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Keywords:
Fromadvances in the knowledge of the immune system, it is emerging that the specialized functions displayed by
macrophages during the course of an immune response are supported by specific and dynamically-connected
metabolic programs. The study of immunometabolism is demonstrating thatmetabolic adaptations play a critical
role inmodulating inflammation and, conversely, inflammation deeply influences the acquisition of specificmet-
abolic settings.This strict connection has been proven to be crucial for the execution of defined immune func-
tional programs and it is now under investigation with respect to several human disorders, such as diabetes,
sepsis, cancer, and autoimmunity. The abnormal remodelling of the metabolic pathways in macrophages is
now emerging as both marker of disease and potential target of therapeutic intervention. By focusing on key
pathological conditions, namely obesity and diabetes, rheumatoid arthritis, atherosclerosis and cancer, we will
review the metabolic targets suitable for therapeutic intervention in macrophages. In addition, we will discuss
the major obstacles and challenges related to the development of therapeutic strategies for a pharmacological
targeting of macrophage’s metabolism.
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1. Introduction

The immune system relies on the activity of cells specialized to re-
spond rapidly to “danger” signals, such as pathogens or inflammatory
stimuli. Among these cell types, macrophages play a pivotal role in sus-
taining the inflammatory response but also in promoting tissue homeo-
stasis regeneration after injury. Macrophages have been known for a
long time to undergo deep metabolic changes during activation
(Newsholme, Costa Rosa, Newsholme, & Curi, 1996). Particular atten-
tion has been devoted to the respiratory burst associated to phagocyto-
sis and the metabolic changes linked to production of reactive oxygen
species (ROS) and recycling of NADPH and glutathione (Newsholme
et al., 1996). Generally speaking, it is known that cells can tune theirme-
tabolism to adjust to alterations in nutrient levels, oxygen concentra-
tions and signals deriving from growth factor, in order to maintain
existing functions or acquiring new ones in the rapidly changing envi-
ronmental conditions. During activation, macrophages undergo pro-
found metabolic changes that are fundamental for the acquisition of
their specific functional programs. Indeed, these cells are known to ac-
quire specific metabolic profiles depending on their task. The relation-
ship between the metabolic and the functional profiles is very specific
though flexible. Indeed, pharmacological or genetic targeting of key en-
zymatic activities demonstrates that the associated function of macro-
phages can be blocked or rewired. Additionally, in inflammatory
diseases, macrophages are characterized by specific metabolic shifts
that impact on disease progression (Mazzone, Menga, & Castegna,
2018). On this basis, macrophage targeting by modulating key meta-
bolic checkpoints at the intersection of different functional programs
may represent a promising therapeutic strategy to treat pathological in-
flammation. To do so, it is necessary to define and obtain deep insights
into the key metabolic mechanisms underpinning macrophage func-
tion. The aim of this review is to define themetabolic signatures of mac-
rophages in physiological conditions as well as in selected pathologies,
and to highlight possible pharmacological strategies to rewire their me-
tabolism in order to acquire the desired homeostatic function, with par-
ticular attention to the cell-specific drug delivery.

2. Origin and function of macrophages

The origin of macrophages is dual: they can either terminally differ-
entiate within a specific tissue from blood-derived monocytes
(Hashimoto et al., 2013) or belong to the pool of resident tissue macro-
phages that are established during embryonic development. The latter
retain self-renewal potential (Hashimoto et al., 2013) and persist into
adulthood independently of blood monocyte input in the steady state
(Epelman, Lavine, & Randolph, 2014). Perturbation of tissue homeosta-
sis through the release of pro-inflammatory chemokines triggersmigra-
tion of bone-marrow derived circulating monocytes to the site of
inflammation, where they differentiate into macrophages, to sustain
immunity and resolution of inflammation and tissue remodelling (Ley,
Laudanna, Cybulsky, & Nourshargh, 2007). Additionally, tissue resident
macrophages participate in the physiological tissue cellular turnover
with the removal of apoptotic cells, through the process of efferocytosis
his article as: A. Castegna, R. Gissi, A. Menga, et al., Phar
s, Pharmacology & Therapeutics, https://doi.org/10.1016/j.ph
(Fadok et al., 1998; Han & Ravichandran, 2011; Voll et al., 1997). Due to
their immune surveillance role, macrophages sense different stimuli
and respond with complex mechanisms of activation that can be reca-
pitulated in vitro by the pro-inflammatory M1 or classical (Nathan,
1983; Pace, Russell, Schreiber, Altman, & Katz, 1983) and the anti-
inflammatory M2 or alternatively activation (Doyle et al., 1994; Stein,
1992).

Pro-inflammatory macrophages are involved in killing pathogens
and triggering initiation of adaptive response by interactionwith T lym-
phocytes. Classical M1 polarization occurs through stimulation by mi-
crobial components, such as the lipopolysaccharide (LPS) and other
Toll-like receptors (TLRs) ligands, or by cytokines secreted by T
helper-1 (Th-1) lymphocytes, such as tumour necrosis factor alpha
(TNF-α) and interferon gamma (IFN-γ). The polarization program
occurs through activation and nuclear translocation of specific tran-
scription factors, such as nuclear factor kappa-light-chain enhancer of
B-cell (NF-κB) (Chen et al., 1995; Chen, Parent, & Maniatis, 1996), the
signal transducer and activator of transcription (STAT) 1 and 3 (Bode,
Ehlting, & Häussinger, 2012; Darnell, Kerr, & Stark, 1994; Shuai et al.,
1993), the IFN-γ regulatory factor 4 (IRF4) (Huang et al., 2016), the
Hypoxia induced factor 1 alpha (HIF1α) and the activator protein 1
(AP1) (von Knethen, Callsen, & Brüne, 1999) (Fig. 1). This transcrip-
tional activation leads to the expression of specific cellular markers,
such as CD80, CD86, major histocompatibility complex class II receptor
(MHC-II), together with cyclooxygenase 2 (COX-2), and inducible nitric
oxide synthase (iNOS). This is accompanied by the release of pro-
inflammatory cytokines, such as TNF-α, IL1-β, IL-6, IL-12 and IL-23,
and the activation of the Th-1 responses (extensively reviewed in
Martinez & Gordon, 2014; Mosser & Edwards, 2008).

Alternative or M2 macrophages are generally characterized by an
anti-inflammatory gene expression profile, which favours inflammation
resolution and tissue repair. M2 macrophages are induced by interleu-
kin 4 (IL-4) or interleukin 13 (IL-13), which are secreted by innate
and adaptive immune cells, such T helper-2 (Th-2) lymphocytes, mast
cells and basophils (Doyle et al., 1994; Stein, 1992). Specific markers
and effectors associated to this programming are STAT6, GATA binding
protein 3 (GATA3), suppressor of cytokine signalling 1 (SOCS1), the per-
oxisome proliferator-activated receptor gamma (PPARγ), found in in-
flammatory zone 1 (FIZZ1), CD163 and CD36 (Fig. 1) (Murray, 2017;
Viola, Munari, Sánchez-Rodríguez, Scolaro, & Castegna, 2019). The typ-
ical markers associated to the M2 profile are the mannose receptor
(CD206), the decoy receptor IL-1R as well as the IL-1R antagonist.
Based on this programming, these cells accomplish the task of resolving
inflammation, aiding the healing and repair of the tissue. This occurs
through the release of pro-fibrotic factors, such as transforming growth
factor beta (TGF-β) and insulin-like growth factor 1 (IGF-1)
(Mantovani, Biswas, Galdiero, Sica, & Locati, 2013). The expression
and activity of metalloproteases (MMPs) and arginase 1 (ARG1) are in-
creased (deGroot & Pienta, 2018), to favour tissue remodelling and pro-
duction of polyamines and collagen (Mantovani et al., 2013). Other
important functions of M2 macrophages are angiogenesis and
lymphangiogenesis, which occur through vascular endothelial growth
factor (VEGF)-A, endothelial growth factor (EGF), platelet-derived
macological targets of metabolism in disease: Opportunities from
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Fig. 1. Pathways associated to M1 or M2 macrophages. Proinflammatory stimuli activate
transcription factors, such as NF-kB, HIF1α, STAT1, STAT3 leading to the M1-like
inflammatory phenotype, with the expression of markers like iNOS, COX-2, CD80, CD86,
and MHC-II and the release of IL-1β, TNF-α, IFN-γ, IL-6, IL-12, and IL-23. The M2-like
anti-inflammatory phenotype is characterized by the expression of CD206, ARG1,
SOCS1, FIZZ1, adenosine receptor (A2R), and by the production of cytokines such as
TGF-β, IL-10, IL-4, IL-13, IL-8, and VEGFA as a consequence of the transcription factors
PPARγ, STAT6 and GATA3 activation. Inducers are indicated in bold. AP1, activator
protein 1; ARG1, Arginase 1; COX2, cicloxygenase 2; FIZZ1, Found in inflammatory zone
1; iNOS, inducible Nitric Oxide Synthase; GATA3, GATA binding protein 3; HIF1α,
Hypoxia-inducible factor 1-alpha; IFN-γ, Interferon gamma; MHC-II, major
histocompatibility complex class 2; NF-kB, nuclear factor kappa-light-chain-enhancer of
activated B cells; PPARγ, Peroxisome proliferator-activated receptor gamma; SOCS1,
Suppressor of cytokine signaling 1; STAT, Signal transducer and activator of
transcription; TNF-α, Tumor necrosis factor alpha; TGF-β, transforming growth factor
beta; VEGFA, Vascular endothelial growth factor A.

Table 1
Metabolic features of M1 and M2 macrophages.

M1 M2

Glycolysis is strongly upregulated
The non-oxidative branch of PPP is
downregulated
Lactate accumulation

Glucose
utilization

Glycolytic flux is slowered
PFKFB1 isoform is highly
expressed compared to
PFKFB3
The non-oxidative branch
of PPP is upregulated

TCA cycle is broken
Intermediates of the TCA cycle
(citrate, succinate and itaconate)
accumulation
SDH is inhibited

TCA and
OXPHOS

TCA cycle is intact
OXPHOS is active
2-OG accumulation

iNOS is upregulated
NO and citrulline synthesis
Increased glutamine anaplerotic flux

Aminoacid
metabolism

GS and ARG1 are
upregulated
Increased glutamine
synthesis
Ornithine and polyamine
synthesis

FAS is active Lipid
metabolism

FAO is active

2-OG, 2-oxoglutarate; ARG1, arginase 1; FAS, fatty acid synthesis; FAO, fatty acid oxida-
tion; GS, glutamine synthetase; iNOS, inducible nitric oxide synthase; NO, nitric oxide;
OXPHOS, oxidative phosphorylation; PFKFB1, 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 1; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PPP,
pentose phosphate pathway; SDH, Succinate dehydrogenase; TCA, tricarboxylic acid.
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growth factor (PDGF), and IL-8 release (Corliss, Azimi,Munson, Peirce, &
Murfee, 2016).

M2 alternative activation can produce specific functional responses
tailored to the specific tasks. For this reason, a more detailed subtype
classification has been proposed, depending on the applied stimulus.
The M2a subtype is the one induced by IL-4/IL-13. The M2b subtype is
induced by stimulation with immune complexes and TLR ligands or by
IL-1R agonists, and is thought to be involved in the regulation of both
immune and inflammatory reactions, as it produces both pro- and
anti-inflammatory cytokines, such as IL-10, IL-1β, and TNF-α (Rőszer,
2015). The M2c subtype, induced by IL-10 or glucocorticoids, is mainly
involved in the anti-inflammatory function. The M2d subtype corre-
sponds to the macrophages present in the tumour microenvironment
(TME), namely the tumour associated macrophages (TAMs), which
will be extensively described in Section 4.4.

3. Metabolic features of M1 and M2 macrophages

The metabolism of immune cells acquires peculiar features, de-
scribed below, to respond to different microenvironments. The main
features of M1 and M2 macrophages are summarized in Table 1.

Glucose utilization. The diversity of the metabolic assets found in M1
and M2 macrophages are evident in many central pathways of cellular
metabolism, such as those involving glucose utilization. Glycolysis is a
series of reactions converting glucose to pyruvate. It not only provides
energy in the form of 2 molecules of ATP but also many intermediates
fundamental for anabolic processes (Lunt & Vander Heiden, 2011).

Mitogenic stimulations drive quiescent macrophages into the cell
cycle, sustaining glycolysis and glutaminolysis for cell growth (Cairns,
Harris, & Mak, 2011). This suggests a role for the cytosolic
myelocytomatosis oncogene (c-Myc) transcription factor in this pro-
cess, since it is known to both sustain cell cycle entry and drive the up-
regulation of glucose and glutamine catabolism upon mitogenic
Please cite this article as: A. Castegna, R. Gissi, A. Menga, et al., Phar
macrophages, Pharmacology & Therapeutics, https://doi.org/10.1016/j.ph
stimulation (Cairns et al., 2011). This is not the case for M1 macro-
phages. Indeed, pro-inflammatory stimulations support glycolysis and
the pentose phosphate pathway (PPP) to sustain macrophage function
without enhancing proliferation, which would be bioenergetically
costly. A switch between c-Myc and HIF1α activation takes place in
M1 macrophages, with the activation of a transcriptional program that
ensures (via HIF1α) the maintenance of metabolic capacity to support
their pro-inflammatory functions, without wasting the energy required
for cell proliferation (Liu et al., 2016; Palazon, Goldrath, Nizet, &
Johnson, 2014). Interestingly, c-Myc transcriptional programs are exe-
cuted in M2-macrophages (Pello et al., 2012) and its inhibition impairs
TAM maturation and pro-tumoral activities (Pello et al., 2012)

Glycolysis is strongly upregulated in M1 macrophages (Fig. 2) and
crucial for their function, as glycolysis inhibition hampers phagocytosis,
and reduces ROS and proinflammatory cytokine release (Freemerman
et al., 2014; Michl, 1976; Pavlou, Wang, Xu, & Chen, 2017). Different
M1 signalling programs concur to the metabolic preference for glycoly-
sis, such as TLR/NF-κB (vanUden, Kenneth, & Rocha, 2008), triggered by
pathogen recognition through pattern recognition receptors (PRRs) or
pro-inflammatory cytokines, and AKT/mTOR complex (Cheng et al.,
2014; Joshi, Singh, Zulcic, & Durden, 2014), triggered by growth factors
and pathogen-sensing receptors (Cheng et al., 2014; Kelley et al., 1999;
Vergadi, Ieronymaki, Lyroni, Vaporidi, & Tsatsanis, 2017), both regulat-
ing HIF1α transcription factor (Wang et al., 2017). In the case of AKT/
mTOR, it should be noticed that this axis does not seem to convey a lin-
ear signal once activated. Indeed, its activation integrates different stim-
uli of both intracellular and extracellular origin and balances their effect
to allow the cell to adapt to diverse conditions by promoting diverse
basic biological processes. For instance mTORC1 controls inflammatory
modulators, regulating NF-κB activity and IL-10, TGF-β, and PD-L1 ex-
pression (Katholnig, Linke, Pham, Hengstschläger, & Weichhart, 2013).
However, AKT and mTORC1 signalling also drives glucose metabolism
to sustain IL-4 mediated M2 activation of macrophages, hence suggest-
ing that alternative activation might be mediated by mTORC1 in a
context-dependent manner (Covarrubias, Aksoylar, & Horng, 2015). In-
deed, that loss of tuberous sclerosis complex (TSC) 1, a mTORC1 inhib-
itor, allows enhanced M1 and diminished M2 activation (Byles et al.,
2013). Similarly, AKT kinases seem to regulatemacrophage polarization
in an isoform-specific manner. Indeed AKT1 ablation promotes the M1
profile, whereas AKT2 ablation has opposite effects, resulting in amplifi-
cation of M2 responses (Arranz et al., 2012).
macological targets of metabolism in disease: Opportunities from
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As mentioned before, the regulation of glycolysis in M1 macro-
phages is related to HIF1α activation, which not only promotes the ex-
pression of inflammatory mediators (Rius et al., 2008; van Uden et al.,
2008; Wang, Ma, Zhao, & Zhu, 2017) but also mediates the expression
of genes encoding for glycolytic enzymes (i.e. Hexokinase 2, HK2) and
the glucose transporter GLUT1 (Freemerman et al., 2014). As a signal
promoting adaptation to hypoxia, HIF1α supports anaerobic glycolysis
by upregulating lactate dehydrogenase (LDH) (Semenza et al., 1996),
which produces lactate from pyruvate, and pyruvate dehydrogenase ki-
nase (Kim, Tchernyshyov, Semenza, & Dang, 2006; Palsson-Mcdermott
et al., 2015), that prevents pyruvate channelling into the TCA cycle by
inhibiting pyruvate dehydrogenase (PDH) (Fig. 2). LDH activity also
supports NADH oxidation to NAD+ necessary to support glycolytic
flux. Glycolysis is furtherly enhanced by the expression of the inducible
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and
the pyruvate kinaseM2 (PKM2). PFKFB3 converts fructose-6-phosphate
to fructose-2,6-bis-phosphate (F2,6BP), which allosterically activates
phosphofructokinase-1 (PFK-1), stimulating glycolysis (Palsson-
Mcdermott et al., 2015). InM1macrophages PKM2 is present in two dif-
ferent forms, as a dimer and as a tetramer. The former is less active and
it translocates to the nucleus to potentiateHIF1α transcriptional activity
(Mazurek, Boschek, Hugo, & Eigenbrodt, 2005; Palsson-Mcdermott
et al., 2015), whereas the latter is highly active and is located in the cy-
tosol, supporting glycolysis (Palsson-Mcdermott et al., 2015).

In M1 macrophages the oxidative steps of the PPP are upregulated,
thereby resulting in ribose-5-phosphate synthesis and NADP+ reduc-
tion to NADPH (Tannahill et al., 2013). The flux through the oxidative
steps of PPP is crucial for function (Fig. 2). Impairment of the oxidative
Fig. 2.Metabolic signatures of M1 andM2macrophages. The pro-inflammatory programming (
the pentose-phosphate pathway, and fatty acid synthesis. Moreover, M1 cells display TCA cycl
synthesis, and succinate efflux, that stabilizes HIF-1α. Itaconate, produced from citrate, has
macrophages (M2, in blue) display enhanced OXPHOS, fatty acid oxidation, glutaminolysis
arginine. 2-oxoglutarate acid produced by glutaminolysis inhibits PHD, leading to HIF1α dest
oxoglutarate acid; ACLY, ATP citrate lyase; ARG1, arginase1; CARLK, carbohydrate kinase-like
acid oxidation; FAS, Fatty acid synthesis; GS, glutamine synthetase; GLUT1, glucose transporte
oxide synthase; LDH, lactate dehydrogenase; NO, nitric oxide; NOX, NADPH oxidase; ODC, orn
PPP, Pentose phosphate pathway; PFKFB3, phosphofructokinase fructose 2,6-biphosphat
dehydrogenase; SUCNR1, succinate receptor 1; TCA, Tricarboxylic acid cycle or Krebs cycle. (F
the web version of this article.)
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branch of the PPP depotentiates the pro-inflammatory function of M1
macrophages (Viola et al., 2019). In line with this finding, in macro-
phages overexpression of sedoheptulose kinase, also known as carbohy-
drate kinase-like protein (CARKL) involved in the conversion of
sedoheptulose into sedoheptulose-7-phosphate, results in defective
M1 polarization and dampened inflammatory response (Baardman
et al., 2018; Haschemi et al., 2012). The reason for the role of the PPP ox-
idative branch in sustaining M1 function relies on NADPH production.
The reduced form of NADP+ is fundamental to support macrophage
function in different ways: (I) it sustains NADPH oxidase activity,
which, among other roles is the main ROS generator against pathogens
and plays a crucial role in macrophage responses (Jackson, 1995; Yi
et al., 2012); (II) it concurs to the endogenous antioxidant defence by
favouring reduction of oxidized glutathione (Winkler, DeSantis, &
Solomon, 1986); (III) it is a necessary molecule for fatty acid synthesis
(FAS), which is another peculiar metabolic feature of M1 macrophages
that, among other things, is required to synthesize prostaglandins.

In M2 macrophages the glycolytic metabolism plays a minor role
(Wang et al., 2018), whereas OXPHOS appears to be crucial. In the ab-
sence of glucose, energy production can be sustained by glutamine
channelling into the TCA cycle (Wang et al., 2018). Specific control
points regulate both glycolysis and PPP. In M2 macrophages, the
PFKFB1 isoform is highly expressed compared to PFKFB3, resulting in
a reduction of the glycolytic rate through a much faster conversion of
fructose-2-6-phosphate to fructose-6-phosphate (Mills & O’Neill,
2016; Rodríguez-Prados et al., 2010; Takeda et al., 2011). Furthermore,
CARKL is upregulated and this allows the products of the oxidative
steps of PPP to be channelled into the non-oxidative steps of PPP
M1, in red) is characterized by the increased flux through glycolysis, the oxidative steps of
e interruption, ROS formation and citrate efflux from mitochondria, which guides NADPH
antibacterial function. Arginine is channelled into NO production. Anti-inflammatory

, tryptophan catabolism with release of kynurenine, and synthesis of polyamines from
abilization, and promotes a M2 phenotype through epigenetic reprogramming. 2-OG, 2-
protein; CPT, carnitine palmitoyl transferase; ETC, Electron Transport Chain; FAO, Fatty
r 1; IDH, Isocitrate dehydrogenase; IDO, indoleamine dioxygenase; iNOS, inducible nitric
ithine decarboxylase; PGD, phosphogluconate dehydrogenase; PHD, prolyl hydroxylase;
ase B3; PKM2, pyruvate kinase M2; ROS, Reactive Oxygen Species; SDH, Succinate
or interpretation of the references to color in this figure legend, the reader is referred to
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(Haschemi et al., 2012) (Fig. 2). NADPH synthesis is not crucial for M2
cell functions, whereas ribose-5P production has to be sustained for nu-
cleotide and uridine diphosphate N-acetylglucosamine (UDP-GlcNAC)
synthesis (Haschemi et al., 2012). UDP-GlcNAC is required for N-
glycosylation, which is essential for the modification of different cell
surface protein (i.e. CD206) abundantly expressed in M2 macrophages
(Tannahill et al., 2013).

The TCA cycle. The Tricarboxylic acid cycle (TCA) is anothermetabolic
control point for M1/M2 polarization. As said above, M2 macrophages
display a more flexible metabolism involving both glycolysis and
OXPHOS, due to the high ATP demand of these cells to support biosyn-
thetic processes, such as receptor glycosylation (Jha et al., 2015). On the
contrary, M1 macrophages mainly rely on glycolysis rather than
OXPHOS for ATP production. Indeed,M1metabolism is associated to cy-
tosolic accumulation of intermediates of the TCA cycle, such as citrate,
succinate and itaconate, which are drained from mitochondria due to
the so-called TCA cycle break (Fig. 2). At variance with M1 macro-
phages, under M2 stimuli macrophages increase 2-oxoglutarate (2-
OG) levels, which also play important metabolic and signalling roles to
sustain M2 polarization.

Citrate is produced in the TCA cycle by condensation of oxaloacetate
and acetyl-CoA (AcCoA), and then converted to isocitrate and then to 2-
OG, through the activity of mitochondrial isocitrate dehydrogenase
(IDH). However, cytosolic demand of citrate is high for different reasons.
Citrate is converted into AcCoA and oxaloacetate by ATP-citrate lyase
(ACLY) (Palmieri, 2004). Oxaloacetate is converted intomalate bymalate
dehydrogenase (MDH) and this intermediate can follow two different
routes. It is recycled back into the TCA cycle, process that is facilitated
by the transport activity of the mitochondrial citrate carrier (CIC), also
known as solute carrier family 25 member 1 (SLC25A1), which exports
citrate from mitochondria in exchange with malate (Infantino,
Iacobazzi, Menga, Avantaggiati, & Palmieri, 2014; Palmieri, 2004). Addi-
tionally, malate is converted in pyruvate through the NADPH
producing-malic enzyme (Newsholme, Gordon, & Newsholme, 1987)
and pyruvate can entermitochondria. AcCoA enrichment is fundamental
to sustain fatty acid synthesis, and to regulate protein and histone acety-
lation (Pietrocola, Galluzzi, Bravo-San Pedro, Madeo, & Kroemer, 2015).
Citrate itself modulates the cytosolic metabolism, by positively regulat-
ing fatty acid synthesis (Martin & Vagelos, 1962), and gluconeogenesis.
Concomitantly, it inhibits directly phosphofructokinase (PFK) 1 and 2
and, indirectly, pyruvate kinase (PK) (Yalcin, Telang, Clem, & Chesney,
2009) leading to reduction of the glycolytic flux. Citrate metabolism is
central in M1 macrophages (Fig. 2). LPS, TNF-α or IFN-γ stimulation in-
duces upregulation of the mitochondrial citrate carrier CIC (Infantino
et al., 2014), aswell as downregulation of IDH (Tannahill et al., 2013). In-
creased cytosolic flux of citrate from mitochondria is required for NO,
ROS and prostaglandin E2 (PGE2) production (Infantino et al., 2011,
2014; Infantino, Iacobazzi, Palmieri, &Menga, 2013), suggesting that cit-
rate not only supports fatty acid synthesis for the production of inflam-
matory mediators, but also contributes to the reduction of NADP+ to
NADPH. CIC is known to be regulated by acetylation, which increases
the transport activity of CIC (Palmieri et al., 2015). M1macrophages dis-
play a higher level of CIC acetylation in glucose limiting conditions
(Palmieri et al., 2015). By increasing the efflux of citrate, macrophages
can rely on the citrate to 2-OG conversion catalyzed by the NADP+-
dependent IDH1 as alternative routes to produce NADPH when glucose
is limiting (Palmieri et al., 2015). Besides CIC, other proteins are known
to be regulated by acetylation, such as NF-κB (Greene & Chen, 2004),
IL-6 and IL-10 (Hu et al., 2017; Wang, Wang, Rabinovitch, & Tabas,
2014). AcCoA is provided by ACLY, which is also upregulated inM1mac-
rophages (Infantino et al., 2013) whereas it is not required for M2 polar-
ization (Namgaladze et al., 2018), although it is known to mediate the
expression of some M2 markers due to histone acetylation
(Covarrubias et al., 2016). Conversely, deacetylation of putative en-
hancers of IL-4-induced M2 genes interferes with M2 polarization
(Ivashkiv, 2013; Mullican et al., 2011).
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Another way citrate escapes the TCA cycle is through conversion to
itaconate, which takes place in mitochondria due to the LPS-mediated
upregulation of aconitate decarboxylase 1 (ACOD1) (Strelko et al.,
2011; Sugimoto et al., 2012), previously known as immune-
responsive gene 1 protein (IRG1) (Michelucci et al., 2013) (Fig. 2). The
role of itaconate is far from being fully understood: it is classically
known to display anti-bacterial properties (Berg, Filatova, &
Ivanovsky, 2002; Naujoks et al., 2016), but is also involved in
immunomodulation, suppression of inflammation and tolerance
(Lampropoulou et al., 2016). The significance of itaconate duringM1po-
larization relies on its ability to induce succinate accumulation through
succinate dehydrogenase (SDH) inhibition (Feingold et al., 2012;
Warburn & Dickens, 1931) (Fig. 2), which is accompanied to OXPHOS
reduction, ROS production and inflammasome activation
(Lampropoulou et al., 2016). The underlining mechanism is apparently
linked to anti-inflammatory transcription factor nuclear factor erythroid
2-related factor 2 (NRF2) stabilization, which targets genes involved in
protecting against stress-induced cell death and oxidative stress (Mills
et al., 2018). Itaconate accumulates into macrophages when M2 polari-
zation is impaired, through IRG1 upregulation (Ganta et al., 2017). Fur-
thermore, targeting itaconate accumulation into macrophages skews
their phenotype toward the M2 one (Puchalska et al., 2018).

The third control point in the TCA cycle of M1 macrophages is the
SDHmediated conversion of succinate into fumarate (Fig. 2). Succinate
is the substrate of SDH, also known as Complex II of the mitochondrial
respiratory chain. SDH-mediated oxidation of succinate into fumarate
is coupled to reduction of ubiquinone (UQ) to ubiquinol (UQH2). In
the absence of ATP production high oxidation rates of succinate leads
to the so called reverse electron transport (RET), characterized by elec-
trons flux in the opposite direction toward complex I. Succinate accu-
mulation into the cytosol concurs to M1 function by targeting prolyl
hydroxylases (PHDs), thus blocking HIF1α degradation even in
normoxic conditions (Tannahill et al., 2013) (Fig. 2). This potentiates
the hypoxic response in M1 macrophages, which is already activated
by the RET-mediated ROS production (Benmoussa, Garaude, & Acín-
Pérez, 2018; Mills et al., 2016).

Similarly to citrate, succinate can induce post-translational modifi-
cation on proteins (Park et al., 2013; Xie et al., 2012). Although this
mechanism is much less known than protein acetylation, evidence is
emergingwith this respect. Succinylation of PKM2promotes its translo-
cation into the nucleus, where it potentiates HIF1α transcriptional ac-
tivity (Wang, Wang, Wang, Tall, & Tabas, 2017). Another emerging
mechanism of succinate regulatory effects stems from the discovery of
succinate receptor SUCNR1/GPR91, a G-protein-coupled cell surface
sensor for extracellular succinate (Doyle et al., 1994) expressed in
many cell types, and activated in pathological conditions (He et al.,
2004; Macaulay et al., 2007; Peti-Peterdi, Kang, & Toma, 2008;
Sadagopan et al., 2007; Toma et al., 2008). LPS activates a GPR91-
mediated signal transduction that sustains the pro-inflammatory func-
tion (Kelly & O’Neill, 2015; Littlewood-Evans et al., 2016) (Fig. 2). This
is probably linked to a significant release of succinate from M1 macro-
phages as well as in pathological conditions associated to inflammation
(Kim et al., 2014; Toma et al., 2008), which sustains and amplifies in-
flammation in an autocrine way. Interestingly, in the experimental au-
toimmune encephalomyelitis (EAE) murine model, transplanted
neural stem cells protect against neuroinflammation through the
GPR91-mediated uptake of extracellular succinate (Peruzzotti-Jametti
et al., 2018).

2-OG derived from glutaminolysis is known to promote M2 macro-
phage polarization (Fig. 2). Inhibition of glutaminase 1 (which produces
2-OG) decreases M2 polarization in IL-4-treated mouse bone marrow-
derived macrophages (BMDMs). This change is rescued by dimethyl-
2-OG (DM-2-OG), a cell-permeable analogous of 2-OG, suggesting that
the one generated from glutaminolysis promotes the M2 phenotype.
2-OG is known to favour the M2 phenotype through Jumonji domain
containing-3 (Jmjd3) protein-dependent demethylation of histone H3
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lysine-27 (H3K27) at the promoter region of M2-specific marker genes
(Liu et al., 2017) and this represents an important mechanism of meta-
bolic control of epigenetics. In linewith its key role in sustainingM2 po-
larization, 2-OG in LPS-stimulated mouse macrophages restricts M1
activation by suppressing IKKβ activation, and this mechanism is regu-
lated by PHD-mediated prolyl hydroxylation of IKKβ (Liu et al., 2017;
Takeda et al., 2011). As stated above, 2-OG levels in M1 macrophages
are lower due to downregulation of IDH1, which concurs to the higher
isocitrate/2-OG ratio of M1 macrophages (Jha et al., 2015) to support
citrate escape from mitochondria. From a strictly biochemical point of
view, 2-OG sustains the M2 phenotype by supporting OXPHOS and
fatty acid oxidation (FAO). Indeed 2-OG feeds the TCA cycle flux,
thereby providing the NADH required for OXPHOS. Furthermore, the
activity of the ATP-dependent acyl-CoA synthetase leads to mitochon-
drial AMP accumulation, which would eventually feedback inhibit the
enzyme and block FAO. The substrate-level phosphorylation sustained
by 2-OG metabolism provides the nucleoside triphosphates that
contribute to reduce AMP levels through adenylate kinase, thus
preventing FAO inhibition (Rossi, Alexandre, Carignani, & Siliprandi,
1971).

Aminoacid metabolism. Amino acid metabolism represents another
control point of macrophage function. In macrophages, argininemetab-
olism ismodified depending on the context (Fig. 2). LPS, TNF-α or IFN-γ
induce iNOS expression, that converts arginine into citrulline and nitric
oxide (NO), the latter being fundamental to sustain production of anti-
microbial reactive species (Schairer, Chouake, Nosanchuk, & Friedman,
2012) (Fig. 2). This pathway is self-sustained by the conversion of citrul-
line into argininosuccinate, which is a precursor of arginine (Qualls
et al., 2012). Recently, NO has been recognized as a major regulator of
macrophage metabolism, since its production is responsible for TCA
cycle alterations and the loss of mitochondrial electron transport chain
(ETC) complexes, similarly to what was previously observed in den-
dritic cells (Everts et al., 2012). Additionally, NO reroutes pyruvate
away from PDH, promoting glutamine anaplerosis. This means that
in a NO-rich environment, the molecule could drive the profound met-
abolic changes described in M1-like macrophages (Palmieri et al.,
2020).

M2 stimuli induce expression of arginase 1 (ARG1), that channels ar-
ginine into ornithine, a precursor of putrescine, spermidine, and
spermine, polyamines involved in tissue repair (Fig. 2). In line with
this finding, ornithine decarboxylase (ODC) expression impairs inflam-
matory and anti-microbial function of M1 macrophages (Hardbower
et al., 2017). Furthermore ARG1 activity in macrophages triggers an
anti-inflammatory phenotype and reduces T-cell proliferation and cyto-
kine production (Wu & Morris, 1998; Molon et al., 2011).

Tryptophan metabolism is regulated in immune cells by the activity
of indoleamine 2,3-dioxygenase (IDO), which converts tryptophan into
kynurenine (Fig. 2). IDO expression is sensitive to IFN-γ and TNF-α
(Babcock & Carlin, 2000; Robinson, Hale, & Carlin, 2005), but its activity
skews macrophages toward a “M2-like” state (Wang et al., 2014). IDO
activity consumes tryptophan, thus limiting its availability for T cells
(Fig. 2) (O’Neill, Kishton, & Rathmell, 2016; Platten, von Knebel
Doeberitz, Oezen, Wick, & Ochs, 2015), which in turn impairs T cell ac-
tivation (Yue et al., 2015). In addition, kynurenine itself suppresses T
cell activation since it can interfere with T cell receptor (TCR) and in-
duce regulatory T cells (Treg) (Stephens et al., 2013).

Glutamine metabolism plays a crucial role in polarizing macro-
phages and this depends on how the glutamine flux is channelled. In
macrophages triggered by IL-10, glutamine synthesis is enhanced
through upregulation of glutamine synthetase (GS) (Palmieri et al.,
2017) and this is responsible for the acquisition of the M2 polarization
features and functions (Fig. 2). The mechanismmediating GS upregula-
tion following IL10 stimulation has not been completely clarified in
macrophages. Since GS gene transcription responds to Class O Forkhead
Transcription Factor 3 (FOXO3) (Van Der Vos & Coffer, 2012), the nu-
clear localization of which is regulated by STAT3 (Oh, Yu, Dambuza,
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Marrero, & Egwuagu, 2012), it is conceivable that the STAT3 axis medi-
ates GS expression following IL10 stimulus. Glutamine supports nucleo-
tide and UDP-GlcNAc synthesis, which is critical for M2 macrophage
polarization because it mediates glycosylation of M2 protein markers.
Inhibition of N-glycosylation in IL-4-stimulated macrophages impairs
the expression of Relmα, CD206, and CD301 with almost no effect on
iNOS or M1-specific cytokines (Jha et al., 2015). Glutamine is the main
nitrogen donor for UDP-GlcNAc generation.

Since glutamine synthesis promotes “M2-like” features in macro-
phages, glutaminolysis is expected to be enhanced in a more “M1-
like” polarization status. This is not always the case. Through
glutamine-dependent anaplerosis, LPS promotes the accumulation of
succinate in macrophages, which stabilizes HIF1α, resulting in the ac-
quisition of a M1 phenotype (Tannahill et al., 2013). However, gluta-
mine is the precursor of 2-OG that, as stated above, is important for
the engagement of FAO and the epigenetic reprogramming of M2
genes (Liu et al., 2017). Indeed inhibition of glutaminase 1 decreases ex-
pression of ARG1 and this phenotype is rescued by dimethyl-OG (DM-
OG), a cell-permeable analogous of 2-OG (Liu, Yi, et al., 2017)

Lipid metabolism. Intracellular lipid metabolism includes the pro-
cesses of lipid degradation and synthesis. Lipids are intracellularly com-
partmentalized as lipid droplets (LDs), storage organelles formed by a
phospholipid monolayer decorated by proteins surrounding a core of
di/triacylglycerols and sterol esters. Besides adipocytes, other cells
store lipids as LDs, including macrophages and hepatocytes. LDs are
now recognized as dynamic organelles, which can modulate metabo-
lism in health and disease. Indeed, the presence of a large number and
variety of proteins, including membrane-trafficking GTPases, enzymes
of lipid metabolism and proteins associated with the immune system
(den Brok, Raaijmakers, Collado-Camps, & Adema, 2018) suggests mul-
tiple functions for LDs, most of which are still unknown. LDs can associ-
ate with other cellular organelles through membrane contact sites,
thereby promoting the communication between organelles and acting
as crucial core of cell metabolism (Olzmann & Carvalho, 2019). The
physiological role of LDs in the control of storage and release of fatty
acids has been well characterized, while the relevance of the stored
components of signalling molecules are largely unknown. The role of
LDs in immune cells has been mostly characterized in macrophages
and polymorphonuclear cells, and more recently in dendritic cells. In
macrophages LDs regulate the production of inflammatory mediators
and play a role in the proinflammatory amplification loop in sepsis
(reviewed in Vallochi et al., 2018). As expected FAS is activated in M1
macrophages and, biochemically, is required for prostaglandin biosyn-
thesis. On the other side, M2 macrophages rely on FAO (also known as
β-oxidation) (Vats et al., 2006) and glutamine metabolism (Jha et al.,
2015) as a way to sustain the oxidative TCA cycle. Preferentially oxi-
dized macromolecules are triacylglycerol-rich lipoproteins, such as
low density and very low density lipoproteins (LDL and VLDL), that
are uptaken by the scavenger receptor CD36 and processed in lyso-
somes by the lysosomal acid lipase (LAL) under the control of STAT6,
PPARγ (Kerner & Hoppel, 2000) and its co-activator 1 (PGC1)
(Malandrino et al., 2015). Indeed targeting of CD36 or LAL in mice
leads to a defective M2 activation (Huang et al., 2014). Carnitine
palmitoyl transferase (CPT)-1a is also important for M2 function since
it concurs to the transports of long-chain fatty acids tomitochondria. In-
deed, a CPT-1a mutant form that is permanently active was found to
promote FAO and reduce inflammation (Malandrino et al., 2015), al-
though FAO is unnecessary for M2 polarization (Nomura et al., 2016).
In line with studies previously described, 2-OG, which accumulates in
M2 macrophages, is known to support FAO (Chawla, Nguyen, & Goh,
2011).

4. Tracing metabolic signatures of macrophages in disease

Increasing evidence on inflammation-related diseases demonstrates
that macrophage function plays a significant role in the progression of
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disease. Since specific metabolic programs underline the acquisition of
specific macrophage functions, it is conceivable that targeting metabo-
lismmight be an effective strategy to revert macrophage function driv-
ing pathology. In this section we will focus on different pathologies, in
whichmacrophages are known to play a role, to dissect the role of mac-
rophage metabolism in driving inflammation. Additionally, we will de-
scribe evidence on metabolic targets suitable for therapeutic
intervention.

4.1. Obesity and diabetes

The rise in obesity worldwide has promoted the diffusion of obesity-
related health issues, such as insulin resistance, type 2 diabetes (T2D),
coronary artery disease, fatty liver disease, and some types of cancer
(Berrington de Gonzalez et al., 2010; Flegal, Graubard, Williamson, &
Gail, 2007). Besides the emphasis on embracing healthy dietary and
life style habits (Leibel, 2008), the scientific community is now putting
a great effort to understand the relationship between obesity and
chronic metabolic diseases in which a major key pathogenic role is oc-
cupied by the chronic, low-grade inflammation, primarily mediated by
innate and adaptive immune cells (Hotamisligil, 2006; Odegaard &
Chawla, 2008; Olefsky & Glass, 2010; Shoelson, Lee, & Goldfine, 2006).

It is clearly recognized that the macrophage population resident in
adipose tissue and other sites ofmetabolic regulation plays a role in dis-
ease progression, not only through the number of infiltrating cells but
also due to their acquired functional state (Appari, Channon, &
McNeill, 2018). Identification of the mechanisms altering macrophage
biology toward a M1 or M2-like state is crucial to understand the mac-
rophages role in obesity and insulin resistance.

Macrophage recruitment to the adipose tissue from blood mono-
cytes is fundamental to sustain inflammation, although adipose tissue
macrophage (ATM) proliferation is emerging as key event in the early
stages of obesity and in promoting inflammation (for a review see
Russo & Lumeng, 2018). ATMs acquire a CD11c expressingM1-like phe-
notype, which associates to the typical crown-like structures (CLSs) sur-
rounding the adipocytes (Ferrante, 2007; Gericke, Weyer, Braune,
Bechmann, & Eilers, 2015). The M1 inflammatory mediators, such as
TNF-α, IL-6, and NO, induce insulin resistance in obese mice (Lumeng,
Bodzin, & Saltiel, 2007). Macrophagic FAS has been shown to be funda-
mental to sustain inflammation. Targeting FAS inmacrophages prevents
diet-induced insulin resistance, recruitment of macrophages to adipose
tissue and chronic inflammation in mice (Wei et al., 2016). Mechanisti-
cally, FAS deficiency in mice alters plasma membrane composition and
disrupts Rho GTPase trafficking, which is required for cell adhesion, mi-
gration and activation (Wei et al., 2016). On the contrary, macrophages
in lean adipose tissue display a CD11c−M2-like phenotype, are sparsely
distributed and maintain insulin sensitivity by the anti-inflammatory
actions of IL-10 and STAT3 activation (Lumeng et al., 2007).

Macrophage polarization toward a M1-like state seems to be medi-
ated by the c-Jun N-terminal kinases (JNKs), also referred as stress
activated-kinases, that associate with obesity and insulin resistance.
JNKs are activated by fatty acids and interfere with insulin signalling
through tyrosine kinase c-Src activation (Holzer et al., 2011). Genetic
targeting of JNK in mice protects against insulin resistance and the
switch toward a M1-like state (Han et al., 2013). Micro RNA-155
expressed in adipocyte-derived microvesicles from obese mice is also
involved in inducing M1 macrophages polarization, leading to chronic
inflammation and local insulin resistance (Zhang et al., 2016). Protec-
tivemechanisms against ATMM1polarization and insulin resistance in-
volve STAT6 and PPAR-γ and PPAR-δ in mice (Odegaard et al., 2008;
Olefsky & Glass, 2010). Similarly, IL-33 produced by adipose tissue
(Wood, Wang, & Trayhurn, 2009) is emerging as a major M2 polarizing
cytokine, leading to decreased inflammation and protection against the
effects of obesity in mice (Miller et al., 2010).

Modulation of macrophage metabolism is considered a possible
therapeutic strategy against the harmful effects of ATMs. A suitable
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target is GLUT1 (Slc2a1), which in macrophages is associated to high
glycolytic rate and, under LPS stimulation, enhanced release of inflam-
matory mediators. Additionally, it is upregulated in adipose tissue and
colocalizes with ATMs in rodents (Freemerman et al., 2014). GLUT1 ap-
pears to be the ideal pharmacological target, although few studies ques-
tion the role of its expression modulation in altering inflammation
(Nishizawa et al., 2014). This is further substantiated by the finding
that myeloid-specific GLUT1 deficient mice are not protected against
the development of obesity-associated metabolic dysregulation, al-
though activated BMDMs from Slc2a1M−/− mice display a reduced gly-
colysis and PPP rate, with an increase of alternativeM2-likemetabolism
and activation marker mannose receptor CD206, also in adipose tissue
(Freemerman et al., 2019) (Fig. 3A). An interesting emerging target is
the sodium-glucose transporter protein 2 (SGLT2), for which registered
inhibitors as hypoglycemic drugs in adults with T2D are available
(Vivian, 2014). These drugs inhibit the absorption of glucose in the
proximal tubule of the kidney. Among these, canagliflozin (CAN) was
also tested for its ability to modulate inflammation both in vitro and
in vivo. CAN significantly reduces inflammation by inhibiting intracellu-
lar glucose metabolism and PFK2 expression and promoting autophagy
through a AMPK phosphorylation-mediated in vitro mechanism (Xu
et al., 2018). This suggests that CAN might represent a promising anti-
inflammatory drug for acute or chronic inflammatory diseases via inde-
pendent mechanisms of reduction in glucose uptake.

A secondmetabolic relevant checkpoint inmacrophages for treating
this complex disease is fatty acid metabolism. Indeed, in obese and T2D
patients the flux through FAO is lower (Fig. 3A). A first metabolic target
is CPT-1a, which is highly expressed in human ATMs (Malandrino et al.,
2015). Its expression levels positively correlate to FAO rates, which in
macrophages reduce inflammation (Malandrino et al., 2015). Its over-
expression reduces inflammation of macrophages exposed to palmitate
(Malandrino et al., 2015).

Another target associated to fatty acidmetabolism is fatty acid trans-
port protein 1 (FATP1). FATP1 genetic ablation in leucocytes of high-fat
diet mice induces increased adiposity and insulin resistance, which as-
sociates to increased M1 ATMs (Johnson et al., 2016); on the contrary,
its in vitro overexpression decreases GLUT1 expression and reduces in-
flammation (Johnson et al., 2016).

Recently, evidence is growing regarding abnormal glutaminemetab-
olism in patients with obesity or diabetes, as they display lower serum
levels of glutamine and 2-OG but higher levels of succinate (Cheng
et al., 2012; Wahl et al., 2012). These metabolic abnormalities associate
with accumulation of M1 macrophages, which display a typical meta-
bolic signature characterized by higher succinate but lower intracellular
levels of 2-OG and glutamine (see Section 3). Evidence shows that
targeting GPR91 protects mice fed with a high-fat diet from obesity
(McCreath et al., 2015) and limits macrophage infiltration in mouse ad-
ipose tissue (van Diepen et al., 2017). Conversely, 2-OG supplementa-
tion reduces adipocyte inflammation and increases the M2 /M1 ratio
of white ATMs (Liu, Gan, Zhang, Ren, & Sun, 2018). Incidentally, GS ac-
tivity is a metabolic checkpoint for M2 function (Palmieri et al., 2017)
and importantly, GS inhibition sensitizes adipocytes to proinflamma-
tory stimuli (Palmieri et al., 2014) and reduces insulin-dependent
glucose uptake in microglia (Palmieri, Menga, Lebrun, et al., 2017).
These findings indicate that modulation of the succinate/2-OG ratio
could represent a valid metabolic strategy to limit the obesity- or
diabetes-associated pathology. In this scenario, glutamine metabolism
might represent a crucial metabolic checkpoint since it may control
the partitioning of the glutamine to succinate versus the glutamine to
2-OG fluxes.

4.2. Rheumatoid arthritis

Rheumatoid arthritis (RA) is a systemic condition associated to dam-
age and loss of function of the joints due to a chronic inflammation. Pain
is a prominent symptom of RA and contributes to the disability that
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Fig. 3. Metabolic alterations of macrophages in diseases. A) Macrophages in obesity and diabetes display increased glucose uptake through GLUT1 and stimulation of the glycolytic
pathway due to PFK2 activation. Fatty acid synthesis is enhanced. On the contrary, fatty acid uptake through FATP1 and CPT1A is markedly impaired, thereby preventing their
oxidation and causing accumulation of lipid droplets; B) Macrophages in rheumatoid arthritis are also characterized by high glycolytic flux through GLUT transporters. Succinate drives
M1 reprogramming through HIF1α stabilization but also through GPR91 activation; C) In atherosclerosis, macrophages display increased glycolysis and PPP pathway, high levels of
mitochondrial ROS and overactivation of the NLRP3 inflammasome. Overall, this drives to lipid droplets accumulation and cytokine release, including IL1β and IL6; D) In cancer, TAM
phenotype is characterized by increased fatty acid oxidation and activity of the TCA cycle, reduced glucose uptake and glycolysis along with up-regulation of enzymes involved in
amino acid catabolism, ARG1 and IDO for arginine and tryptophan respectively. Notably, up-regulation of GS causes a rise in glutamine levels, both intra- and extracellular. The
increased levels were also allowed by the decreased activity of GLS. GLUT1, glucose transport 1; PFK2, phosphofructose kinase 2; FATP1, fatty acid transport protein 1; CTP-1a,
carnitine palmitoyl transferase 1a; FAO, fatty acid oxidation; GPR91, G-protein-coupled succinate receptor; HK2, hexokinase2; PKM2, pyruvate kinase M2; NLRP3, NLR family pyrin
domain containing 3; TCA, tricarboxylic acid; ARG1, arginase 1; IDO, indoleamine 2,3 dioxygenase; MCAT2, amino acid transporter type 2; LAT, L-aminoacid transporter; GS, glutamine
synthetase; GLS, glutaminase, ASCT-2, glutamine transporter.

8 A. Castegna et al. / Pharmacology & Therapeutics xxx (2020) xxx
associates to the disease progression (Walsh & McWilliams, 2014).
Monocytes and macrophages play a fundamental role in the disease
pathogenesis (Udalova, Mantovani, & Feldmann, 2016). Their infiltra-
tion in the inflamed synovial membrane and cartilage junctions is sig-
nificant (Kinne, Stuhlmüller, & Burmester, 2007; Mulherin, Fitzgerald,
& Bresnihan, 1996) and correlates to joint damage (Udalova et al.,
2016), which occurs through stimulation of T cell responses. In animal
models of RA, macrophage depletion by clodronate liposomes reduces
disease progression by limiting inflammation and joint damage, al-
though it is known that circulating monocytes and other cells of the
mononuclear phagocyte system can also contribute to the pathology
(Richards, Williams, Goodfellow, & Williams, 1999).

Infiltratedmacrophages promote inflammation by secretion of cyto-
kines and chemokines. They sustain the main production of TNF in the
synovial membrane and at the cartilage-pannus junction in RA patients
(Buchan et al., 1988; Husby &Williams, 1988) and promote secretion of
CC chemokine ligand 3 (CCL3), CC chemokine ligand 5 (CCL5) and CX3C
chemokine ligand 1 (CX3CL1) (involved in monocyte recruitment and
activation), and CXC chemokine ligand 8 (CXCL8) and CC chemokine li-
gand 2 (CCL2) (involved in neutrophil and monocyte recruitment)
(Koch et al., 1992; Loetscher, Dewald, Baggiolini, & Seitz, 1994) which
may also function in an autocrine manner (Haringman, Kraan, Smeets,
Zwinderman, & Tak, 2003). In linewith the secretive asset of RAmacro-
phages, the predominant phenotype is “M1-like”. Indeed the M1/M2
ratio is increased in RA patients whereas it decreases in clinical remis-
sion patients (Fukui et al., 2017; Kennedy, Fearon, Veale, & Godson,
2011). The polarization toward a M1-like state seems to be linked to
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different mediators. The anti-citrullinated protein/peptide antibody
(ACPA), that is elevated with high specificity in RA, induces the tran-
scription factor interferon regulatory factor 5 (IRF5) that promotes
monocyte polarization to aM1-like state (Zhuet al., 2015). Several stud-
ies implicate the involvement of Notch signaling in the polarization of
macrophages toward a M1-like state, since its inhibitor thapsigargin
promotes a switch of M1 macrophages toward a M2-like phenotype,
that in vivo ameliorates join damage and bone loss (Sun et al., 2017).
However, as already mentioned, it is clear that in vivomacrophage po-
larization setting ismore a spectrumof these two states rather than a bi-
nary separation, an observation that also holds in relation to the
metabolic status of these cells. RA macrophages are highly glycolytic
and produce high levels of ATP to meet their energy demands
(Zeisbrich et al., 2018) with upregulation of GLUT1 and 3 and different
glycolytic enzymes (Fig. 3B). The increased glycolytic flux is not accom-
panied by a sustained oxidative phosphorylation and this leads to ROS
production and induction of inflammatory genes, such as IL-1β (Shirai
et al., 2016; Weyand & Goronzy, 2017; Weyand, Zeisbrich, & Goronzy,
2017) that in RA monocytes seems to be mediated by NLRP3 (Ruscitti
et al., 2015). The high expression of HIF-1α in RA synovial fluid
(Hollander, Corke, Freemont, & Lewis, 2001) suggests its involvement
in the metabolic abnormalities and release of IL-1β in RA macrophages
(Tannahill et al., 2013) and this is substantiated by the in vivo protective
effect of themacrophage-specific HIF-1α deletion against myeloid infil-
tration and disease progression (Cramer et al., 2003). Succinate is also
accumulating in RA joints and might concur to HIF1α stabilization
(Tannahill et al., 2013). It binds to GPR91, which in RA sustains
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macrophage activation and secretion of IL-1β (Littlewood-Evans et al.,
2016) (Fig. 3B). Although central in driving macrophage activation in
hypoxia, HIF-1α is known to synergistically operate with NF-κB
(Bruning et al., 2012), which seems to be the main regulator of
monocytes (that are insensitive to HIF1α) (Fangradt et al., 2012) in
RA synovial hypoxic tissue (Fangradt et al., 2012; Oliver et al.,
2009) (Fig. 3B). The importance of hypoxia in driving inflammation
is also substantiated by the fact that macrophages infiltrate the
low-oxygen microenvironment of the joint, and alter their metabo-
lism and phenotype (Ng et al., 2010). Indeed monocytes from RA pa-
tients express high levels of the chemokine receptor CXCR4 (Yang,
Yao, & Wang, 2018).

The current therapeutic strategies aim at rebalancing the M1/M2
ratio. However, the studies analysing the effects of RA biological
Disease-modifying Antirheumatic Drugs (bDMARDs) on macrophage
polarization are scarce. Anti-cytokine bDMARDs are known to reduce
inflammation by limiting recruitment of monocytes/macrophages iso-
lated from patients (Degboé et al., 2019). Anti-TNFα agents not only
shift macrophage phenotype toward a M2-like state, but also inhibit
the expression of inflammatory cytokines (TNF-α, IL-6, IL-12) and in-
duce the phagocytosis of macrophages by increasing IL-10 production
(Ma & Xu, 2013).

Glucocorticoids are also known to shift macrophages of RA patients
to the M2-like state similarly to other DMARDs, such as methotrexate
and leflunomide (Scott et al., 2001; Weinblatt, 2013). Evidence on the
effect of metabolic targets on significantly affecting RAmacrophage po-
larization ismissing and needs to be explored. A new target opportunity
comes from small molecules, such as janus kinases (JAK) inhibitors that
block IL-6, IL-15 and IL-17 cytokine signaling. Their beneficial effect
seems to act through prevention of STAT activation (Genovese et al.,
2016; Kivitz et al., 2018). However, evaluation of their role on macro-
phage function is far from being elucidated.

4.3. Atherosclerosis

Atherosclerosis is a chronic inflammatory disease, which progres-
sively culminates to cardiovascular pathologies that represent the
main cause of death worldwide (Herrington, Lacey, Sherliker,
Armitage, & Lewington, 2016). Indeed, a great number of cardiovascular
events, including heart attack and stroke, are caused by the rupture of
atherosclerotic plaques in arterial vessels that can be followed by
thrombus formation and fragmentation.

Atherosclerosis is characterized by a chronic low-grade sterile in-
flammation in the artery walls, that is initiated by the retention of
cholesterol-rich lipoproteins. In the arterial wall microenvironment,
these lipoproteins are subjected to oxidation or enzymatic and non-
enzymatic cleavage and aggregation. Their accumulation triggers the
activation of resident macrophages and the recruitment of monocytes
into the intima, where they differentiate in macrophages that ingest li-
poprotein particles and eventually become foam cells. The latter can re-
lease molecules that further induce cholesterol deposition, proteolytic
degradation of the extracellular matrix (Chinetti-Gbaguidi, Colin, &
Staels, 2015) and express genes related to lipid processing (Kim et al.,
2018). As the atherosclerotic plaque progresses, local hypoxia promotes
neovascularization (Heikal & Ferns, 2017). However, at the advanced
stages, angiogenesis becomes defective, thereby resulting in vascular
leakage and hemorrhage. The surrounding macrophages play a major
role also in this context, as they are able to uptake hemoglobin (Hb),
iron and red blood cells.

Taken together, macrophages appear to play a pivotal role in the var-
ious stages of atherosclerosis. Due to their different functions, it is not
surprising that they display a large variety of phenotypes within the
plaque. Indeed, macrophages are extremely plastic and can switch
from one phenotype to another depending on the environment. Choles-
terol deposit into the intima results in M1 polarization and pro-
inflammatory response, and its crystals were found to activate the
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NLRP3 inflammasome, which results in the maturation and release of
the inflammatory cytokine IL-β (Chinetti-Gbaguidi et al., 2015;
Duewell et al., 2010). On the other hand, IL4/IL13-activated M2-like
macrophages contribute to tissue repair and inflammation resolution.
M2 macrophages upregulate liver X receptors (LXRs), which mediate
important athero-protective activities by modulating cholesterol me-
tabolism (Calkin & Tontonoz, 2010). In addition, they promote
efferocytosis by scavenging apoptotic cells. A third macrophage pheno-
type, named Mox, has been recently identified in advanced lesions in
mice (Kadl et al., 2010), representing 30% of the total number of macro-
phages. Oxidized phospholipids promote the formation of thesemacro-
phages by inducing Nrf2-dependent gene expression (Kadl et al., 2010).
Mox macrophages display reduced phagocytic and chemotactic capaci-
ties, as compared to M1 and M2. In the haemorrhagic zones of human
atherosclerotic lesions, haem directs macrophage polarization towards
the Mhem phenotype (Boyle et al., 2012). Intracellular accumulation
of iron and Hb enhances the activity of the oxysterol- activated LXRα,
thereby inducing cholesterol efflux and preventing foam cell.

There is a great interest in elucidating how changes inmetabolism of
macrophages affect their function, to develop therapeutic strategies that
revert the inflammatory phenotype in the atherosclerotic plaque
(Bories & Leitinger, 2017; Koelwyn, Corr, Erbay, &Moore, 2018). The en-
couraging findings of a recent clinical trial showing that anti-IL-1β anti-
bodies decrease cardiovascular events in high-risk patients (Ridker
et al., 2017) sustain this approach, although only few studies are
reported.

A fundamental factor that can influence macrophage metabolism is
hypoxia. Indeed, the plaques are characterized by hypoxic regions,
where HIF1α is stabilized and activates glycolysis, by increasing the ex-
pression of GLUT1, HK2 and PFKFB3 (Tawakol et al., 2015). However, it
is still unclear whether the increase in glucose metabolism reflects the
plaque development (Tabas & Lichtman, 2017; Tawakol et al., 2015).
The increased glycolysis is paralleled by an increase of PPP, that is crucial
for cholesterol, lipid and nucleotide synthesis (Yamashita et al., 2014).
In fact, these macrophages accumulate LDs and cholesterol (Fig. 3C).
An elevated amount of PPP metabolites was determined in atheroscle-
rotic rabbit arteries. Notably, the impairment of the PPP pathway due
to glucose 6 phosphate dehydrogenase (G6PDH) deficiency lowers
ROS levels and the atherosclerotic lesion size in ApoE-/- mice (Matsui
et al., 2006). Moreover, monocytes and macrophages from patients
with coronary artery disease were found to display a higher glucose
uptake and glycolytic flux, as compared to those from healthy subjects
(Shirai et al., 2016). This metabolic signature fuels the generation of
mitochondrial ROS, which in turn promote dimerization of PKM2
and the consequent STAT3 activation, resulting in increased levels of
the pro-atherogenic cytokines IL-6 and IL-1β (Shirai et al., 2016)
(Fig. 3C).

Mitochondria were found to play a critical role in atherosclerosis
(Madamanchi & Runge, 2007). In thefirst studies, atherosclerotic vascu-
lar lesionswere related tomitochondrial oxidative stress, although clear
evidence of causation and cell-specific proatherogenic mechanisms of
mitochondrial oxidative stress was not provided. More recently, Tabas’
group showed that oxidized LDL or lipoprotein(a) can inducemitochon-
drial oxidative damage and progressive impairment of the mitochon-
drial respiratory chain, thereby preventing the shift toward OXPHOS
(Wang et al., 2017; Wang, Wang, Rabinovitch, & Tabas, 2014). Impor-
tantly, selective inhibition ofmitochondrial oxidative stress by amurine
model in which the enzyme scavenger catalase is expressed only in
macrophage mitochondria reduces NF-κB p65 activation, expression of
proinflammatory cytokines, and aortic lesion area (Fig. 3C). On the con-
trary, quenching non mitochondrial ROS by cytosolic catalase leads to
enhanced LPS-induced inflammatory cytokine inductionwithout affect-
ing NF-κB activation (Wang,Wang, Rabinovitch, & Tabas, 2014), further
highlighting the importance of mitochondrial performance.

mTOR is a key player also in the development of this disease, al-
though as described above its role in macrophage polarization is quite
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complex. Both pharmacological and genetic mTOR inhibition signifi-
cantly reduces macrophage infiltration and the size of the lesion (Ai
et al., 2014). Moreover, the inhibition of mTOR promotes macrophage
autophagy that is beneficial in this pathology as it enhances removal
of dysfunctional components (Martinet, Verheye, & De Meyer, 2007).
On the other hand, the activation of AMPK was found to have various
protective function in atherosclerosis (Vasamsetti et al., 2015; Wang,
Ma, Zhao, & Zhu, 2017), including the induction of autophagy in smooth
muscle cells and suppression of ER stress in endothelial cells. Specifi-
cally, in macrophages AMPK promotes catabolic pathways (FAO and
OXPHOS), activates the receptor LXRα that promotes cholesterol efflux
by upregulating the expression of the ABCA1 and ABCG1 cholesterol
transporters, thereby resulting in prevention of foam cell formation
(Kemmerer, Wittig, Richter, Brüne, & Namgaladze, 2016; Li et al.,
2010; Wan et al., 2013).

4.4. Cancer and tumour associated macrophages

The tumour microenvironment (TME) is composed of tumour cells
as well as infiltrating immune cells, endothelial cells, fibroblasts, se-
creted factors and cytokines as well as extracellularmatrix proteins sur-
rounding the primary tumour. The composition of the TME strongly
impacts tumour development in many different ways. It is increasingly
immunosuppressive, which inevitably limits immune cell infiltration.
This is known to occur also through metabolism. A typical feature of
cancer cells is an abnormal metabolism that associates to a pronounced
depauperation of available nutrients, such as glucose. This instates a nu-
trient competition that might induce tumour progression by limiting
source availability for immune cells (Chang et al., 2015; Ho et al., 2015).

TAMs are part of the TME. Characterizingmacrophages in vivo by the
dichotomous M1/M2 classification might be simplistic due to their dy-
namic plasticity. There is evidence that during cancer progression
TAMs acquire some features shared by in vitro skewedM2macrophages
(Condeelis & Pollard, 2006; Qian & Pollard, 2010) but their role in sus-
taining and regulating tumour growth, angiogenesis, invasion and me-
tastasis (Condeelis & Pollard, 2006; Flerin, Pinioti, Menga, Castegna, &
Mazzone, 2019; Franklin & Li, 2014) represents the ultimate result of
different states, both pro-tumoral and anti-tumoral, concomitantly
present. The developmental stage of a tumour also plays an important
role: from a metabolic point of view, in the early stage TAMs display a
more glycolytic metabolism, which is gradually modified toward mito-
chondrial metabolism and OXPHOS (Boscá et al., 2015). This is associ-
ated to a polarized state toward an anti-tumoral function in the stages
of tumour initiation and progressively changes toward an immunosup-
pressive pro-tumoral state in advanced stages of tumour progression
(Franklin & Li, 2014).

The impact of metabolism on TAM function has been deepened by
studies on the mTOR pathway. The mTOR kinases are constituents of
the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2),
which regulate cell growth and proliferation (Düvel et al., 2010;
Zarogoulidis et al., 2014). Once activated by different factors, mTORC1
and mTORC2 lead to recruitment of phosphatidylinositol 3 kinases
(PI3Ks) and subsequent activation of the serine/threonine kinases
AKT1, AKT2 and AKT3. The physiological inhibitors of mTORC1 are TSC
1 and 2 (Düvel et al., 2010; Housden et al., 2015; Mercalli et al., 2013;
Zarogoulidis et al., 2014), and rapamycin is a drug specifically targeting
mTORC1. mTORC2 activates and tunes AKT substrate specificity and
plays a role in modulating cytoskeleton reorganization (Weichhart,
Hengstschläger, & Linke, 2015). The role of the PI3K-AKT-mTOR axis
in sustaining M1/M2 macrophage polarization is not well understood,
since contradictory evidence has been gathered with this respect (see
for a review Weichhart et al., 2015). This is probably due to the fact
that the PI3K-AKT-mTOR pathway is the collector of signalling emanat-
ing not only from growth factors and cytokines but also from environ-
mental signals with different downstream effects (Weichhart et al.,
2015). This pathway has been investigated in TAMs, obviously with
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discrepant results. The switch to glycolysis in TAMs is under the control
of the Akt-mTOR axis. Activation of PI3K-Akt upregulates glycolysis
(Smith et al., 2012) through stabilization of HIF1α with accumulation
of succinate and citrate in the cytosol (Huang et al., 2014; Krawczyk
et al., 2010), leading to inflammation. However, PI3Kγ-selective inhibi-
tion with IPI-549 reprograms TAMs toward an anti-tumoral function
and potentiates anti-PD-1 therapy in mouse tumour models (Kaneda
et al., 2016) and it is currently in Phase-1 clinical trial (Kaneda et al.,
2016). Since mTOR activation overwrites that effect and polarizes mac-
rophages towards an immunosuppressive phenotype (Byles et al.,
2013), it should be expected that mTOR inhibition rescues the inflam-
matory phenotype in TAMs. In contrast to this logical hypothesis,
TAMs lacking the mTOR inhibitory protein, REDD1, show a general
anti-tumoral function. Their enhanced glucose consumption reduces
nutrient availability for endothelial cells (Wenes et al., 2016), leading
to vessel normalization, decreased hypoxia and inhibition of metastasis
formation (Wenes et al., 2016). Glucosemetabolism is also sustained by
PKM2, since in its dimeric form it potentiates HIF1α activity (Palsson-
Mcdermott et al., 2015). These events linked to HIF1α activation do
not unidirectionally characterize the TAMs phenotype. Indeed the pro-
duction of lactate, which accumulates during hypoxic conditions,
skews TAMs toward immune suppressive and proangiogenic functions,
promoting tumorigenesis (Colegio et al., 2014). PKM2 itself can pro-
mote a M2-like phenotype when present in an active tetrameric func-
tion (Palsson-Mcdermott et al., 2015) (Fig. 3D).

TAMs are known to produce NO from arginine, thus promoting an
anti-tumoral function (Ho & Sly, 2009; Stuehr, 1989). However, one of
the typical enzyme of TAMs is ARG1 that produces polyamines from ar-
ginine, leading to a pro-tumoral function (Chang, Liao, & Kuo, 2001)
(Fig. 3D). By metabolizing arginine through ARG1, TAMs interfere
with the anti-tumor activity of T cells as this depletes the arginine
pool for NO and protein synthesis, leading to impaired TCR function
(Popovic, Zeh, & Ochoa, 2007; Rath, Müller, Kropf, Closs, & Munder,
2014) and T cell differentiation (Geiger et al., 2016). Finally, glutamine
metabolism, which is traditionally considered a fuel for inflammatory
macrophages (Murphy & Newsholme, 1998) displays a peculiar feature
in TAMs. The ability of TAMs to synthesize glutamine through GS activ-
ity promotes their immunosuppressive, pro-angiogenic and metastatic
function (Palmieri et al., 2017). This is probably to be ascribed to the
role of glutamine in protein glycosylation, which is a crucial event dur-
ing the differentiation of macrophages towards a “M2-like” phenotype
(see above) (Fig. 3D). Tryptophan metabolism is also a peculiar feature
of TAMs, which express high levels of IDO, the enzyme involved in first
and rate-limiting step of the kynurenine pathway (Platten et al., 2015;
Wang et al., 2014). Tryptophan depletion, IDO activity and kynurenine
are known to regulate T cell differentiation and activation (Fallarino
et al., 2006; Munn et al., 2005; O’Neill et al., 2016; Platten et al., 2015).
Products of tryptophan catabolites display an inhibitory effect on T
cells (Frumento et al., 2002; Weber et al., 2006) (Fig. 3D).

Lipid metabolism is fundamental for the acquisition of the different
functions ofmacrophages. However, very little is known about lipidme-
tabolism and its role in shaping the functional phenotype in TAMs.
TAMs express high levels of fatty acid synthase and upregulate PPAR
signalling, which promotes fatty acid oxidation and tumour growth
(Fig. 3D). PPARγ is known to mediate alternatively activated macro-
phage polarization (Deng et al., 2015), although evidence to the con-
trary is also present (Van Ginderachter et al., 2006). This suggests that
the response of TAMswith respect to lipidmetabolism is heterogeneous
and far from being understood.

Lipid oxidation is important in TAMs metabolism. COX-1 is upregu-
lated in TAMs and this associates to an enhanced release of PGE2
(Poczobutt et al., 2016), which supports immune suppression, angio-
genesis, and cancer cell migration (Baxevanis et al., 1993). In the
Lewis Lung carcinoma (LLC) murine model, TAMs express COX-2
(Poczobutt et al., 2013), which is also noted in human melanoma
(Bianchini et al., 2007). The role of COX-2 in macrophage function is
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underlined by the finding that COX-2-expressing macrophages are a
prerequisite for IL-1β-induced neovascularization and tumour growth
(Nakao et al., 2005). Additionally, in TAMs from renal cell carcinoma
the eicosanoid pathway is enhanced through 15-lipooxygenase-2 (15-
LOX-2) activation, leading to secretion of the arachidonic acid metabo-
lite 15-hydroxyeicosatetraenoic acid (15(S)-HETE) (Daurkin et al.,
2011). The acquisition of this metabolic feature associates with CCL2
and IL-10 production, promoting immune tolerance (Daurkin et al.,
2011).

In a mouse model of mammary adenocarcinoma, TAMs expressing
high levels of epidermal fatty acid binding protein (E-FABP), an intracel-
lular lipid chaperone, display a “M1-like” phenotype and anti-tumour
activity (Zhang et al., 2014). In line with this finding, E-FABP expression
is lower in stroma from invasive tumours and negatively correlateswith
cancer progression (Zhang et al., 2014). The underlining mechanism
probably relies on the E-FABP ability to mobilize tumour-derived lipids
to form lipid droplets that concur to upregulate interferon β (IFNβ),
leading to recruitment of natural killer (NK) cells and increase of anti-
tumour activity in the TME (Zhang et al., 2014). The in vivo administra-
tion of the E-FABP activator EI-05 in a mouse mammary tumour model
significantly reduces tumour growth (Rao et al., 2015). However, in
TAMs fromovarian cancer patients, the PPARβ/δ target genes are upreg-
ulated, although this transcription asset is associated to a pro-tumoral
function of TAMs (Schumann et al., 2015). In this case, polyunsaturated
FAs of tumour origin accumulate in TAMs as stable droplets providing a
reservoir of PPARβ/δ ligands to TAMs. This contributes to a stable upreg-
ulation of PPARβ/δ target genes associated to inflammation, cell migra-
tion and tumour progression including pyruvate dehydrogenase kinase
4 (PDK4), LDL receptor-related protein 5 (LRP5), CD300A, mitogen-
activated protein kinase 8 (MAPK8) and angiopoietin-like 4 (ANGPTL4)
(Schumann et al., 2015). These findings contribute to the notion that,
similarly to other metabolic pathways, lipid metabolism in TAMs pro-
vides different and contrasting signals and its effect on TAM function
is strictly TME-dependent.

From a therapeutic point of view, efforts against TAMs pro-tumoral
functions are mainly directed towards TAM depletion (reviewed in
Cassetta & Pollard, 2018). TAM depletion by trabectedin-mediated apo-
ptosis is found to successfully limit tumour growth and metastatic
spread (Germano et al., 2013). Eradication of TAMs using clodronate is
effective in reducing lung and lymphoma progression (Fritz et al.,
2014; Wu et al., 2014) and angiogenesis in murine cancer models
(Reusser et al., 2014; Zeisberger et al., 2006). However, other studies
highlight potential adverse effects of TAM depletion (Kim et al., 2008;
Reed et al., 2008). Acting on monocyte recruitment to the tumour site
is also used as a strategy for reducing TAM expansion. This process is
mediated by CCL2-CCR2 axis. CCL2, released by tumour cells, is a potent
chemoattractant for monocytes, T and NK cells, that express the recep-
tor CCR2. Inhibition of CCL2-CCR2 signalling is successful in reducing
cancer progression in several experimental models of cancer (Li et al.,
2013; Qian et al., 2011) and different anti-CCL2 antibodies and inhibi-
tors of the CCL2 receptor are currently in clinical trials (Cassetta &
Pollard, 2018). Targeting the Colony stimulation factor 1 (CSF1)-CSF1
receptor (CSF1R),whichpromotes differentiation, proliferation and sur-
vival of monocytes and macrophages, is also under evaluation. CSF1R-
targeted therapies have been found to inhibit monocyte and macro-
phage recruitment and to improve chemotherapy and immunotherapy
in preclinical models (Peranzoni et al., 2018). CFSF1R targeting induces
a reprogramming of TAMs (Pyonteck et al., 2013) and is currently tested
in clinics (Edwards et al., 2018; Papin et al., 2019). Finally in recent
years, several molecules able of reprogrammingmacrophages polariza-
tion from M2-like to M1-like, such as Class IIa histone deacetylase
(HDAC) inhibitors, have been identified (Guerriero, 2018; Guerriero
et al., 2017).

Evidence on the effect of targeting TAMmetabolism to affect cancer
progression is growing. In particular, metabolic targeting of TAMs is
evaluated in combination to the common PD-1 immunotherapy. One
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of these, IDO1 inhibition in combination with checkpoint inhibitors,
has reached clinical Phase 1 and 2, but it did not always show additional
benefit to the anti-PD antibody use (Soliman et al., 2018).

Studies testing the effect of ARG1 inhibition alone or in combination
with anti-PD1 therapy showed a significant early effect of the ARG1 in-
hibitor, although the combination did not exert any additional effect
(Arlauckas et al., 2018). Targeting of the COX2/mPGES1/PGE2 axis re-
duces PD-L1 expression in myeloid cells infiltrating the tumour
(Prima, Kaliberova, Kaliberov, Curiel, & Kusmartsev, 2017). Myeloid
specific LDH-A blockade reverts immunosuppression and TAM pheno-
type towards an anti-tumoral one, while affecting the number of PD-
L1+ cancer cells (Seth et al., 2017). Glutamine and lipid metabolism
are potential targets. GS is a promising pharmacological target to revert
TAMphenotype, since theGS specific deletion inmacrophages leads to a
shift toward the “M1-like” phenotype associated with reduced angio-
genesis, immunosuppression and decreased metastasis (Palmieri et al.,
2017). Furthermore, ovarian cancer progression is reduced by targeting
the ABC transporter responsible for cholesterol efflux from macro-
phages (Goossens et al., 2019). Other approaches on non-metabolic tar-
gets affecting metabolism in TAMs include activation of the Toll-like
receptor 9 with a CpG oligodeoxynucleotide to promote anti-tumor ac-
tivity (Liu et al., 2019), and targeting macrophage-associated V-set Ig
domain-containing 4 (VSIG4) to repolarize TAMs towards a M1-like
state (Liao et al., 2014).

5. Pharmacological targeting of macrophages in diseases: perspec-
tives and challenges

It is clear that targetingmetabolic checkpoints inmacrophages offers
the unique opportunity to revert pathological function of macrophages
by selective inhibition of specific enzymes rather than ablation of gen-
eral macrophage function (Beatty et al., 2011; Casazza et al., 2013).
Indeed, a general depletion of macrophages might not be recom-
mended, since macrophages can play beneficial functions. Evidence on
the effects of macrophage depletion depends on the disease under
study. For instance, macrophage depletion in atherosclerotic plaque
can be useful only at the early stage of the disease (Martinet,
Coornaert, Puylaert, & DeMeyer, 2019). As a further drawback, systemic
clearance of macrophages (from the whole body) has been associated
with an increased risk of infection (Purnama et al., 2014), which is obvi-
ously adverse in clinical settings. However, TAM-depleting strategies
have shown a significant level of efficacy in cancer (see Section 4.4).

Pharmacological targeting of metabolism might represent an inno-
vative approach, although with significant drawbacks, such as systemic
toxicity and off-target effects. With this respect, studies on glucocorti-
coids are enlightening. Glucocorticoids represent a very powerful way
to re-polarize macrophages to an anti-inflammatory phenotype. How-
ever, their strong effect on non-macrophagic cells can be systemically
harmful. Different strategies have been developed to overcome this
problem and achieve a significant reduction in the amount of drug
used, that is: (I) conjugation of the molecule to a ligand or antibodies
against highly expressed surface receptors; (II) nanoparticle (NP)/mi-
croparticle (MP) delivery; (III) a combination of I and II.

Among the differentmacrophagicmarkers, CD163might be a poten-
tial target for intracellular delivery of drugs to macrophages, either by
using hemoglobin as ligand or targeting antibodies, due to its constitu-
tive function as endocytic receptor (Adair, Howard, Hartley, Williams,
& Chester, 2012; Harper, Mao, Strout, & Kamal, 2013). Exposure to the
drug is reduced as the ligands bound to CD163 are rapidly internalized.
Low-dose anti-CD163-dexamethasone conjugate effectively decreases
inflammation in the hepatic acute phase response in LPS treated mice
(Thomsen et al., 2016) and limits inflammation and liverfibrosis in fruc-
tose induced -severe non-alcoholic steatohepatitis (NASH)-like
(Svendsen et al., 2017), demonstrating the anti-inflammatory potential
of the conjugate in vivo. CD206, the mannose receptor, has been widely
exploited with this respect, by using mannose and galactose as ligands,
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Table 2
Nanotechnology systems to target macrophages in disease.

Drugs or targets Effects Models/Status References

Liposome IL-6 receptor- or
CD163-targeted
liposomes

Deplete macrophages In vitro and in vivo preclinical models for AT (human freshly
purified monocytes, RjOrl:SWISS; C57BL/6JRj mice)

Kelly et al., 2011; Rafique et al.,
2019

CD163
antibody-coated
liposomes

Deplete macrophages In vitro and in vivo preclinical models for AT and RA (human
peripheral blood CD14+ monocytes; DBA/1J mice)

Etzerodt et al., 2012;
Alvarado-Vazquez et al., 2017;
Yang et al., 2017

BPs-liposomes Deplete macrophages M1 to
M2 subtype polarization

In vitro preclinical models for cancer (murine 4T1 breast cancer
cell line; 3T3 fibroblast; J774 murine macrophage cell line)

Sousa, Auriola, Mönkkönen, &
Määttä, 2015

Clodronate-loaded
liposomes

M1 to M2 subtype
polarization

In vivo preclinical models for AT (C57BL/6J mice) Sercombe et al., 2015: Feng et al.,
2011;

Hb-changed liposome M1 to M2 subtype
polarization

In vitro preclinical models for cancer (THP-1) Zhang & Palmer, 2012;

STAT3 siRNA M1 to M2 subtype
polarization

In vivo preclinical models for cancer (B16-F10 murine melanoma
in C57BL/6 mouse melanoma model)

Jose, Labala, Ninave, Gade, &
Venuganti, 2018;

LCL-SIM Reduction of oxidative
stress and HIF1α

In vivo preclinical models for cancer (B16-F10 murine melanoma
in C57BL/6 mouse melanoma model)

Alupei, Licarete, Patras, & Banciu,
2015;

Microparticles Y-BGs Induction of autophagy In vitro preclinical models of IRD (mouse macrophage cell line,
J774A.1)

Fatima, Upadhyay, Sharma, &
Sharma, 2017

Dendrimer ABP M1 to M2 subtype
polarization

Preclinical model RA (human freshly purified monocytes) Hayder et al., 2011

2G-03NN24
carbosilane

M1 to M2 subtype
polarization

Preclinical models for cancer (M1 macrophages) Perisé-Barrios et al., 2015

Ab conjugated (anti-TNFα mAb)-HA M1 to M2 subtype
polarization

Preclinical models of IRD (Sprague-Dawley rats) Friedrich et al., 2014

ABP, Phosphorus-based dendrimer aminobisphosphonate; (anti-TNFαmAb)-HA, anti-TNFα antibodies conjugated to hyaluronic acid (HA); AT, atherosclerosis; BPs, Bisphosphonates; HB,
hemoglobin; IRD, inflammatory related diseases; LCL-SIM, simvastatin loaded liposome; RA, rheumatoid arthritis; STAT3, signal transducer and activator of transcription 3; Y-BGs, Yeast-
derived β-glucans.
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or CD206 antibodies. Their specific targeting effect has been demon-
strated in many different diseases including infection (Nahar & Jain,
2009; Rathore et al., 2011) inflammatory bowel disease (Huang, Guo,
& Gui, 2018; Xiao et al., 2013), cancerous tumours (Lanlan Liu, Yi,
et al., 2017; Niu, Valdes, Naguib, Hursting, & Cui, 2016), and
Table 3
Examples of nanodelivery strategies to target macrophages in disease.

Drugs or targets Effects Models/

C-type lectin family Altering activation state Review
SPIONs Reprogramming TAMs from M2 to M1-like subtype Preclinic

human M
Man-HA-MnO2 NPs M2 targeted Review

PEG-and mannose-NP M2 targeted Preclinic
mice)

Mannosylated deliver
siRNA

M2 targeted Preclinic
(mouse

siRNA-NPs Notch1 Preclinic
(CIA mic

M2pep M2 targeted Preclinic
(mice)

AM NPs Suppress the uptake of oxLDL by macrophage Preclinic
DNP LXR activation

(+ macrophage cholesterol transporters,
ABCA1/ABCG1), + cholesterol expression

Preclinic

Statin-loaded HDL Reduced macrophage accumulation in the plaques Preclinic
(Apoe−/

LyP-1 (CGNKRTRGC) Reduced macrophage accumulation in the plaques Preclinic
left com

rHDL Fluo Reduced macrophage accumulation in the plaques Preclinic
(ApoE−/

LT rHDL Macrophage infiltration and expression of matrix
metalloproteinase

Preclinic
(mice)

TLR7/8 agonist-loaded
ciclodextrin NPs

Reprogramming TAMs from M2 to M1-like subtype Preclinic
(orthoto

AMNPs, sugar-based amphiphilic core-shell layered nanoparticles; Apoe−/−, apolipoprotein E
tionalized dendrimer nanoparticles; IRD, inflammatory related diseases; LDLR, low-density lipo
X receptor; LyP-1, cyclic peptide, LyP-1 (CGNKRTRGC);M2pep, peptide designed to recognize sp
with hyaluronic acid (HA) modification; OxLDL, oxidized low-density lipoprotein; PEG-and ma
livery system; RA, rheumatoid arthritis; rHDL Fluo, reconstitutedHDL (rHDL) nanoparticles to d
(hydrophobic core); siRNA-NPs, siRNA against Notch1 (siRNA-NPs) through self-assembled pol
nanoparticles; TLR7/8, toll-like receptor type 7/8.

Please cite this article as: A. Castegna, R. Gissi, A. Menga, et al., Phar
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atherosclerosis (He et al., 2018). Anti-CD11b integrin functionalization
has been shown to promotemacrophage uptake of factors in both mac-
rophages and microglia (Cerqueira et al., 2012; Davis, Reichel, Bae, &
Pennypacker, 2018). CD64 or Fcγ receptor I (FcγRI) could represent an-
other interesting opportunity as it is substantially upregulated in
Status References

on preclinical models for IRD Frenz et al., 2015
al models (cancer murine primary IL-4-activated BMDM;
2-like differentiated THP-1 cells)

Rojas et al., 2016

on preclinical models for AT Song, Liu, Shi, Zhang,
& Chen, 2016;

al models cancer (B16-F10 murine melanoma in C57BL/6 Zhu et al., 2013

al model RA
BMDM)

Yu et al., 2013

al model cancer
e)

Kim et al., 2015

al models cancer Cieslewicz et al., 2013

al models for AT (ApoE−/− mice) Lewis et al., 2015;
al models for AT (LDLR−/− mice) He, Ghosh, & Yang,

2017

al models for AT
− mice)

Tang et al., 2015;

al model for AT (mouse model of macrophage-rich lesions in
mon carotid arteries, LCCAs)

Song, Zhao, Zhu, &
Zhao, 2019

al model for AT
− mice)

Duivenvoorden et al.,
2014

al model for AT Liu et al., 2014

al model cancer
pic breast cancer model mice)

Rodell et al., 2018

–deficient mice; AT, atherosclerosis; CIA, collagen-induced arthritis; DNP, mannose-func-
protein, LDL, receptor; LTrHDL, t lovastatin (LT) delivered by HA-modified rHDL; LXR, liver
ecificallyM2-likemacrophages;Man-HA-MnO2NPs, mannan-conjugatedMnO2particles
nnose-NP, polyethylene glycol (PEG)-sheddable and mannose-modified nanoparticle de-
eliver statins to atherosclerotic plaques. rHDL labeledwith Cy5.5 (lipidmonolayer) andDiR
y-siRNA and thiolated-glycol chitosan nanoparticle; SPIONs, superparamagnetic iron oxide
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macrophages with M1-like phenotype (Akinrinmade et al., 2017;
Hristodorov et al., 2015), making it an attractive candidate for delivery
in rheumatoid arthritis models (Albuquerque, Moura, Sarmento, &
Reis, 2015; Moura et al., 2014). However, despite a great effort and
promising results, the main challenge to be addressed is still the lack
of selectivity, since these molecules are expressed also in macrophages
of liver and spleen, as well as in other cells (for instance CD206 is
expressed by a subpopulation of endothelial cells) (Andón et al., 2017).

Nanomedicines are anticipated to help researchers solving macro-
phage drug delivery issues. Drug delivery systems based on nanoparti-
cles (NPs) have been widely used after several decades of
technological developments and have been already successfully applied
for delivery of antibiotics to macrophages (see for reviews: Kelly,
Jefferies, & Cryan, 2011; Pei & Yeo, 2016; Visser, Van Staden, & Smith,
2019). Exploitation of nanomedicines has several advantages. Size and
surface characteristics can be manipulated (comprising their size
range, hydrophilic and charge characteristics, which allow them to
function as carriers for the delivery of drugs). Release of the cargo at
the target site can be controlled in a precise release and carrier degrada-
tion features can be regulated. Finally, site-specific targeting can be real-
ized by attaching targeting ligands to the surface (Wahlich et al., 2019).
NPs are a family of materials. Synthetic NPs with different structures
have been created using a wide range of materials, including liposomes
(Nguyen, Huang, Gauthier, Yang, & Wang, 2016; Ren et al., 2019),
Table 4
Approved metabolic drugs repositionable to modulate macrophage polarization.

Drugs Indication M

bDMARDs RA: they affect the body’s biological response to various cytokines M
in

anti-TNF agents
(ETA, ADA)

RA: they inhibit TNF-⍺ M
M

Fingolimod
(FTY720)

SM: it downregulates sphingosine-1 phosphate receptor (S1PR) It
M
in

Pravastatin Hypercholesterolemia: it inhibits 3-hydroxy-3-methylglutaryl
coenzyme-A (HMG-CoA) reductase

It

Metformin Type 2 diabetes: it inhibits Complex I, it activates AMP-activated
protein kinase (AMPK), it inhibits glucagon-induced cAMP, it
blocks mitochondrial glycerophosphate dehydrogenase

It
p

Glucocorticoids Anti-inflammatory and immunosuppressive drug: Glucocorticoid
Receptor agonist

It
m
a

LND
(low dose
naltrexone)

Fibromyalgia, Crohn's disease, multiple sclerosis and localized pain
syndromes: competitive opioid receptor antagonist

It
ty

Alpha-lipoic acid Supplement antioxidant may have effects on inflammatory
pathways, glucose control indicators, blood pressure, lipid profiles,
body weight, fat mass, and food intake regulation.

It
in

Omeprazole Lysosomal disorders: inhibition of lysosomal enzymes (proton
pump inhibitors)

It
m

Bafilomycin A1 Lysosomal disorders: inhibition of lysosomal enzymes (V-ATPase
inhibitor)

It
It
m

Chloroquine Malaria: inhibition of the parasytic vacuolar activity It
fa

Carglumic acid Urea cycle disorders (UCDs): it ameliorates hyperammonemia in
N-acetylglutamate synthase deficiency

It
m

4-Phenylbutyrate
4-PBA

Urea cycle disorders: it facilitates glutamine elimination through
urine

A
m
a

Fenofibrate,
gemfibrozil

AT: PPARα agonists, they reduce secretion of CXCL2, TNF-α, IL-6,
activation of p65 of NF-κB, ERK, and TLR4 expression

T
m

Aspirin
(acetylsalicylic
acid, ASA)

Non-steroidal anti-inflammatory drug (NSAID), inhibiting
cyclooxygenases (COX), including COX1 and COX2

It
v
C

ADA, adalimumab; AMPK, AMP-activated protein kinase; ASA, acetylsalicylic acid; AT, a
cyclooxygenases; ETA, etanercept; ERK, extracellular signal-regulated kinase; FTY720, fingolim
LND, low dose naltrexone; NSAID, non-steroidal anti-inflammatory drug; RA, rheumatoid ar
disorders.
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chitosan (Jiang et al., 2017), PLGA (Lavin et al., 2014), dendrimers
(Hayder, Fruchon, Fournié, Poupot, & Poupot, 2011), silica (Huang,
Zhao, Song, & Zhao, 2017) and metals, such as iron oxide or gold
(Mastrotto et al., 2011). Examples of nanomaterials and macrophage-
selective delivery are listed in Tables 2 and 3.

NPs are aimed at overcoming the issue of delivering the drug specif-
ically to macrophages infiltrating at the disease site and not to macro-
phages (or other cells) present in healthy tissues. One possible
strategy is exploiting nanocarriers that are sensitive to metabolic
change, such as changes in the pH values. In the case of the TME, char-
acterized by acidosis (ranging between pH 6.5 and 6.8), NPs have
been designed to release the drug at acidic pH and to be stable in
healthy tissues. An interesting “proof of concept” has been illustrated
by Zhu and co-workers that describe the use of mannose-modified
PLGA NPs coated with a pH-sensitive PEG layer. In healthy tissues (pH
7.4) PEG shields mannose recognition by CD206 macrophages/cells,
whereas in TME (pH 6.8) PEG cleavage exposes mannose to CD206 rec-
ognition by TAMs, promoting a TAM specific uptake (Zhu, Niu, O’Mary,
& Cui, 2013).

This collected evidence suggests that macrophage targeting and
reprogramming is an effective strategy to treat diseases, particularly
cancer. Research onmacrophage-specific delivery is extensivewith sev-
eral strategies available. However,metabolism is currently very scarcely
exploited for macrophage reprogramming. Technological advances in
acrophage effects References

odulation of macrophage polarization; decreased
flammatory burden

Degboé et al., 2019;

odulation of macrophage polarization from M1 to
2 status

Paoletti et al., 2019;

increases the amount of
2 polarized macrophages
atherosclerotic plaques

Sun et al., 2018;
Keul et al., 2007;
Huang et al., 2012;
Keul et al., 2011;

promotes M2 phenotype Zhang, Xiao, & Li, 2018

polarizes macrophages toward the M2 phenotype,
artially dependent on the activation of AMPK

Jing et al., 2018;

displays an anti-apoptotic effect on macrophages
ediated through ERK1/2 phosphorylation in an
denosine receptor A3-dependent-manner

Barczyk et al., 2010; Ehrchen
et al., 2007;

shifts the macrophage phenotype toward the M1
pe

Yi et al., 2012

polarizes microglial cells from a M1 to a M2 state by
hibiting NF-κB nuclear translocation

Wang et al., 2018;

may influence macrophage polarization by
odulating lysosomal function

Liu et al., 2013;

suppresses cancer cell growth
may influence macrophage polarization by
odulating lysosomal function

Yan et al., 2016;

switches TAMs toward a M1-like phenotyp It
cilitates macrophage nanodelivery

Chen et al., 2018;
Wolfram et al., 2017;

might influence macrophage polarization by
odulating the citrulline/ornithine ratio

Haberle & McCandless, 2014;

T: it increases the expression of HSP25 in
acrophages, preventing macrophages cell death
nd monocyte-macrophage differentiation

Lynn et al., 2019;

hey inhibit M1 polarization by a β-defensin mediated
echanism

Ann, S. jin, Chung, J. H., Park,
B. H., Kim, S. H., Jang, J., Park,
S., … Lee, S. H., 2015

inhibits the activation of LPS-induced macrophages
ia the IκK/IκB/NF-κB pathway and the
OX2/PGE2/EP2/NF-κB positive feedback loop

Liu, Yi, et al., 2017;

therosclerosis; bDMARDs, biological Disease-modifying Antirheumatic Drugs; COX,
od; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme-A; HSP25, heat shock protein 25;

thritis; S1PR, sphingosine-1 phosphate receptor; SM, multiple sclerosis; UCD, urea cycle
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drug delivery might boost the targeting of metabolic reactions in such a
way to modulate metabolic checkpoint of macrophage function. With
this respect, NPs sensitive to themetabolic changes occurring in the dis-
ease environment are strongly awaited.
6. Conclusions

The research in inflammation-linked diseases is now opening new
perspectives based on the growing knowledge of themetabolic changes
that macrophages undergo during the different polarization processes.
Understanding the role of metabolic pathways in the balance between
pro and anti-inflammatory properties of macrophages is fundamental
to achieve their rewiring, based on selective inhibition of specific en-
zymes rather than unspecific ablation of macrophage function, which
is not always beneficial. Exploitation of small molecules as enzyme in-
hibitors, rather than antibodies,might produce important consequences
with respect to both costs and efficacy. Specifically, preferential
targeting to diploid cells, such as macrophages, is awaited in cancer
since it would circumvent drug resistance that inevitably accompanies
rapidly transforming neoplastic cells.

Inhibition of enzymatic activity raises concern about the issue of sys-
temic toxicity, asmost enzymes are ubiquitously present.More effort on
design and development of effective inhibitors is awaited.
Nanomedicines can offer innovative tools to bypass this issue by cell-
specific delivery, with particular attention to delivery strategies sensi-
tive to the metabolic status at the disease site. In spite of the benefits
that nanomedicine has to propose, much research is still essential to es-
timate the safety/ toxicity associated with many NPs (Galvin et al.,
2012). Nanotechnology research has focused on drug delivery, with rel-
atively insufficient studies addressingNPs toxicity (Bhaskar et al., 2010).
Testing NP pharmacokinetics, pharmacodynamics, and potential
chronic toxicity in vivo is crucial for monitoring the effects of NPs on
patients.

Another important issue to overcome is the discrepancy between
in vitro and in vivo states, which is particularly important for macro-
phages. Metabolic characterization of functional states in macrophages
has been mostly achieved in vitro or in murine models, in which polar-
ization occurs in a defined and homogeneous way. This contrasts with
the in vivo situation, in which, as stated above, macrophages display
functions that are the ultimate result of different mediators being acti-
vated, with markers of opposite functional states being present con-
comitantly. Studies on TAMs often confirm that their switch towards
an anti-tumoral function is not mediated by the predominance of
markers classified as “M1-like”, but rather it is the result of complex
mechanisms emanating from metabolic competition involving many
different cells. Targeting a metabolic step within TME might produce
different, or opposite effects compared to an in vitro setting. For these
reasons, it is imperative to obtain insights on the metabolic profiles of
primary macrophages isolated from in vivo tissues. Furthermore, evalu-
ation of the metabolic preferences/limitations of the different cellular
components is highly awaited in order to integrate the information re-
garding the in vivo cell-specific metabolic checkpoints.

Understanding how metabolism affects function in a pathological
setting might benefit from the evaluation of the effects of existing ther-
apeutic approaches on macrophage metabolism, which not always are
available. More needs to be discovered on the role on macrophage me-
tabolism of therapies not targeting macrophage metabolism, with par-
ticular attention to exercise training or diet. This is particularly true for
obesity, in which exercise training is known to reduce inflammation.
Furthermore, the repositioning of knownmetabolic drugs is particularly
suitable to this purpose, since it would bypass the high costs/high over-
all attrition rates and timelines for the discovery and development of
new drugs. A list of approved metabolic drugs with their known func-
tion and their (substantiated or speculated) role in influencing macro-
phage phenotype is reported in Table 4.
Please cite this article as: A. Castegna, R. Gissi, A. Menga, et al., Phar
macrophages, Pharmacology & Therapeutics, https://doi.org/10.1016/j.ph
In conclusion, it is evident that many questions are still unsolved.
However, immunometabolism is emergingnowas afield and is opening
an exciting route for the development of novel therapeutic strategies to
treat immune disorders.
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