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Abstract

Previous meta-analyses suggest that perioperative goal-directed therapy (GDT) is useful to decrease postoperative morbid-
ity. Most GDT studies analysed were done with pulmonary artery catheters, oesophageal Doppler and calibrated pulse
contour methods. Uncalibrated pulse contour (uPC) techniques are an appealing alternative but their accuracy has been
questioned. The effects of GDT on fluid management (volumes and volume variability) remain unclear. We performed a
meta-analysis of randomized controlled trials investigating the effects of GDT with uPC methods on postoperative outcome.
The primary endpoint was postoperative morbidity. Fluid volumes and fluid volume variability (standard deviation/mean)
over the GDT period were also studied. Nineteen studies met the inclusion criteria (2159 patients). Postoperative morbidity
was reduced with GDT (OR 0.46, 95% CI 0.30–0.70, P<0.001). The volume of colloids was higher [weighted mean difference
(WMD)þ345 ml, 95% CI 148–541 ml, P<0.001] and the volume of crystalloids was lower (WMD –429 ml, 95% CI –634 to –224 ml,
P<0.01) in the GDT group than in the control group. However, the total volume of fluid (WMD –220 ml, 95% CI –590 to 150 ml,
P¼0.25) and the variability of fluid volume (34% vs 33%, P¼0.98) were not affected by GDT. The use of GDT with uPC techni-
ques was associated with a decrease in postoperative morbidity. It was not associated with an increase in total fluid volume
nor with a decrease in fluid volume variability.
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Many studies suggest that perioperative goal-directed therapy
(GDT) is useful to decrease postoperative morbidity, hospital
length of stay and hospital costs.1–3 As a result, in patients
undergoing major surgery, the use of GDT is now recommended
by several guidelines and consensus statements from interna-
tional experts.4–7 The first perioperative GDT studies were done
20–30 yr ago with the pulmonary artery catheter.8–10 Then, other
studies followed where haemodynamic parameters were

derived from the oesophageal Doppler11 12 or from calibrated
pulse contour methods.13 14 Uncalibrated pulse contour (uPC)
methods are relatively new in the GDT arsenal since they
became available only a decade ago.15 They are quick to set up,
easy to use, not operator dependent, not affected by electro-
cautery and are increasingly used for haemodynamic monitor-
ing during major surgery.16 However, their accuracy and
precision have been questioned when compared with clinical
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reference methods, such as thermodilution and echocardiogra-
phy.17–20 Whether uPC techniques can be useful to guide hae-
modynamic therapy and improve post-surgical outcome has
been investigated by several randomized controlled trials (RCTs)
yielding conflicting results.

Both insufficient and excessive fluid administration are
associated with an increase in postoperative complications.21 22

Optimizing haemodynamic parameters such as stroke volume
and cardiac output with fluid may result, at least in theory, in
excessive fluid administration. In addition, recent studies have
reported a very large variability in the volume of fluid adminis-
tered to surgical patients during the perioperative period.22 23

By analogy with manufacturing and the Six Sigma concept,
it has been suggested that variability of clinical practices
is the enemy of quality of care,24 and that the beneficial
effects of GDT may be related to the harmonization of fluid
management.25 26 Therefore, we performed a meta-analysis of
RCTs to clarify the impact of GDT with uPC methods on postop-
erative morbidity, on fluid volume and on fluid volume
variability.

Methods
Eligibility criteria

According to Preferred Reporting Items for Systematic reviews
and Meta-Analyses (PRISMA), studies were searched using the
following eligibility criteria.27 Participants were adult (age 18 yr
or over) patients undergoing elective or emergency surgery.
Studies involving mixed population of critically ill or non-
surgical patients were excluded. The intervention was defined
as GDT with uPC methods. RCTs comparing the effects of GDT
vs standard or usual fluid management were considered for
analysis. No language (i.e. article in English), publication date or
publication status restrictions were imposed when selecting the
studies to be analysed. Primary outcome measure was post-
surgical morbidity, defined as the proportion of patients devel-
oping one or more post-surgical complications. Post-surgical
infectious, cardiac, respiratory, renal and abdominal complica-
tions, as well as hospital length of stay and mortality, were
assessed as secondary outcome variables. Abdominal complica-
tions included both gastro-intestinal and liver complications.
The volume of crystalloids and of colloids, as well as the total
volume of fluid received during the GDT period were also
analysed.

Information sources

Various search strategies were performed to retrieve relevant
studies by using MEDLINE, the Cochrane Library and EMBASE
databases (last update January, 2016). No date restriction was
applied for MEDLINE and The Cochrane Library databases
whereas the search was limited to 2006–16 for the EMBASE data-
base. Additional trials were searched in the DARE database and
the reference lists of previously published reviews and retrieved
articles.

Search

We used the following terms to search for studies: randomized
controlled trial, controlled clinical trial, goal directed, goal ori-
ented, goal target, cardiac output, cardiac index, oxygen delivery,
oxygen consumption, cardiac volume, stroke volume, fluid ther-
apy, fluid loading, fluid administration, optimization, optimisa-
tion, pulse pressure variation, pleth variability index, stroke

volume variation, systolic pressure variation (see Supplementary
data S1 for details regarding the search strategy).

Study selection

Two investigators (N.B., M.T.G.) first examined each title and
abstract to identify potentially relevant articles. The eligibility of
the retrieved full-text articles was independently determined by
two investigators (N.B., F.M.). The analysis was limited to trials
done with uPC methods.

Data collection process

Data were independently collected by two investigators (M.T.G.,
F.M.) with any discrepancy resolved by re-inspection of the orig-
inal article. To avoid transcription errors, the data were inputted
into statistical software and re-checked by a third investigator
(N.B.).

Data items

Data abstraction included type of surgery, number of patients,
type of uPC method, GDT protocol end-points, postoperative
morbidity, complications, mortality and hospital length of stay.
The volume of colloid and crystalloid solutions administered
during the GDT period was also collected. When information
was not found in original manuscripts, authors were contacted
to maximize the number of data available for analysis.

Risk of bias in individual studies

A domain-based evaluation, as proposed by the Cochrane
Collaboration,28 was used to evaluate the methodological qual-
ity of RCTs. This is a two-part tool, addressing seven specific
domains (sequence generation, allocation concealment, blind-
ing of participants and personnel, blinding of outcome assess-
ment, incomplete outcome data, selective outcome reporting
and ‘other issues’) that are strongly associated with bias reduc-
tion.29 30 Each domain in the tool includes one or more specific
entries in a ‘Risk of bias’ table. Within each entry, the first part
of the tool describes what is reported in the study, in sufficient
detail to support a judgment about the risk of bias. The second
part of the tool assigns a judgment relating to the risk of bias for
that entry. This is achieved by assigning a judgment of ‘Low
risk’, ‘High risk’ or ‘Unclear risk’ of bias. After each domain was
completed, a ‘Risk of bias summary’ table was generated. The
green symbol plus indicates low risk of bias, the red minus
symbol indicates high risk of bias and the white colour indicates
unclear risk of bias. For each study, the total number of green
plus symbols was calculated: trials with five or six green plus
symbols were considered as having an overall low risk of bias.
With regard to blinding, studies in which the outcome variables
were collected by investigators not aware of the GDT strategy
were considered adequately masked.

Summary measures and planned method of analysis

Meta-analytic techniques (analysis software RevMan, version 5.3
Cochrane Collaboration, Oxford, England, UK) were used to com-
bine studies using Odds Ratios (OR) and 95% confidence intervals
(CI) for dichotomous variables, and weighted mean difference
(WMD) and 95% CI for continuous variables. A statistical differ-
ence between groups was considered to occur if the pooled 95%
CI did not include 1 for the OR. An OR <1 favoured GDT when
compared with standard haemodynamic treatment. Two-sided
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P-values were calculated. Statistical heterogeneity and inconsis-
tency were assessed by using the Q and I2 tests, respectively.
When the P-value of the Q test was <0.10 and/or the I2 was >40%,
heterogeneity and inconsistency were considered significant.
Both random-effects and fixed-effects models were used for anal-
yses. Random-effects model results are presented in the abstract
and figures whereas fixed-effects model are reported and
compared in the supplementary data. For the primary outcome
(postoperative morbidity), a sensitivity analysis was performed
by focusing on studies with a low risk of bias, on studies where
cardiac output was used as a target parameter, and on studies
where the total fluid volume was <5 litres. A trial sequential anal-
ysis was also performed to adjust for random error risk. We calcu-
lated information size and monitoring boundary anticipating a
30% relative risk reduction in postoperative morbidity with GDT.
We set risk of type I at 5% and power at 80%.

Coefficients of variability of fluid volume were calculated as
standard deviation/mean, expressed as a percentage, and
compared using a Student’s t-test. When mean and standard
deviation values were not reported in original manuscripts
and not provided when authors were contacted, they were
estimated from median and inter-quartile values as previously
described.31

Results
Study selection

The search strategy identified 3312 (MEDLINE), 9858 (Cochrane
Library) and 2212 (EMBASE) articles. Fourteen articles were iden-
tified from the reference list of other articles. After initial
screening and subsequent selection, a pool of 102 potentially
relevant trials was identified. The subsequent eligibility process
excluded 83 articles. Overall, 19 articles with a total sample of
2159 patients, were considered for analysis (see Supplementary
data Figure S2).

Study characteristics

All studies were published between 2008 and 201532–49 (Table 1).
The risk of bias assessment revealed that eight out of 19 studies
were considered as having a low risk of bias (see Supplementary
data Table S3).

Postoperative outcome

The number of patients with one or more postoperative compli-
cations was significantly reduced by GDT, when using both a
random-effects (Fig. 1) or a fixed-effects model analysis
(see Supplementary data Table S4). It also decreased signifi-
cantly in the GDT group when focusing on studies with a low
risk of bias, on studies where cardiac output was used as a
target variable, and on studies where the total volume of fluid
was <5 litres (see Supplementary data Table S5). In the trial
sequential analysis, the cumulative z curve crossed the moni-
toring boundary before reaching the information size, indicating
firm evidence that GDT reduced postoperative morbidity50 51

(Fig. 2).
A significant reduction in infectious, cardiac and abdominal

complications was observed in favour of GDT, when using both
the random-effects and the fixed-effects models (see
Supplementary data Table S4). Renal and respiratory complica-
tions, as well as mortality, were not significantly reduced by
GDT (see Supplementary data Table S4). Hospital length of
stay tended to decrease (–1.35 days, CI �2.78 to �0.08 days,
P¼0.06).

Fluid management

Patients in the GDT group received more colloid (Fig. 3) and less
crystalloid (Fig. 4) than patients from the control group. The
total volume of fluid was not significantly different between the
GDT and the control group when using the random-effects
model (Fig. 5), and was significantly lower in the GDT group

Table 1 Characteristics of studies analysed. HIPEC, hyperthermic intraperitoneal chemotherapy; AAA, abdominal aortic aneurysm;
LiDCOr, LiDCO rapid; SVV, stroke volume variation in %; PPV, pulse pressure variation in %; SVI, stroke volume index in ml m–2; CI, cardiac
index in l min m–2; SVplateau, stroke volume corresponding to the plateau of the Frank–Starling relationship; DO2I, oxygen delivery index
in ml min–1 m–2; ScvO2, central venous oxygen saturation in % SVR, systemic vascular resistance; CO, cardiac output

First author (ref) Surgery, n uPC method Haemodynamic goals

Benes32 Abdominal and vascular, 120 FloTrac SVV<10, CI> 2.5
Cecconi33 Hip, 40 FloTrac SVplateau, DO2I> 600
Colantonio34 HIPEC, 80 FloTrac SVV<15, SVI>35, CI> 2.5
Correa-Gallego35 Liver, 135 FloTrac SVV<15
Funk36 AAA, 40 FloTrac SVV<13, CI> 2.2
Hand37 Head and neck, 94 FloTrac SVV<13, CI> 3, SVR>800
Kapoor38 Cardiac, 27 FloTrac SVV<10, SVI>30, CI> 2.5, ScvO2>70, DO2I> 450
Lai39 Abdominal, 220 LiDCOr SVV<10
Mayer40 Abdominal, 60 FloTrac SVV<12, SVI>35, CI> 2.5
Pearse2 Abdominal, 734 LiDCOr SVplateau
Peng41 Orthopaedic, 80 FloTrac SVV<10 (supine) or< 14 (prone)
Poso42 Bariatric, 50 FloTrac SVV<12, SV and CO> 70% of baseline
Ramsingh43 Abdominal, 38 FloTrac SVV<12
Salzwedel44 Abdominal, 160 ProAQT PPV<10, CI> 2.5
Scheeren45 Abdominal, 64 FloTrac SVV<10
Van der Linden46 Vascular, 37 FloTrac CI> 2.5
Zeng47 Abdominal, 60 FloTrac 8<SVV<13
Zhang48 Thoracic, 60 FloTrac SVV<11, CI> 2.5
Zheng49 Abdominal, 60 FloTrac SVV<12, SVI>35, CI> 2.5
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Study
Experimental Control Odds ratio
Events

Benes
Cecconi
Colantonio
Correa-Gallego
Funk
Hand
Kapoor
Lai
Mayer
Pearse
Salzwedel
Scheeren
Van der Linden
Zheng

18
16
10
24
5
4
1

55
6

134
21
12
6

11

Total

60
20
38
69
20
47
13

109
30

366
79
26
40
30

Total (95% CI) 947

Total

60
20
42
66
20
47
14

111
30

364
81
26
17
30

928

Weight M-H, Random, 95% CI
Odds ratio

M-H, Random, 95% CI

9.5% 0.31 (0.14, 0.65)
0.09 (0.00, 1.78)
0.03 (0.01, 0.11)
0.93 (0.46, 1.89)
0.41 (0.11, 1.56)
0.45 (0.13, 1.62)
0.50 (0.04, 6.28)
1.08 (0.63, 1.82)
0.25 (0.08, 0.79)
0.75 (0.56, 1.01)
0.45 (0.23, 0.88)
0.54 (0.18, 1.62)
1.32 (0.24, 7.33)
0.39 (0.14, 1.09)

0.46 (0.30, 0.70)

0.001 0.1 10 1000
Favours (control)Favours (experimental)

1

1.7%
5.5%
9.9%
5.6%
6.0%
2.2%

11.3%
6.7%

12.9%
10.2%
7.0%
4.1%
7.4%

100.0%
Total events 323

Events

35
20
39
24
9
8
2

54
15

158
36
16
2

18

436
Heterogeneity: τ2=0.32; χ2=37.43, df=13 (P=0.0004); I2=65%
Test for overall effect: z=3.66 (P=0.0002)

Fig 1 Forest plot for postoperative morbidity (defined as the proportion of patients who developed one or more complications)
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when using the fixed-effects model (see Supplementary data
Table S4). Variability of fluid volume was 34% in the GDT group
and 33% in the control group (P¼0.98) (Fig. 6).

Discussion

Our meta-analysis shows that the use of GDT with uPC methods
is associated with a significant decrease in postoperative mor-
bidity. This effect was mainly related to a decrease in infectious,
cardiac and abdominal complications. It was associated with a
non-significant reduction in hospital length of stay (–1.35 days,
P¼0.06) and no change in mortality (2.6% vs 2.8%). These find-
ings are consistent with results from previous meta-analyses
where more complex and/or more invasive cardiac output mon-
itoring technologies, such as pulmonary or transpulmonary
thermodilution, oesophageal Doppler and saline- or lithium-
calibrated pulse contour methods,1–3 52 53 were used for GDT. On
one hand, the accuracy and precision of uPC methods has been
questioned in patients with high cardiac output and low sys-
temic vascular resistance, such as patients with septic shock
receiving vasopressors or patients undergoing liver transplanta-
tion.19 54 On the other hand, uPC methods have been shown to
be more reliable in patients undergoing surgery,55 in particular
to track haemodynamic changes during fluid loading.56 A recent
sub-analysis of the large EUSOS study16 showed that uPC meth-
ods became in a few years the preferred choice of European
clinicians for haemodynamic monitoring in non-cardiac surgi-
cal patients. Our meta-analysis is the first to suggest that,
despite their limitations, uPC methods are useful to guide
haemodynamic management and improve the postoperative
outcome of patients undergoing major surgery.

Another important and new finding of our meta-analysis is
that the total volume of fluid administered during the study
period did not increase with the use of GDT. Patients received
more colloids, but less crystalloids, so that the total volume of

fluid was not significantly different between the control and the
GDT group when using the random-effects model, and lower
with GDT when using the fixed-effects model. This finding goes
against the perception or the fear that using haemodynamic
optimization protocols may be associated with excessive fluid
administration. As a matter of fact, GDT protocols significantly
evolved over time from the maximization of oxygen delivery
proposed almost 30 years ago by Shoemaker and colleagues8 to
more individualized approaches restricting fluid administration
to fluid responders only.44 45 Because we focused on studies
done with uPC methods, which were not available on the mar-
ket before 2006, our analysis was limited to recent GDT studies
(all were published from 2008). This also contributes to the origi-
nality of our work, which gives information about the effects of
GDT in the era of individualized fluid titration rather than at the
time of aggressive haemodynamic strategies.

Recent studies have reported a large intra- and inter-variability
of perioperative fluid volumes. In a database study involving 5912
patients undergoing abdominal surgery, Lilot and colleagues23

showed that a patient weighing 75 kg who had a 4 h procedure
with 400 ml blood loss and 1 ml kg–1 h–1 urine output may have
received anything between 700 and 5400 ml of crystalloid depend-
ing on the anaesthesiologist in charge. Thacker and colleagues22

also reported a large variability in fluid volumes in over 650 000
patients undergoing abdominal and orthopaedic surgeries, and
suggested that it may be responsible, at least in part, for postoper-
ative adverse events. It has therefore been suggested that reducing
variability with GDT protocols may be a way to improve postoper-
ative outcome.22 26 Our meta-analysis suggests that the use of
GDT is not associated with a reduction in the variability of fluid
volume. Actually, the easiest way to decrease variability would be
to give the exact same volume of fluid with an infusion pump to
all surgical patients (e.g. 5 or 10 ml kg–1 h–1). However, it is unlikely
that one size could fit all patients because they have different fluid
needs, depending on what happened during the preoperative
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period (fasting, bowel preparation, carbohydrate drinks, pre-
induction fluid load), on the clinical context (dehydration, haemor-
rhage, congestive heart failure, chronic renal failure) and on
surgical blood loss. Therefore, variability in fluid volume may
simply reflect the ability of clinicians to adapt fluid administration
to individual patient needs. In 6248 patients undergoing high risk
surgery, Kim and colleagues57 recently showed that over 90% of
the variability in crystalloid administration can be attributed to
patient factors whereas only 10% was due to factors at the level of
the care provider. One may then hypothesize that GDT helps

clinicians to give the right amount of fluid to the right patients at
the right time, without necessarily modifying the average amount
of fluid given to a patient population (Fig. 5) nor fluid volume vari-
ability (Fig. 6). The importance of timing and individual titration
intuitively makes sense, but our study design does not allow us to
confirm nor reject this hypothesis. Finally, because crystalloids
and colloids have different physiological and side effects, GDT-
induced changes in the crystalloid/colloid ratio may have also
played a role in the observed reduction in postoperative
morbidity.
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The main limitation of our meta-analysis is the high heteroge-
neity of studies analysed, which does not allow us to draw
definitive conclusions. This limitation is common to most
meta-analysis previously published on GDT, and is explained by
differences between patient populations, surgical procedures,
GDT protocols and definitions of postoperative complications
from one RCT to the other. Interestingly, our results were compa-
rable with the random-effects and the fixed-effects models for all
but one outcome variables, which reinforced their validity. In
addition, the trial sequential analysis, which has been proposed
to unmask false-positive results in meta-analysis,50 51 suggested
firm evidence regarding the effects of GDT on postoperative mor-
bidity. The average variability in fluid volume reported in our
meta-analysis (around 33%) was lower than variabilities (55% and
70%) reported in recent studies.23 57 In one of the RCTs we
analysed,44 the variability was very high in the control group
(>70%) and decreased (below 50%) with GDT (Fig. 6). Therefore,
we cannot exclude an impact of GDT on variability of fluid vol-
ume when variability is high (or at least higher than in the
present meta-analysis). Another limitation is the fact that our
meta-analysis did not take into account the increasing use of
enhanced recovery programmes58 and/or of the zero fluid balance
approach.59 By rationalizing and improving quality of periopera-
tive surgical care, both strategies may diminish the marginal
value of GDT.59 60 As a matter of fact they were not used in most
of the trials we analysed. Therefore, a large study would be wel-
come to assess the effects of GDT with uPC methods in the era of
enhanced recovery programmes and zero fluid balance.

Conclusions

Our meta-analysis shows that GDT with uPC methods is associ-
ated with a significant decrease in postoperative morbidity. It

also shows that GDT with uPC does not increase the volume of
fluid administered, and does not decrease the variability of fluid
volumes. Therefore, our findings support the notion that uPC
methods are useful to guide haemodynamic therapy during the
perioperative period, and that studies are needed to clarify by
which mechanisms GDT improves postoperative outcome.
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