ for different choices of
τ ∈ ½10–1000�, where Aτ is the maximum of PðWτÞ (this
is done to better compare the curves at different τ). According
to the LDP, in such a graph one should observe the data
collapse of outcomes with different τ on a master curve
IðWτÞ—the rate function. This was found in the experiments
with vibrated particles [29]. Instead, what we have is some-
thing clearly different. Data collapse is only obtained for
values of Wτ larger than W†

τ , whereas curves are well
separated in the region with Wτ < W†

τ . These results imply
that, at least in the range of times accessed in our simulations,
the LDP is obeyed forWτ > W†

τ but not forWτ < W†
τ. In this

region the large-τ limit of ð1=τÞ lnPðWτÞ vanishes and a
different scaling takes place, as discussed in the SM [34]. This
implies that fluctuations are suppressedmore softly for large τ
with respect to the usual case when the LDP holds. We
emphasize that this anomalous behavior is not restricted to
particular choices of the model parameters, but is found with
the same characteristics in a whole range of densities and
Péclet numbers, and for all kinds of particles considered.

Specifically, we observe that the breakdown of the LDP is
always flanked by the appearance of the linear behavior of
lnPðWτÞ on the left of the maximum.
In order to understand which events do contribute to the

linear tails of lnPðWτÞ, we isolated particles trajectories with
a fixed value of Wτ. The colors in Fig. 1 represent the
distribution ofWτ in a specific realization of our system. An
event with a value ofWτ much smaller thanW†

τ (marked by a
horizontal sign in the colour palette on the right) is shown in
the zoomed part of the figure. One sees that the particle in the
center has its polar axis pointing against a cluster moving in
the opposite direction. The blue dumbbell is dragged by the
cluster against its active force, resulting in a value of Wτ

significantly smaller than the average. Once the relevant
mechanism is identified, a simple kinetic argument can be
developed to infer the existence of a threshold W†

τ and
estimate its dependence on the model parameters. This is
discussed in Sec. VI of the SM [34]. It turns out that
W†

τ ∝ ðF2
a=γÞ½1 − c=ðDRτÞ�, where c depends on the kind of

active particle considered and DR is the rotational diffusion
coefficient defined in the SM [34]. This dependence has
been confirmed in our simulations for all kinds of particles
considered (see Fig. SM8).
Identifying the mechanism producingW†

τ does not clarify
how it originates the linear behavior of lnPðWτÞ. Actually,
the probabilities in Fig. 2 resemble very closely those found
analytically in reference statistical mechanics models, such
as the Gaussian model or the zero-range process [8,9,13].
Here nonanaliticities have been discovered, and deviations
corresponding to the linear tail of lnP have been linked to a
condensation transition taking place in the space of fluctua-
tions. The system concentrates in a narrow region of phase
space, similarly to what happens when a gas turns into a
liquid or in Bose-Einstein condensates. Something very
similar is found also in the present active matter system.
Indeed, for Wτ > W†

τ the velocity of each dumbbell is
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FIG. 2. Probability distributions (on log-scale) of Wτ, with
τ ¼ 20, for Pe ¼ 1, 50, 100, 200, 400, at ϕ ¼ 0.1 (main) and
ϕ ¼ 0.001 (inset). All cases fall inside the homogeneous low-
density phase, except those at ϕ ¼ 0.1 and Pe ¼ 200, 400 that are
just inside the coexistence region. The threshold W†

τ is signaled
by vertical arrows. The continuous black curve is the analytical
result for a single dumbbell (see the SM [34]).
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different values of τ, Pe ¼ 200, and ϕ ¼ 0.1.
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symmetrically distributed around the average (as in the
single particle case) and can take any possible orientation,
thus filling the whole phase space. When Wτ < W†

τ this
orientational symmetry is broken, since such velocity is set
to that of the surrounding cluster.
Following this train of thought we argue that a possible

order parameter should be related to the relative orientation
between the dumbbell and its surroundings. Thus, calling
Ri the total force felt by the ith dumbbell due to interactions
with other particles, and θi the angle between its main axis
and Ri, we define a microscopic, instantaneous order
parameter ~mðtÞ, which equals − cos θi when the dumbbell
at hand is in contact with the others (let us recall that the
WCA potential is truncated at distances of order σ, see the
SM [34]), otherwise it is null. The overall order parameter
mðWτÞ is obtained by averaging ~mðtÞ over all the histories
of time length τ which result in an active work Wτ.
Figure 4 shows the behavior of mðWτÞ as a function of

Wτ. One sees that m is zero for Wτ ≳ 0.2, a value that we
identify withW†

τ obtained from Fig. 2, while it increases for
Wτ ≤ W†

τ and tends to 1 at large negativeWτ. The reason is
that the instantaneous parameter ~mðtÞ equals 1 when the
dumbbell under analysis is being pulled against its active
force direction. Figure 4 clearly demonstrates that such a
mechanism is effective below W†

τ—making m finite and
positive—and becomes progressively more important as
Wτ is further lowered. This behavior is robust as τ is
changed, as it is shown in Fig. 4. This is exactly the kind of
property one would expect for an order parameter, withWτ

playing the role of an external control parameter (akin to
temperature), and W†

τ that of a critical point separating a
broken-symmetry phase (here for Wτ < W†

τ ) from a sym-
metric one (for Wτ > W†

τ ). Not only the average m has the
behavior expected for an order parameter, but also its

fluctuating value ~m. The distribution of its values, shown in
the insets of Fig. 4, displays indeed a single sharp peak
centered around ~m ¼ 0 for Wτ ≥ W†

τ while it develops, as
soon as W†

τ is crossed, an additional peak at ~m ¼ 1 whose
height grows as Wτ decreases, analogously to what occurs
in usual equilibrium phase transitions. Here the height of
the peak around ~m ¼ 1 represents the fraction of τ for
which the dumbbell has been pulled backwards by a
cluster [48].
In this Letter we have highlighted the singular behavior

of the large fluctuations of a quantity—the active work Wτ

done by a tagged particle—in different models representing
a large class of self-propelled particle systems. We have
shown that, in all cases considered, a threshold value W†

τ

exists separating regimes where fluctuations behave in a
radically different way. This has been interpreted as due to a
transition—occurring at the level of fluctuations—between
a gaseous phase, where the particle internal energy is spent
into self-propulsion, and one where this energy supports
cluster formation. An order parameter describing the
change has been also identified. The associated breakdown
of the LDP reflects the importance, in terms of probabilistic
weight, of clustering-related fluctuations with respect to
thermal ones. For Wτ < W†

τ , the former are relevant to the
large-scale and long-time dynamics, even for those values
of the model parameters for which the whole system is in a
gaseous phase.
To the best of our knowledge, this is the first evidence of

a fluctuation pattern of this kind in an interacting model of
active matter. In this respect, we remark that a singular
distribution was also found in a model with a single active
particle in an external field [49], suggesting this feature to
be generic of self-propelled particles. In addition, the
cruciality of interaction among particles in causing the
spontaneous breaking of the orientational symmetry makes
our results fundamentally different from those obtained
both for the solvable cases of transitions at the fluctuating
level mentioned above [8,9,13] and in the specific context
of active matter.
Besides the interest of the phenomena described insofar,

this study also shows that a careful analysis of nonequilibrium
fluctuations may be a sophisticated tool to uncover important
dynamical properties which would be missed with more
conventional analytical methods. LDP violations for Wτ <
W†

τ enhance the probability of the corresponding events,
possibly with important consequences on specific properties
or functions associatedwith thework done by active particles.
This prompts further studies of the fluctuation spectra in
activematter systems, particularly those of biological interest.

Simulations were run at Bari ReCaS e-Infrastructure
funded by MIUR through PON Research and
Competitiveness 2007-2013 Call 254 Action I. F. C.
and G. G. acknowledge MIUR for funding (PRIN
2015K7KK8L and PRIN 2012NNRKAF, respectively).
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FIG. 4. The quantity mðWτÞ is plotted vs Wτ for τ ¼ 30 and
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