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We show that a self-interacting neutrino gas can spontaneously acquire a nonstationary pulsating
component in its flavor content, with a frequency that can exactly cancel the “multiangle” refractive effects
of dense matter. This can then enable homogeneous and inhomogeneous flavor conversion instabilities to
exist even at large neutrino and matter densities, where the system would have been stable if the evolution
were strictly stationary. Large flavor conversions, especially close to a supernova core, are possible via this
novel mechanism. This may have important consequences for the explosion dynamics, nucleosynthesis, as
well as for neutrino observations of supernovae.
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I. INTRODUCTION

Inside a supernova (SN), neutrino densities are so high
that neutrino flavor oscillations are affected not only by
ordinary matter, but also by the neutrinos themselves
[1–4]. Neutrino-neutrino interactions lead to highly corre-
lated collective flavor conversions and unexpected effects,
which completely change the physics of supernova neutrinos
[5–23]. See Refs. [24,25] for recent reviews. In this article,
we show that time-dependent fluctuations lead to a novel
effect that can enable flavor conversion deeper in the SN than
previously realized.
Above the neutrinosphere, in the absence of collisions,

the dynamics of a dense neutrino gas is characterized in
terms of “density matrices” in flavor space, ϱðt;x; E; vÞ for
neutrinos with energy E and velocity v at position x and
time t. These obey the kinetic equations [21,26,27],

ið∂t þ v ·∇Þϱ ¼ ½H; ϱ�: ð1Þ

On the left-hand side (lhs), the first term accounts for
explicit time dependence, while the second, proportional to
the neutrino velocity v, is the drift term due to neutrino
free streaming. On the right-hand side (rhs), Hðt;x; E; vÞ is
the Hamiltonian matrix in flavor space containing the
neutrino mass-square matrix and potentials due to matter
and neutrinos.
Flavor evolution of the dense neutrino gas, as governed

by Eq. (1), has a highly complex structure. It depends on
the four time and space coordinates, the four energy and
velocity coordinates (with jvj ¼ 1, in our ultrarelativistic
approximation), as well as the flavor states of all neu-
trinos. In order to reduce this complexity, symmetries in
the neutrino flavor evolution have often been assumed.
For neutrinos in a SN environment, all of the previous
literature is based on the assumption that the evolution is

stationary, i.e., there is no explicit time dependence, or
only a slow/small time dependence that does not signifi-
cantly affect the flavor evolution. Additionally, under the
assumption of a spherically symmetric neutrino emission,
the dynamics reduces to a one-dimensional evolution
along the radial coordinate. This is the rationale behind
the often-used “bulb model” [5,7].
These symmetry assumptions, viz., temporal stationarity

and spatial homogeneity, have been recently criticized
because self-interacting neutrinos can spontaneously break
these space-time symmetries. Indeed, studies on simple toy
models show that the translation symmetries in time [28,29]
and space [30–34] are not stable. Even tiny inhomogeneities
may lead to new flavor instabilities [30–32] that can develop
also at large neutrino densities, as above the SN core, where
oscillations are otherwise expected to be suppressed due to
synchronization. However, large neutrino densities in a SN
are typically accompanied by a large matter density [34],
which produces “multiangle matter effects” [35] that sup-
press both homogeneous and inhomogeneous instabilities.
The current understanding is then that neutrinos cannot
change their flavor too close to the SN core.
Flavor conversions at small distances from the SN core

would have major consequences for SN explosions, nucleo-
synthesis, as well as neutrino observations of nearby super-
novae (SNe). If conversions are possible below the shock
radius, neutrinos can provide a net positive energy to the
shock and assist SN explosions [36–39]. Similarly, the
neutron-to-proton ratio can be changed deeper inside a star,
affecting the yield of heavier nuclei created through the
r-process mechanism [40,41]. Also, in order to interpret any
potential observation of neutrinos from SNe, current and
proposed neutrino experiments depend crucially on under-
standing where and how the flavor-dependent neutrino
fluxes have converted to each other [25,42–44]. Now that
Gd-doping in Super-Kamiokande [45] has been approved
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[46], the imminent observation of the diffuse background of
SN neutrinos may raise this issue [47], even without a
galactic SN.
In the following, using linear stability analysis we show

the presence of an unstable pulsating mode that leads to
flavor conversion at high neutrino and matter density.
The key insight is that the frequency of pulsation can
undo the phase dispersion due to a large matter density. As
a result, flavor instabilities, which would have grown only
if matter effects were small, can now develop at large
neutrino and matter densities. Then, to demonstrate that this
linear instability survives in the nonlinear regime, we
numerically calculate the flavor evolution in a simplified
model and show that flavor conversions indeed occur at
large neutrino and matter densities when there are space
and time-dependent fluctuations. Finally, we discuss the
implications for SN neutrinos and conclude.

II. LINEAR ANALYSIS FOR A GENERAL
SCENARIO

Assuming that the neutrinos are initially in flavor
eigenstates, their density matrices ϱðt;x; E; vÞ can be
written in a two-flavor framework as

ϱ ¼ TrðϱÞ
2

þ nν
2
g

�
1 S

S� −1

�
; ð2Þ

to linear order in Sðt;x; E; vÞ [48]. The quantity
gðt;x; E; vÞ is the energy and angular distribution of
neutrinos from the source and nν is an arbitrary normali-
zation constant, with dimensions of number density, for
making S dimensionless. A nonzero off-diagonal element S
represents flavor conversions. For antineutrinos, ϱ̄ðEÞ≡
−ϱð−EÞ, extending the physical range of E from −∞ to
þ∞. The Hamiltonian for the flavor evolution is

H ¼ M2

2E
þ

ffiffiffi
2

p
GFNl þ

ffiffiffi
2

p
GF

Z
dΓ0ð1 − v · v0Þϱ0; ð3Þ

where sans-serif quantities are 2 × 2 matrices in flavor
space. Namely, M2 is the neutrino mass-squared matrix,
while

ffiffiffi
2

p
GFNl and the last term on the rhs appear due to

forward scattering on matter [49] and neutrinos [1,2],
respectively. The integral is over all neutrino energies
and velocities, i.e.,

R
dΓ0 ¼ Rþ∞

−∞ dE0E02 R dv0=ð2πÞ3.
In a nonisotropic neutrino gas, as in the case of neutrinos

streaming off a SN core, there is a net neutrino current so
that neutrinos moving in different directions, i.e., with
different v, acquire different phases via the velocity-
dependent terms, i.e., ð1 − v · v0Þ in H and v · ∇ from
the drift term in Eq. (1). These are multiangle effects that
arise due to the current-current nature of the low-energy
weak interactions and the source geometry. Typically, they
inhibit the collective behavior of the flavor evolution, but
can also lead to flavor decoherence [50–52].

Using Eqs. (2)–(3) in Eq. (1), and taking a vanishing
mixing angle, we find the equation for flavor evolution,

ið∂t þ v · ∇ÞS ¼ ½−ωþ λþ μ

Z
dΓ0ð1 − v · v0Þg0�S

− μ

Z
dΓ0ð1 − v · v0Þg0S0; ð4Þ

where the relevant energy scales are the neutrino oscillation
frequency in vacuum ω ¼ Δm2=ð2EÞ, the matter potential
λ ¼ ffiffiffi

2
p

GFne, and the neutrino potential μ ¼ ffiffiffi
2

p
GFnν.

Note that μ always appears in product with S, making
the precise choice of nν immaterial.
Let us consider the evolution of S along the radial

distance r, while Fourier decomposing it in t and the spatial
coordinates transverse to r̂, viz., rT . We take the spectrum
g0ðt;x; E; vÞ to be independent of time and space, i.e.,
g0ðt;x; E; vÞ≡ g0ðE; vÞ, so that it does not get Fourier
transformed. Explicitly,

S ¼
Z þ∞

−∞
dpdke−iðptþk·rTÞQp;ke−iΩp;kr; ð5Þ

where Qp;ke−iΩp;kr is the Fourier coefficient of a flavor
evolution mode with temporal pulsation p and inhomoge-
neity wave vector k. Inserting this ansatz into Eq. (4), using
v · ∇ ¼ vr∂r þ vT ·∇T , and dividing by the radial velocity
vr, we find an eigenvalue equation for Qp;kðE; vÞ,

�−ωþ λ̄ − p − vT · k
vr

−Ωp;k

�
Qp;k

¼ μ

vr

Z
dΓ0ð1 − v · v0Þg0Q0

p;k; ð6Þ

where λ̄ ¼ λþ μ
R
dΓ0ð1 − v · v0Þg0 encodes “matter”

effects from both matter and neutrinos. Note that in the
linear regime, different Fourier modes are not coupled.
A growing solution to this equation, with ImðΩÞ > 0,
signals that there is an instability.
For a stationary system one finds growing solutions even

at a large neutrino density, if inhomogeneities are present,
i.e., k ≠ 0, as long as λ̄ ≪ μ [30,31,34]. In a SN however, λ̄
is also large when μ is large and these instabilities are
typically not realized [34]. The reason for this is clear: One
cannot simultaneously obtain growing solutions for all
velocities, because the inhomogeneous term, the matter
term, and the μ-dependent neutrino-neutrino interaction
term on the rhs are all large, i.e., vT · k; λ̄; μ ≫ ω, but have
different velocity dependences which cannot completely
cancel against each other.
The nonstationary system has an innocuous-looking but

important difference with respect to the stationary system.
nonstationarity lowers λ̄ by p, i.e., λ̄ → λ̄ − p, as also seen
in Ref. [29]. More importantly, a fact not realized so far is
that this p ≠ 0 term has the same multiangle dependence as
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λ̄. Therefore, if one allows for a nonstationary solution, the
neutrino system with a pulsation p≃ λ̄ can undo the phase
dispersion due to a large matter term for all velocities. Thus,
one can find growing solutions, with ImðΩÞ > 0, to the
eigenvalue equation [Eq. (6)], as previously for the λ̄ ≪ μ
scenario. The eigenvalues are identical to those in Sec. IV
B 4 of Ref. [34] with the shift λ̄ → λ̄ − p. These solutions
are highly oscillatory in space (k ≠ 0) and time (p ≠ 0),
and would lead to flavor averaging. This is our main result.
In Fig. 1, we illustrate this general idea in the context of

SN neutrinos. The thin black line shows a SN density
profile, while the thick colored lines schematically show
where flavor instabilities with certain pulsation p and
wave number k ¼ jkj can grow, i.e., have ImðΩÞ > 0.
The inhomogeneous instability, i.e., with k ≠ 0, is always
below the homogeneous k ¼ 0 instability [34], and never
occurs for the physically available matter density. However,
p≃ λ̄ can raise these k ¼ 0 and k ≠ 0 instabilities, making
them unstable at low radii. They can now develop at large μ
and λ, i.e., at a small radius, with a temporal oscillation of
frequency ≃p. This can happen for both normal and
inverted neutrino mass ordering.
How does this linear instability evolve when linear

theory is no longer appropriate? What is its impact? To
answer these questions, we must numerically solve the
equations of motion (EoMs), Eq. (1), in the fully nonlinear
regime. This is what we do next.

III. NONLINEAR ANALYSIS FOR THE
TWO-BEAMS MODEL

The new effect, relevant to SN neutrinos, is that a
stationary system, which is stable to both homogeneous
and inhomogeneous perturbations at large μ and λ,
becomes unstable therein when nonstationarity is allowed.

This requires simulating a system with temporal non-
stationarity, spatial inhomogeneity, and multiangle matter
effects, which is extremely challenging and has not been
attempted so far. Here, we present the first simulation with
these three features.
The simplest model that can accommodate the required

features is the neutrino “line model” [30,32,34]. In this
model, one considers monochromatic neutrinos emitted
in two directions, “L” and “R,” from an infinite plane
at z ¼ 0. Assuming translational invariance along the
y-direction, the flavor evolution along z > 0 can be
characterized on the two-dimensional plane spanned by
the x and z coordinates. The neutrino emission modes L
and R are labeled in terms of their velocities, i.e.,
vL ¼ ðvx;L; 0; vz;LÞ ¼ ðcos ϑL; 0; sinϑLÞ, where ϑL∈ ½0;π�
is the emission angle, and similarly for vR. Thus, for the L
mode, the differential operator on the lhs in Eq. (1) takes
the form

∂t þ vL · ∇ ¼ ∂t þ vx;L∂x þ vz;L∂z; ð7Þ

while the Hamiltonian in Eq. (3) becomes

HL ¼ −ωþ λ

2
σ3 þ μð1 − vL · vRÞ½ð1þ ϵÞϱR − ϱ̄R�; ð8Þ

where σ3 is the diagonal Pauli matrix, and ϵ is the
neutrino-antineutrino asymmetry, i.e., 1þ ϵ¼ðnνe −nνxÞ=ðnν̄e −nν̄xÞ, with νx being a nonelectron flavor. The
normalization nν ¼ nν̄e − nν̄x is used to define μ ¼ffiffiffi
2

p
GFðnν̄e − nν̄xÞ.
The differential operator in Eq. (7) shows that the flavor

evolution is determined by a partial differential equation in
one temporal and two spatial dimensions. By Fourier
transforming the EoMs in t and x, as in Eq. (5), one
obtains a tower of ordinary differential equations in the z
coordinate for the different Fourier modes ϱp;k with
temporal pulsation p and spatial wave number k. In the
nonlinear regime, the EoMs for the different Fourier modes
have a convolution term due to interactions between the
different modes [32].
If vz;L ¼ vz;R, as assumed in Refs. [30,32], even a very

large matter term λ can be rotated away from the EoMs by
studying the flavor evolution in a suitable corotating frame
[6]. Conversely, if vz;L ≠ vz;R the matter term leads to
frequencies λ=vz;L for the L mode and λ=vz;R for the R
mode. Their difference cannot be removed and gives
multiangle matter effects [35]. If λ ≫ μ, this phase differ-
ence between L and R modes is so large that it suppresses
the self-induced flavor conversions from both k ¼ 0 and
k ≠ 0 instabilities [34,35]. Conversely, if one allows for a
nonstationary solution, the neutrino system selects the
pulsations p≃ λ̄ that compensate the phase dispersion
due to a large matter term, and generate growing insta-
bilities, in particular, at small scales associated with spatial
inhomogeneities.

FIG. 1 (color online). Schematic of the SN matter potential
(thin line) and densities where neutrino flavor composition is
unstable to small oscillations with spatial inhomogeneity wave
number k and frequency of time dependence p (thick lines) [53].
Time-dependent fluctuations can be unstable at higher matter
density and lead to neutrino flavor conversions deeper in a SN.
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To quantitatively illustrate this claim, we take the source
at z ¼ 0 to emit only νe and ν̄e, with a factor of two excess
of νe over ν̄e, i.e., ϵ ¼ 1. We choose θ ¼ 10−3 and a normal
mass ordering, i.e., ω > 0, but the result would be similar
for the inverted ordering, i.e., ω < 0. The overall frequency
scale is set by ω ¼ 1. A large μ ¼ 40 is chosen, so that
oscillations are suppressed in the homogeneous case, as in a
SN. We take the L and R modes to have two different
angles ϑR ¼ 5π=18 and ϑL ¼ 7π=9, so that a large matter
potential, λ ¼ 4 × 104, suppresses the inhomogeneous
modes, mimicking the similar effect in a SN.
In order to make k and p dimensionless, k is expressed

in multiples of the vacuum oscillation frequency, i.e.,
k ¼ nkω, while p is expressed in multiples of the matter
potential λ̄, i.e., p ¼ npλ̄. For simplicity, we limit ourselves
to the np ¼ 1mode. In this way, in the nonlinear regime we
only have to consider the convolution among the different
Fourier modes associated with spatial inhomogeneities,
∼
P

jk ½ðð1þ ϵÞϱR;nk−jk − ϱ̄R;nk−jkÞ; ϱL;jk �, and analogously
for the R mode [32]. We include modes up to nk ¼ 600 but
ensure that nk > 400 remain empty. This trick avoids
“spectral blocking” that leads to a spurious rise of the
Fourier coefficients at large nk due to truncation of the
tower of equations [54]. To seed the spatial inhomogeneity,
we use numerical noise of Oð10−8Þ for all modes.
Figure 2 shows the flavor dynamics of this two-beams

model. Amplitudes of flavor conversion, log10jϱeμnk ðzÞj, are
shown at distance z for various Fourier modes nk of
inhomogeneity along x, in the presence of time-dependent
fluctuations with frequency p ¼ λ̄. As linear theory predicts
[ImðΩÞ vs nk shown in the inset], modes around nk ≃ 100
are the most unstable and grow first with the predicted rate
ImðΩÞ=ω≃ 3. However, while only the modes nk ≃
Oð102Þ are unstable according to linear analysis, a cascade

in Fourier space develops in both smaller and larger nk due
to the convolution enforced by the neutrino-neutrino
interaction. Modes with nk < 102 also grow fast when
nonlinearity sets in. The flavor composition begins to
oscillate with many frequencies and appears to be “aver-
aged out.”
Thus, we find that neutrinos can change flavor at large λ

and μ, if nonstationary solutions with frequency p≃ λ are
allowed. We expect that the cascade in Fourier space leads
to “flavor decoherence,” or approximate equilibration
between all flavors [55]. In a SN, this may have important
consequences, which we discuss below.

IV. DISCUSSION AND CONCLUSIONS

An important question is whether this effect can be
important in a SN. Here, we provide a back-of-the-envelope
estimate. To aid shock revival, flavor instability has to
occur below the shock front at r≃ 200 km and above the
gain radius at r≃ 100 km (see, e.g., Fig. 4 in Ref. [38]).
One thus needs pulsations of high frequency p≃
λ ∼ 103–6 km−1 ∼ 3 × 108–11 Hz. Between r≃ 100 km
and 150 km, a typical instability with growth rate
ImðΩÞ=ω≃ 3 then grows by ∼60 e-foldings, i.e., a factor
of ≃1026, for 15 MeV neutrinos with ω ∼ 0.4 km−1,
assuming constant growth. Can such high-frequency fluc-
tuations occur in a SN with even tiny amplitudes? In this
context, we find it intriguing that pair correlations of the
neutrino field, which are many-body corrections to the single-
particle density matrices, lead to relative number fluctuations
of a size κ2 ∼ ðλβ=EÞ2 ∼ 10−22, where β≃ 10−2c is the
typical speed of ordinary matter in SN, which oscillates with
a frequency ∼2E ∼ 1022 Hz for 15 MeV neutrinos, as shown
in Ref. [23]. However, in a realistic SN the density behind the
shock, though often much flatter than that shown in Fig. 1, is
not exactly constant and the growth rates decrease when
p ≄ λ̄. On the other hand, nearby p modes are then excited
and nonlinear coupling of modes makes all instabilities grow.
More detailed studies are needed to study these effects [56],
the impact on nucleosynthesis, and overall flavor conversion.
Potentially, the consequences of our finding augur another

paradigm shift in the understanding of self-induced con-
versions and on their impact on the SN dynamics. The
possibility of low-radii conversions behind the stalled shock
wave during the accretion phase, suppressed by the large
matter term in the stationary and homogeneous case [57–61],
implies that the flavor dynamics may need to be taken into
account in the revitalization of the shock wave [36,38]. Also,
the impact on nucleosynthesis in a SN would be important
[40,41]. With flavor equilibration, the interpretation of
observed SN fluxes may also become simpler [55].
However, the possibility of flavor conversions close to

the neutrinosphere in a SN also questions the assumption
that flavor conversions safely occur outside it. This
assumption allowed one to replace the full Boltzmann
equations, containing both oscillations and scatterings, with

FIG. 2 (color online). Amplitudes of flavor conversion at
distance z in our two-beams model, log10jϱeμnk ðzÞj, for the nk
Fourier modes of inhomogeneity along the transverse direction.
Time-dependent pulsations of frequency p ¼ λ̄ and large neutrino
and matter densities are included. Inset: Linear growth rates
ImðΩÞ=ω for a larger range of nk (note the log scale). Modes
nk ≃ 102 grow first and quickly excite all other modes, leading to
large flavor conversion.
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the flavor oscillation equations for free-streaming neutri-
nos. In a nonstationary situation, this assumption may no
longer be guaranteed and may imply the necessity to
simultaneously perform the neutrino transport and flavor
evolution [21]. This is a formidable problem that would
require new computational techniques. Furthermore, it is
possible that these instabilities (inhomogeneity and non-
stationarity) appear in a regime where the coarse-grained
description adopted using density matrices [2] is insuffi-
cient. Although we have used this standard description
here, as a first step, this is a more fundamental aspect that
needs further study.
In conclusion, we have presented the first study of

nonlinear effects of nonstationarity in a dense neutrino
gas. We have pointed out novel temporal instabilities that
can dramatically affect flavor evolution, and raise the
possibility of self-induced flavor conversions deep in a

SN. The discovery of the role of symmetry breaking in the
flavor evolution of SN neutrinos is opening completely new
directions of investigation. We foresee that many surprises
are still in store.
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