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LIMIT CYCLES FOR REGULARIZED DISCONTINUOUS DYNAMICAL

SYSTEMS WITH A HYPERPLANE OF DISCONTINUITY.

LUCA DIECI, CINZIA ELIA, AND DINGHENG PI

Abstract. We consider an n dimensional dynamical system with discontinuous right-hand side

(DRHS), whereby the vector field changes discontinuously across a co-dimension 1 hyperplane

S. We assume that this DRHS system has an asymptotically stable periodic orbit γ, not fully

lying in S. In this paper, we prove that also a regularization of the given system has a unique,

asymptotically stable, periodic orbit, converging to γ as the regularization parameter goes to 0.

1. Introduction

Systems with discontinuous right-hand side (also called piecewise smooth, PWS, systems), have

been actively investigated during the last 20-30 years, because of their relevance in many applica-

tions, such as in control theory, mechanical systems with dry frictions, biological models. See [1],

[3] , [9] and [11], for important theoretical and modeling work.

Among many ways in which one can study DRHS systems, the regularization method is very

appealing, since it replaces the discontinuous system with a smooth system. The first authors

to formally introduce this technique were Sotomayor and Teixeira in 1995, see [19], and recently

this method has been exploited to study singularities, Filippov sliding vector fields and dynamical

behavior near sliding regions of the PWS vector field. See [12], [13], [14] and [16].

Limit cycles of PWS vector fields also are of considerable interest. Several authors have studied

the persistence of limit cycles for regularized planar vector fields; e.g., see [18] and [5]. However,

these results rely heavily on the planar nature of the problem; in particular, they make use of the

Poincaré Bendixson Theorem. Our own interest in this paper is to establish existence (and stability)

of limit cycles of regularization of n-dimensional PWS vector fields (n ≥ 2), having a hyperplane of

discontinuity. We will do so in the cases where the discontinuous system has a periodic orbit with

sliding and/or crossing segments.

The work [2] is a precursor of our results. In that work, the authors considered the case of a

regularized vector field for a discontinuous problem with a limit cycle having a sliding segment. No

crossing case was considered in [2]. Moreover, even for the sliding case, our treatment is different

from [2] . Rather than relying on the implicit function theorem applied to the Poincaré map, as the
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authors proposed in [2], we will first use Brouwer’s fixed point theorem to establish the existence

of a periodic orbit for the regularized problem, and then study its stability properties by exploiting

the associated monodromy matrix. Moreover, we provide a unified treatment of limit cycles with

sliding and/or crossing.

Let x = (x1, x2, · · · , xn) ∈ Rn, and let h(x) ≡ x1. Define the switching manifold as S = h−1(0),

and let R+ = {q ∈ Rn : h(q) > 0}, R− = {q ∈ Rn : h(q) < 0}. Consider the following system with

discontinuous right-hand side:

ẋ = F0(x) =

F+(x), if x ∈ R+

F−(x), if x ∈ R− .
(1)

Here, F− and F+ are Cr functions, where r ≥ 1, which we assume to be well defined in R∓, on S,

and in a neighborhood of S. Write F0 = (F−, F+). A smooth function φ : R → R is a transition

function if φ(x) = −1 for x ≤ −1, φ(x) = 1 for x ≥ 1 and φ′(x) > 0 if x ∈ (−1, 1). To fix ideas, we

consider the following C1 function

(2) φ(z) =


−1 z < −1

3
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1
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.

O

1

-1

1 x
1

-1

Ф(x
1
)

Figure 1. Graph of transition function φ(x1)

The φ-regularization of F0 = (F−, F+) is a 1-parameter family of vector fields Fε, connecting

F− and F+, and giving the following regularized system for (1):

(3) ẋ = Fε(x) =
1

2

(
1− φ

(
h(x)

ε

))
F−(x) +

1

2

(
1 + φ

(
h(x)

ε

))
F+(x).

When needed, we will use the notation φε(z) = φ( zε ). The vector field Fε is an average of F− and

F+ inside the boundary layer {x ∈ Rn| − ε < h(x) < ε}, while it is equal to either F− or F+ outside

the boundary layer.

In [18] and [6], the authors consider discontinuous planar systems. They show that if γ is a

hyperbolic periodic orbit of (1) in R2, then, under suitable assumptions, the regularized vector field

(3) has a hyperbolic limit cycle γε, converging to γ as ε→ 0.

In this paper, we consider vector fields in Rn, with a co-dimension 1 hyperplane of discontinuity,

for any n ≥ 2. Under appropriate assumptions, we will prove that, if the original PWS system has

an asymptotically stable periodic orbit, then so will the regularized system. We mention that this

is not a trivial generalization. There are two main difficulties. The first is that for non-planar
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problems we do not have a Poincaré-Bendixson Theorem to help us in establishing existence of the

limit cycle (cfr. with [4, 5, 6, 18]); extensions of the Poincaré-Bendixson Theorem for systems in

Rn, see [17, 21], require special type of systems (competitive or monotone systems), which do not

fit our type of problem. The second difficulty is to establish the stability of the limit cycle of the

regularized problem. We will do this by using the monodromy matrices of the discontinuous and

regularized problems, and showing that the latter converges (as ε→ 0) to the former.

The remainder of this paper is organized as follows. We give some definitions and state our

main result in section 2. In section 3, we prove our main result. Conclusions are in section 4. In

Appendix A, we give proofs of some technical results needed in section 3.

2. Basic definitions and main result

In this section, we will give definitions and assumptions.

We assume that F± are Cr, r ≥ 1, in R± and in a neighborhood of S. We denote the flow of

(1) as ϕt0(x) and the flow of (3) as ϕtε(x).

Definition 1. A subset U of S is said to be an attractive (repulsive) sliding subset if for all x ∈ U
the following occurs

(4) ∇hTF−(x) > 0 and ∇hTF+(x) < 0 (∇hTF−(x) < 0 and ∇hTF+(x) > 0).

A point x that verifies (4) is said to be an attractive (repulsive) sliding point. If a solution of (1)

slides on an attractive (repulsive) subset of S, we say that attractive (repulsive) sliding occurs along

the solution.

If a solution intersects S at an attractive sliding point x then it must remain on S. However the

vector field F0 is not defined on S and a sliding vector field needs to be defined. We follow Filippov

(see [9]) and for each x ∈ S that verifies the first condition in (4) we define the sliding vector field

as

(5) FS(x) =
1

2
[(1− φ∗)F− + (1 + φ∗)F+] (x), φ∗(x) =

∇hT (F− + F+)

∇hT (F− − F+)
(x),

where the value of φ∗(x) in (5) is such that ∇hTFS(x) = 0.

In this paper we will also make use of the following definitions.

Definition 2. Let x ∈ S. Then

i) x is a crossing point if (∇hTF−)(∇hTF+) > 0;

ii) x is a first order tangential exit point into R− if ∇hTF−(x) = 0, ∇hTF+(x) < 0, and if,

letting g(x) = ∇hTF−(x), ∇gTF−(x) < 0;

iii) x is a first order tangential exit point into R+ if ∇hTF+(x) = 0, ∇hTF−(x) > 0, and if,

letting g(x) = ∇hTF+(x), ∇gTF+(x) > 0.

Definition 3. Assume that a solution of (3) reaches S at an attractive sliding point x. Then x is

said to be a transversal entry point.

Let γ be a periodic orbit of (1). In this paper we consider one of the following forms for γ (see

[10] for planar systems). See Figure 2.
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i) γ has a finite number of sliding arcs on S and contains no crossing points. Then, γ is called

a sliding periodic orbit. We further exclude the case in which γ is entirely contained in S.

ii) γ meets S only at a finite number of crossing points. Then, γ is called a crossing periodic

orbit.

iii) γ has a finite number of sliding arcs and a finite number of crossing points. Then, γ is called

a crossing and sliding periodic orbit.

S

X
in

X
out

γ

S

γ

(a) Crossing periodic orbit (b) Crossing and sliding periodic orbit

S

X
in

X
out

γ

S

X
in

X
out X

in

X
out

γ

(c) Sliding periodic orbit (d) Sliding periodic orbit

Figure 2. Periodic orbits of (1)

As for smooth dynamical systems, stability properties of a periodic orbit γ can be studied via

the eigenvalues of the monodromy matrix, the Floquet multipliers. As we will see in Section 3,

to take into account the jumps in the derivatives of the solution, the monodromy matrix along γ

is defined with the aid of suitable saltation matrices. These matrices are full rank in the case of

crossing, but they are singular (of rank (n− 1)) in case γ has one or more sliding arcs on S.

Definition 4. Let γ be a periodic orbit of (1). Let µ1, µ2, · · · , µn be the corresponding Floquet

multipliers. We say that γ is asymptotically stable if one of the multipliers is 1, say µ1 = 1, and all

other µi’s are less than 1 in modulus.

When γ is a sliding or sliding and crossing periodic orbit, the associated monodromy matrix

has one multiplier equal to 0. This witnesses that there is sliding on a co-dimension 1 region of Rn.

Notice that when (1) is planar, a sliding or sliding and crossing periodic orbit has a multiplier at 1

and one at 0. In this case, γ is said to be stable in finite time.

2.1. Basic assumptions. Before we state our main result, we make the following basic assump-

tions.

H1 Sliding subsets of S are attractive (see Definition 1 ).

H2 Entry points on S are transversal (see Definition 3).

H3 Exit points from S are first order tangential exit points (see Definition 2).

H4 For each solution of (1), only a finite number of crossings/exits/entries can occur.
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Our main result is the following

Theorem 5. Assume that hypotheses H1 − H4 hold. Let γ be an asymptotically stable periodic

orbit of (1) not entirely contained in S. Then, for ε > 0 sufficiently small, system (3) has a unique

asymptotically stable limit cycle γε, and γε → γ when ε→ 0.

Of course, Theorem 5 above holds true also when (1) is planar and γ is stable in finite time.

3. Proof of Main result

In this section, we prove Theorem 5. We will treat the crossing and sliding cases separately.

3.1. Crossing periodic orbit. We consider the case in which γ meets S in just two crossing points,

denote them with x̄1 and x̄2. In Remark 15 we discuss the case of a finite number of crossings.

Theorem 6. Assume that (1) has an asymptotically stable periodic orbit γ with two transversal

crossing points with S. Then, for ε sufficiently small, there exists one and only one periodic orbit

γε of (3) in a neighborhood of γ. Moreover γε is asymptotically stable and limε→0 γε = γ.

We will prove Theorem 6 according to the following steps.

(1) Prove that (3) has at least one limit cycle. To do this, we will define a Poincaré map Pε,

and use Brouwer’s fixed point Theorem to show that it has a fixed point. This will give at

least one limit cycle γε of (3), and we will show that γε → γ0 when ε→ 0.

(2) Then, we will show that γε is asymptotically stable, so γε is the unique limit cycle of (3),

for ε sufficiently small.

Let us define a Poincarè map associated to γ. Without loss of generality, we will assume that

the periodic solution associated to γ crosses S at x̄1 coming from R+ and entering in R−, and then

again (at a later time) crosses S at x̄2 coming from R− and entering in R+, as in Figure 3.

With ϕt± we denote the flows of F±, and with ϕt0(x0) the solution of (1) at time t, with initial

condition x0 at time t = 0. Recalling that in the present crossing case if x0 ∈ S, then ∇hTF+(x0)

and ∇hTF−(x0) have the same sign, we note that ϕt0(x0), for t ≥ 0 sufficiently small, is the solution

of

ẋ =

F+(x), if ∇hTF+(x0) > 0 ,

F−(x), if ∇hTF+(x0) < 0 .

Let Bδ(x̄1) = {x ∈ Rn : ‖x − x̄1‖ < δ} be the open ball centered at x̄1 and of radius δ; here,

and later on, the norm is always the Euclidean norm. Denote with Bδ(x̄1, S) its intersection with S

and with Bδ(x̄1, S) its closure. Then for δ sufficiently small the Poincarè map P−(x) = ϕ
t−(x)
− (x),

where t−(x) is the first return time to S, is well defined and smooth in x and it takes a point x in

Bδ(x̄1, S) into a neighborhood of x̄2. Similarly, we can define a Poincarè map P+(x) that, due to the

asymptotic stability of γ, takes a point x in a neighborhood of x̄2 into Bδ(x̄1, S). Let P = P+ ◦P− :

Bδ(x̄1, S)→ Bδ(x̄1, S) be the Poincarè map of system (1). Then P is well defined and smooth with

its inverse in Bδ(x̄1, S) and since γ is asymptotically stable, P satisfies P (Bδ(x̄1, S)) ⊂ Bδ(x̄1, S)

for δ sufficiently small. Let ψδ be the boundary of Bδ(x̄1, S), then ψδ is the intersection of the



6 LUCA DIECI AND CINZIA ELIA AND DINGHENG PI

(n− 1)-sphere of center x̄1 and radius δ with S. The set P (ψδ) is a diffeomorphic image of ψδ. Let

V be the union of all trajectories of (1) with initial point on ψδ and endpoint on P (ψδ) together

with B̂δ = Bδ(x̄1, S)\P (Bδ(x̄1, S)) and let V̂ be the compact subset of Rn whose boundary is V .

Then all solution trajectories of (1) that intersect B̂δ will do so transversally, will enter V̂ and will

remain inside it. The periodic orbit γ attracts all trajectories inside V̂ .

Stability of γ can be studied via the monodromy matrix X(T ) at γ. Let T be the period of γ

and assume that at time t = t̄, ϕt̄0(x̄1) = x̄2. Then, X(T ) can be written as the composition of the

following matrices (e.g., see [8, 15]):

(6) X(T ) = X(T, t̄)S−+(x̄2)X(t̄, 0)S+−(x̄1)

where S+−(x̄1) = I + (F−−F+)
∇hTF+

∇hT (x̄1) and S−+(x̄2) = I + (F+−F−)
∇hTF−

∇hT (x̄2) are so-called saltation

matrices, while the fundamental matrix solutions X(t, 0) and X(t, t̄) satisfy

Ẋ(t, 0) = DF−(ϕt0(x̄1))X(t, 0), X(0, 0) = I;

Ẋ(t, t̄) = DF+(ϕt0(x̄1))X(t, t̄), X(0, t̄) = I.

The two saltation matrices in (6) are nonsingular and hence X(T ) has an eigenvalue at 1 and all

the other eigenvalues are less than 1 in modulus because of asymptotic stability of γ.

To prove the existence of a periodic orbit of (3) in a neighborhood of γ we employ the Poincarè

map of (3). In a neighborhood of x̄1 and x̄2 solutions of (3) intersect S transversally and hence we

will show that the following Poincarè map, Pε : Bδ(x̄1, S) → Bδ(x̄1, S) that associates to a point

in Bδ(x̄1, S) its first return to Bδ(x̄1, S), is well defined. The following proposition establishes the

existence of at least one periodic orbit of (3).

Proposition 7. For ε sufficiently small, the map Pε has at least one fixed point in Bδ(x̄1, S).

In order the prove this proposition we will need the following Lemma.

Lemma 8. For each x0 ∈ Bδ(x̄1) the following is satisfied

lim
ε→0

ϕtε(x0) = ϕt0(x0),

uniformly for t in a compact interval.

Proof. Denote with ϕt0 and ϕtε the flows of (1) and (3) respectively. Together with S, consider also

the hyperplanes Sε = {x ∈ Rn| h(x) = ε} and S−ε = {x ∈ Rn| h(x) = −ε}. In what follows,

for x0 ∈ Bδ(x̄1), we want to estimate the distance between ϕt0(x0) and ϕtε(x0) at their intersection

points with S, Sε and S−ε. Without loss of generality assume that x0 ∈ Bδ(x̄1, S). Then for δ

and ε sufficiently small ∇hTFε(x0) < 0, ∇hTF−(x0) < 0. Let t1 be such that x1 = ϕt10 (x0) ∈ S−ε
and similarly, let xε1 = ϕ

tε1
ε (x0) ∈ S−ε, with x1, x

ε
1 in a neighborhood of x̄1. We want to bound

‖ϕt10 (x0)−ϕt
ε
1
ε (x0)‖ and show that it goes to zero when ε→ 0. To fix ideas, assume tε1 > t1. Let L− =

max
(
maxt∈[0,t1] ‖DF−(ϕt0(x0))‖,maxt∈[0,t1] ‖DF−(ϕtε(x0))‖

)
and M± = maxt∈[t1,tε1] ‖F±(ϕtε(x0))‖,

then the following inequality holds

‖ϕt10 (x0)− ϕt
ε
1
ε (x0)‖ ≤

∥∥∥∫ t10
F−(ϕs0(x0))− F−(ϕsε(x0))ds

∥∥∥+∥∥∥∫ tε10
( 1

2 + φε
2 (s))(F+ − F−)(ϕsε(x0))ds

∥∥∥+
∥∥∥∫ tε1t1 F−(ϕsε(x0))ds

∥∥∥
≤ L−

∫ t1
0
‖ϕs0(x0)− ϕsε(x0)‖ds+ tε1(M+ +M−) + (tε1 − t1)M−
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and so ‖ϕt10 (x0)− ϕt
ε
1
ε (x0)‖ ≤ [tε1(M+ +M−) + (tε1 − t1)M−]et1L− , where the last inequality follows

from Gronwall’s Lemma. Moreover using h(ϕt10 (x0)) = −ε, if we consider the Taylor polynomial in

Lagrange form of ϕt10 (x0) at the point t = 0, we obtain

(7) t1 =
−ε

∇h(x0)TF−(ϕη0(x0))
, η ∈ (0, t1).

In particular limε→0 t1 = 0 and, in a similar way, limε→0 t
ε
1 = 0. This, together with the bound for

‖ϕt0(x0)− ϕtεε (x0)‖, implies limε→0 ϕ
tε1
ε (x0) = ϕt0(x0).

For t > t1, ϕt0(x0) moves away from S−ε in direction opposite to ∇h(x). But it will eventually

change direction and it will meet S−ε again in a neighborhood of x̄2. Let t2 be such that x2 =

ϕt20 (x1) ∈ S−ε and tε2 be such that xε2 = ϕ
tε2
ε (xε1) ∈ S−ε. To fix ideas, again we assume tε2 > t2. Let

nowM− = maxt∈[t2,tε2] ‖F−(ϕtε(x
ε
1))‖, and L− = max

(
maxt∈[0,t2] ‖DF−(ϕt0(x1))‖,maxt∈[0,t2] ‖DF−(ϕtε(x

ε
1))‖

)
be the local Lipschitz constant for F−, then the following bound holds

‖ϕt20 (x1)− ϕt
ε
2
ε (xε1)‖ ≤ ‖x1 − xε1‖+

∥∥∥∫ t20
(F−(ϕs0(x1))− F−(ϕsε(x

ε
1))) ds+

∫ tε2
t2
F−(ϕsε(x

ε
1))ds

∥∥∥
≤ ‖x1 − xε1‖+ L−

∫ t2
0
‖ϕs0(x1)− ϕsε(xε1)‖ds+ (tε2 − t2)M−

and so ‖ϕt20 (x1)− ϕt
ε
2
ε (xε1)‖ ≤ (‖x1 − xε1‖+ (tε2 − t2)M−)et2L− ,

where the last inequality follows from Gronwall Lemma. Notice that limε→0 t
ε
2 = t2, since xε1 → x1

and Fε = F− for h(x) < −ε. Then limε→0 ϕ
tε2
ε (xε1) = ϕt20 (x1). In a similar way we can show that

‖ϕt0(x0)− ϕtεε (x0)‖ → 0 up to returning in a neighborhood of x̄1. This proves the Lemma. �

As a consequence of Lemma 8, this Corollary holds.

Corollary 9. As ε→ 0, Pε converges pointwise to P in Bδ(x̄1, S).

S

x
0

Sε

S-ε
t

1

P( )x0Pε(x 0)

t1

ε

t
2

t2

ε

Figure 3. P and Pε

Proof of Proposition 7. We will prove that Pε(Bδ(x̄1, S)) ⊂ Bδ(x̄1, S). Then the statement will

follow from Brouwer’s fixed point Theorem. Consider the following relation between ψδ and P (ψδ):

β(ψδ, P (ψδ)) = mina∈ψδ,b∈P (ψδ) ‖a− b‖. Then β(ψδ, P (ψδ)) > η̄ > 0 and η̄ is bounded away from 0
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since P (Bδ(x̄1, S)) ⊂ Bδ(x̄1, S). Let η, 0 < η < η̄, be fixed, and for every x ∈ Bδ(x̄1, S) denote with

Bη(P (x), S) the intersection of the η-ball centered at P (x) with S. Then Bη(P (x), S) ⊂ Bδ(x̄1, S).

Corollary 9 implies that for every x ∈ Bδ(x̄1, S) there exists εη,x > 0 such that, for ε ∈ (0, εη,x),

Pε(x) ∈ Bη(P (x), S) ⊂ Bδ(x̄1, S). The proof follows upon noticing that for every x, εη,x is bounded

away from 0. �

Proposition 10. System (1) has at least a periodic orbit.

Proof. Proposition 7 ensures existence of a fixed point of Pε in Bδ(x̄1, S). We need to exclude

the possibility that the fixed point is an equilibrium point for Fε. Assume by contradiction that

there exists x̄ ∈ Bδ(x̄1, S) such that Fε(x̄) = 0. Then ∇h(x̄)TFε(x̄) = ( 1
2 (1 − φε)∇hTF− + 1

2 (1 +

φε)∇hTF+)(x̄) = 0. But (∇hTF−)(x̄) > 0, ∇hTF+(x̄) > 0 and 1
2 (1 + φε),

1
2 (1 − φε) > 0, hence we

reach a contradiction. �

An invariant region Vε for Fε can be built by considering the union of all trajectories with

initial points on ψδ and endpoints on Pε(ψδ) together with Bδ(x̄1, S)\Pε(Bδ(x̄1, S)) = B̂εδ. Let V̂ε

be the compact subset of Rn with boundary Vε. Then all trajectories of (1) that cross B̂εδ will do

so transversally, will enter V̂ε and will remain inside it. See Figure 4. We will show that (3) has a

unique periodic orbit γε in V̂ε and γε attracts all the solutions inside V̂ε.

x1

B ,Sδ(x1 )

S

x2

Figure 4. invariant region Vε

Next, for each ε, select a fixed point of Pε and denote it with xε. Let γε = {x ∈ Rn| x =

ϕtε(xε), t ∈ R}, be the corresponding periodic orbit. In order to prove Theorem 6 we will show

Main steps

i) as ε→ 0, xε → x̄1, which in turn will imply γε → γ;

ii) for ε sufficiently small, γε is asymptotically stable and this allows us to exclude that (3) has

a family of periodic orbits that converges to γ.

Let x ∈ Bδ(x̄1, S) and let ϕt0(x) be the solution of (1) with initial condition x. Denote with x2

its intersection with S in a neighborhood of x̄2 and let x3 = P (x). Notice that x3 6= x unless x = x̄1.

Let t2 be such that ϕt20 (x) = x2 and T (x) be such that ϕ
T (x)
0 (x) = x3. The following Lemma holds.
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Lemma 11. Denote with X(t, 0, x) and Xε(t, 0, x) respectively the fundamental matrix solution of

(1) along the solution ϕt0(x) and the fundamental matrix solution of (3) along ϕtε(x), x ∈ Bδ(x̄1, S)

Then

lim
ε→0

Xε(Tε(x), 0, x) = X(T (x), 0, x),

where with Tε(x) we denote the first return time of ϕtε(x) to Bδ(x̄1, S).

Proof. In what follows we will omit the explicit dependence of X(t, 0, x) and Xε(t, 0, x) on x. The

principal matrix solution of (3) along ϕtε(x) satisfies

(8) Ẋε = DFε(ϕ
t
ε(x))Xε, Xε(0) = I,

where I is the identity matrix and DFε(x) is the Jacobian of Fε and it is given by

(9) DFε(x) =
1

2
[(1− φε)DF− + (1 + φε)DF+ +

1

ε
φ′ε(F+ − F−)∇hT ](x).

Similarly to what we have done in the proof of Lemma 8, we consider the intersections of ϕtε(x)

with S, Sε and S−ε and use these intersection points to rewrite Xε(Tε(x), 0) as product of transition

matrices. It will be handy to take the initial condition on Sε instead of S. So, let xε0 ∈ Sε be

such that ϕtε(x
ε
0) meets S at time tε1 at the point x, i.e. ϕ

tε1
ε (xε0) = x, and ∇hTFε(xε0) < 0 . We

evaluate the monodromy matrix Xε(Tε(x), 0) along the shifted solution ϕtε(x
ε
0). Notice that in a

whole neighborhood of x the following inequality is satisfied ∇hTFε(x) < 0 so that ϕt(xε0) intersects

S and then S−ε at two isolated points: x = ϕ
tε1
ε (xε0) and xε2 = ϕ

tε2
ε (xε0). Then the trajectory enters

the set {x ∈ Rn|h(x) < −ε} and remains in this set until, at time tε3, it meets S−ε again in xε3. In

a neighborhood of xε3 the following inequality is satisfied ∇hTFε(x) > 0 so that, at time tε4, ϕtε(x
ε
0)

meets S in xε4 and then Sε in xε5 at time tε5. At t = Tε(x), ϕtε(x
ε
0) returns to Sε. With these notations,

we can rewrite Xε as follows

(10) Xε(Tε(x), 0) = Xε(Tε(x), tε5)Xε(t
ε
5, t

ε
3)Xε(t

ε
3, t

ε
2)Xε(t

ε
2, 0).

We want to show that all the factors making up Xε in (10) converge to the corresponding factors

in X(t, 0, x) (see (6) as well).

We first look at the factor Xε(t
ε
2, 0), rewritten as

Xε(t
ε
2, 0) = Xε(t

ε
2, t

ε
1)Xε(t

ε
1, 0) ,

so that the limit of Xε(t
ε
2, 0), as ε→ 0, will exist if the limits of the other two factors do. We have

Xε(t
ε
1, 0) = I +

∫ tε1

0

DFε(x(t))Xε(t, 0)dt =

I +
1

2

∫ tε1

0

[(1− φε)DF− + (1 + φε)DF+] (x(t))Xε(t, 0)dt+

1

ε

∫ tε1

0

1

2
φ′
(
h(x(t)

ε

)
(F+ − F−)∇h(x(t))TXε(t, 0)dt.

The first integral goes to 0 as ε → 0, since tε1 → 0 and the integrand is bounded. The second

integral is dealt with by noticing that φ′(hε ) is positive and thus we can consider the change of
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variable t → x1, along with 1
2ε

∫ 0

ε
φ′(x1

ε )dx1 = − 1
2 , and the mean value Theorem for integrals to

obtain

1

2ε

∫ 0

ε

1

∇hTFε(x)
φ′
(x1

ε

)
(F+ − F−)(x)∇hTXεdx1 =

− 1

2

(F− − F+)∇hTXε

∇hTFε
,

(11)

where the entries of the matrix on the right-hand side are evaluated at some value t̄, 0 ≤ t̄ < tε1,

possibly different for each matrix entry. Since all objects on the right-hand side are smooth in [0, tε1),

tε1 → 0, Fε at t = 0 is F+, and Xε(t
ε
1, 0) = I + O(tε1), by expanding around t = 0 (or x1 = ε), we

conclude that the limit as ε→ 0 of Xε(t
ε
1, 0) exists and it is:

(12) lim
ε→0

Xε(t
ε
1, 0) = I +

1

2

(F− − F+)∇hT

∇hTF+
(x) .

For Xε(t
ε
2, t

ε
1), we have

Xε(t
ε
2, t

ε
1) = I +

∫ tε2

tε1

DFε(x(t))Xε(t, t
ε
1)dt =

I +
1

2

∫ tε2

tε1

[(1− φε)DF− + (1 + φε)DF+] (x(t))Xε(t, t
ε
1)dt+

1

ε

∫ tε2

tε1

1

2
φ′
(
h(x(t)

ε

)
(F+ − F−)∇h(x(t))TXε(t, t

ε
1)dt.

Again, the first integral goes to 0 as ε→ 0, since tε2, and tε1 → 0 and the integrand is bounded. For

the second integral, since φ′(hε ) is positive, we can consider the change of variable t → x1, along

with 1
2ε

∫ −ε
0

φ′(x1

ε )dx1 = − 1
2 , and the mean value Theorem for integrals to obtain

1

2ε

∫ −ε
0

1

∇hTFε(x)
φ′
(x1

ε

)
(F+ − F−)(x)∇hTXεdx1 =

− 1

2

(F+ − F−)∇hTXε

∇hTFε
,

(13)

where the entries of the matrix on the right-hand side are evaluated at some value t̄, tε1 < t̄ ≤ tε2,

possibly different for each matrix entry. Since all objects on the right-hand side are smooth in

(tε1, t
ε
2], tε1,2 → 0, Fε at t = tε2 is F−, then by expanding around t = tε2 (or x1 = −ε), we conclude

that the limit as ε→ 0 of Xε(t
ε
2, t

ε
1) exists, call it M , and it is defined by the relation:

(14) M ≡
[
I +

1

2

(F+ − F−)∇hT

∇hTF−
(x)

]−1

.

Note that the matrix defining M is invertible, and we have

M = I − (F+ − F−)∇hT

∇hT (F+ + F−)
(x) .

Finally, using (11) and (13), we can then conclude that limε→0Xε(t
ε
2, 0) exists, and it is given

by (
I − (F+ − F−)∇hT

∇hT (F+ + F−)

)(
I +

1

2

(F− − F+)∇hT

∇hTF+

)
(x) .
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Doing the algebra, this simplifies to

(15) lim
ε→0

Xε(t
ε
2, 0) = I +

[
F− − F+

∇hTF+
∇hT

]
x

= S+−(x1).

Similarly to (15), we can prove limε→0Xε(t
ε
5, t

ε
3) = S−+(x2).

Finally, Fε = F− in [tε2, t
ε
3] and Fε = F+ in [tε5, Tε]. This, together with the following limits:

xε3, x
ε
4, x

ε
5 → x2, and tε3, t

ε
4, t

ε
5 → t2, and Tε(x)→ T (x), imply:

lim
ε→0

Xε(t
ε
3, t

ε
2) = X(t2, 0), and lim

ε→0
Xε(Tε(x), 0) = X(T (x), 0).

�

Lemma 11 implies in particular that Xε(Tε(x), 0, x) is bounded for all ε. At first, this might

come as a surprise, since the derivative with respect to x1 of Fε is multiplied by the factor 1
ε in the

boundary layer, (see also the first column of DFε in (9)). However, the boundary layer and the time

spent inside the boundary layer go to zero linearly with ε, so that the derivative of the vector field

in the boundary layer remains finite in the limit. Moreover, boundedness of Xε(Tε(x), 0, x) implies

Lipschitzianity of the solution for each ε > 0, as the following corollary states.

Corollary 12. There exists β > 0 such that for each t ≥ 0 and for each ε > 0

‖ϕtε(x)− ϕtε(y)‖ ≤ β‖x− y‖, x, y ∈ Bδ(x̄1) .

Proof. The proof follows from the mean value Theorem for integrals applied to ‖ϕtε(x) − ϕtε(y)‖ =

‖
∫ 1

0
Xε(t, 0, sx+ (1− s)y)(x− y)ds‖. �

Corollary 13. There exists α > 0 such that for each ε > 0

‖Pε(x)− Pε(y)‖ ≤ α‖x− y‖, x, y ∈ Bδ(x̄1, S)

Proof. The result follows from the equality

DPε(x) = ETXε(Tε(x), 0, x)E,

where x ∈ Bδ(x̄1, S), E = (e2, . . . , en), ej is the j-th canonical vector and Tε(x) is the first return

time of ϕtε(x) to Bδ(x̄1, S). Then ‖DPε(x)‖ ≤ ‖Xε(Tε(x), 0, x)‖ and the norm on the right is bounded

as ε→ 0 because of Lemma 11. �

The following Lemma is the first part of Main step i) in the proof of Theorem 6.

Lemma 14.

lim
ε→0

xε = x̄1.

Proof. Let us denote with xkε and x̄k1 the k-th component of xε and x̄1, k ≥ 2. (The first components

are 0.) Let

lim inf
ε→0

x2
ε = x2, lim sup

ε→0
x2
ε = x2
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and let xεi and xεs be two sequences such that limεi→0 x
2
εi = x2 and limεs→0 x

2
εs = x2. From xεi

and xεs we can extract convergent subsequences which, with abuse of notation, we sill denote as xεi
and xεs . Let

(16) lim
εi→0

xεi = x, lim
εs→0

xεs = x.

Notice that limεi→0 Pεi(xεi) = limεi→0 xεi = x, and limεs→0 Pεs(xεs) = limεs→0 xεs = x.

Then

‖P (x)− x‖ ≤ ‖P (x)− Pεi(x)‖+ ‖Pεi(x)− Pεi(xεi)‖+ ‖Pεi(xεi)− x‖.

The three terms to the right of the inequality go to zero for εi → 0. Indeed we have Pεi(x)→ P (x),

Pεi(xεi) → x and ‖Pεi(x) − Pεi(xεi)‖ ≤ α‖x − xεi‖ because of Corollary 13. It then follows that

x = P (x), so that x = x̄1. Similarly, x = x̄1. As a consequence of this reasoning, limε→0 x
2
ε = x̄2

1.

To show convergence of xkε , k = 3, . . . , n, we use reasonings analogous to the ones used for (16)

together with the reasonings in this proof. �

Lemma 14 and Corollary 12 imply the following inequality

‖ϕtε(xε)− ϕt0(x̄1)‖ ≤ ‖ϕtε(xε)− ϕtε(x̄1)‖+ ‖ϕtε(x̄1)− ϕt0(x̄1)‖

≤ β‖xε − x̄1‖+ ‖ϕtε(x̄1)− ϕt0(x̄1)‖.(17)

In particular, (17) and Lemma 8 insure γε → γ and this proves Main step i) above.

Lemma 11 and Lemma 14 together with continuity of Xε with respect to x ∈ Bδ(x̄1, S), imply

that for all µ > 0 there exists εµ sufficiently small so that for ε < εµ the following inequality is

satisfied

‖Xε(Tε, 0, xε)−X(T, 0, x̄1)‖ ≤ ‖Xε(Tε, 0, xε)−Xε(Tε(x̄1), 0, x̄1)‖+

‖Xε(Tε(x̄1), 0, x̄1)−X(T, 0, x̄1)‖ < µ.

As a consequence, for ε sufficiently small, Xε(Tε, 0, xε) has all eigenvalues less than 1 and one equal

to 1 (since γε is periodic). This implies Main step ii), i.e., γε is asymptotically stable and hence

isolated. This completes the proof of Theorem 6. �

Remark 15. The proofs of the results in this section do not change in case of a periodic orbit γ with

a finite number of transversal crossings. The Poincarè map P can be defined in the neighborhood of

one of the transversal crossing points and viewed as composition of two or more smooth maps and

it retains its smoothness. The attractivity of γ insures contractivity of P . Pointwise convergence of

Pε to P can be proved as in Corollary 9 and all related results can as well, in particular obtaining

contractivity of Pε for ε sufficiently small. The monodromy matrix is given by the composition of

saltation matrices of full rank with fundamental matrix solutions and the proof of convergence for

the monodromy matrix remains essentially the same as we have given.

Theorem 6 together with Remark 15 suffice to prove Theorem 5 for a crossing periodic orbit γ

with a finite number of transversal crossings.

3.2. Sliding periodic orbit. Let γ be the periodic orbit of (1). We will first assume that γ is the

union of two arcs, one in R−, or R+, and one in S. In Remark 26 we will discuss how to generalize

the proof to the case of an orbit with a finite number of sliding arcs and a finite number of crossing

transversal points.
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Theorem 16. Assume that system (1) has an asymptotically stable sliding periodic orbit γ given

by two arcs: one arc in the region R+ or R− and one arc on S. Assume moreover that the entry

point in S is a transversal entry point and that the exit point from S is a first order tangential exit

point. Then, for ε sufficiently small, there exists one and only one periodic orbit γε of problem (3)

in a neighborhood of γ. Moreover γε is asymptotically stable and limε→0 γε = γ.

Without loss of generality, we assume that γ has an arc in R−, and the other on S. Further, we

let xin and xout be respectively the entry point in S, from R−, and the exit point from S, onto R−,

of γ. The point xout is a first order tangential exit point, then in particular ∇h(xout)
TF−(xout) = 0.

Assume that the point xin is a transversal entry point. See Figure 5; although the time arrow is for

convenience only, we will work with this figure in mind when defining the Poincaré map.

S

X
in X

out

π
out

Σ

X
1

Figure 5. Sliding periodic orbit

We first define a Poincarè map for the nonsmooth system in a neighborhood of γ. To do so,

let x̄1 ∈ γ ∩ R− and take a cross section Σ to γ at x̄1. Let Bδ(x̄1,Σ) = Bδ(x̄1) ∩ Σ. Then, for δ

sufficiently small, all solutions with initial condition in Bδ(x̄1,Σ) reach S in a neighborhood of xin

and they will start sliding on S since xin is a transversal entry point. Let g(x) = ∇hTF−(x) and

consider the set Πout = {x ∈ Bη(xout)| g(x) = 0}, with η > 0 and small; note that this is a small

neighborhood of xout. Then ∇gTF−(xout) < 0 (see Definition 2) implies that all solutions that slide

on S in a neighborhood of γ will cross Πout transversally and enter R−. Then they will reach Σ

again. We define the map P : Bδ(x̄1,Σ)→ Bδ(x̄1,Σ) as P (x) = ϕ
t(x)
0 (x), with t(x) first return time

to Σ. P is given by the composition of three smooth maps:

1) P1 : Σ→ S, P1(x) = ϕ
t−(x)
− (x), where t−(x) is the first time at which ϕt−(x) meets S;

2) PS : S → S ∩ Πout, PS(x) = ϕ
tS(x)
S (x), where with ϕtS we denote the flow of the sliding

Filippov vector field (5) and tS(x) is the time at which ϕtS(x) meets Πout;

3) P2 : S ∩Πout → Σ, P2(x) = ϕ
t2−(x)

− (x), where t2−(x) is the time at which ϕt−(x) reaches Σ.

Remark 17. The Poincarè map P defined in this way is smooth. The cross section in R− allows

us to consider only solutions of (1) with orbits in R−∪S. [We remark that taking any section along

the sliding arc (for example Πout), forces us to consider also orbits with an arc in R+ and this has

two drawbacks: i) the corresponding Poincarè map is continuous but not smooth (it is defined in a

different way for points in R− or in R+); ii) the orbits of (1) might cross the section more than once

(if we consider the section Πout for example, this happens if ∇gTF−(x) < 0 while ∇gTF+(x) > 0)
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and a definition of the Poincarè map via the first return time to the section is not possible. Also,

notice that considering the cross section S ∩ Bδ(xin) would remove the concerns i) and ii) above

for the non-smooth problem. However, a section that lies on S cannot be used for the regularized

problem because solutions of (3) might never reach it.]

P is a contraction so that P (Bδ(x̄1,Σ)) is a proper subset of Bδ(x̄1,Σ). We study the stability

of γ using the monodromy matrix of (1) along γ. Let tin be such that ϕtin0 (x̄1) = xin, tout be such

that ϕtout0 (x̄1) = xout, and T be such that ϕT0 (x̄1) = x̄1. Then the monodromy matrix X(T, 0) along

γ is given by the following expression (e.g., see [8])

(18) X(T, 0) = X(T, tout)X(tout, tin)S−S(xin)X(tin, 0),

where S−S(xin) = [I+ FS−F−
∇hTF−(xin)

]∇h(xin)T is the saltation matrix that satisfies S−S(xin)F−(xin) =

FS(xin), and the three fundamental matrices in (18) solve the following Cauchy problems:

Ẋ(t, 0) = DF−(ϕt−(x̄1))X(t, 0), X(0, 0) = I,

Ẋ(t, tin) = DFS(ϕ
(t−tin)
S (xin))X(t, tin), X(tin, tin) = I,

Ẋ(t, tout) = DF−(ϕt−tout− (xout))X(t, tout), X(tout, tout) = I.

The matrix S−S(xin) has rank (n− 1) and hence X(T, 0) has an eigenvalue at 1, one at 0, and, due

to the asymptotic stability of γ, all the other eigenvalues are less than 1 in modulus. The eigenvalue

at 0 is a direct consequence of the fact that solution trajectories reach S in finite time and then

slide on S for some time.

To define the Poincaré map, the next result is needed.

Lemma 18. For all x ∈ Bδ(x̄1),

lim
ε→0

ϕtε(x) = ϕt0(x),

uniformly for t in a compact interval.

Proof. The proof of this Lemma is in Appendix A, and it relies on a singular perturbation analysis

based on [20, pp. 249-260]. �

We now define the Poincarè map Pε for (3) as the map Pε : Bδ(x̄1,Σ) → Σ so that for every

point x ∈ Bδ(x̄1,Σ), Pε(x) is the first return point of ϕ
tε(x)
ε (x) to Σ.

Lemma 18 insures that Pε is well defined and it implies the following Proposition.

Proposition 19. As ε→ 0, Pε converges pointwise to P .

Propositions 20 and 21 below will allow us to view the Poincaré map as the composition of

three maps, similarly to what we did for P . This is desirable since it will lead to a decomposition

of the fundamental matrix solution of (3) into four different factors, as for the discontinuous case

(see (18)).

Proposition 20. For ε sufficiently small, orbits of (3) corresponding to solutions with initial con-

ditions in a neighborhood of γ must intersect Πout transversally.

Proof. Let Sout−ε = Πout ∩ S−ε, and note that for all x ∈ Sout−ε , ∇hTFε(x) = ∇hTF−(x) = 0. The

set Sout−ε divides S−ε in two regions, denote them as S−−ε and S+
−ε, such that for all x ∈ S±−ε,
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∇hTFε(x) = ∇hTF−(x) ≷ 0. Lemma 18 implies that an orbit Γε of (3) in a neighborhood of

γ must intersect S−−ε in a point xεout in a neighborhood of xout. Moreover, since ∇hTFε(xεout) =

∇hTF−(xεout) < 0, xεout must be isolated. Uniform convergence of solutions of (3) to solutions of

(1) implies that there are points of Γε in a neighborhood of xout that satisfy ∇hTF−(x) > 0, while

∇hTF−(xεout) < 0. Continuity of solutions with respect to x imply that there must be a point

x̄ε of Γε so that g(x̄ε) = ∇hTF−(x̄ε) = 0 and ∇gTFε(x̄ε) < 0. The statement of the proposition

follows. �

Proposition 21. Solution trajectories of (3) corresponding to solutions with initial conditions in

Bδ(x̄1,Σ) must intersect Πout only in one point, before returning to Σ.

Proof. The proof uses some of the tools needed for the proof of Lemma 18 and hence is included in

Appendix A. �

Remark 22. The condition that x ∈ Bδ(x̄1,Σ) is essential in Proposition 21. It guarantees that

the corresponding solutions of (3) can not cross the boundary layer to enter {x ∈ Rn|h(x) > ε}.
Without this property, the statement of the proposition might be false. Consider for example the

case ∇gTF+(xout) > 0 and take an initial condition x ∈ Πout ∩ Sε.

The following is a consequence of Brouwer fixed point Theorem and of Lemma 19.

Proposition 23. For ε sufficiently small, Pε has at least a fixed point in Bδ(x̄1,Σ).

Proof. See the proof of Proposition 7. �

Moreover, (3) cannot have equilibria in a neighborhood of γ. Indeed outside the boundary

layer Fε = F±, while if there is an equilibrium x̄ inside the boundary layer, then Fε(x̄) = 0 and

φ(x̄) is such that 1
2 (1 − φ(x̄))F−(x̄) + 1

2 (1 + φ(x̄))F+(x̄) = 0. In particular ∇hTFε(x̄) = 0 so that

φ(x̄) = φ∗(x̄) in (5) and hence FS(x̄) = Fε(x̄) = 0, a contradiction. Then, to each fixed point of Pε,

there corresponds a periodic orbit of (3).

For each ε, we select a fixed point of Pε and we denote it as xε. Let γε be the corresponding

periodic orbit. What follows mimics the reasonings employed for the case of a crossing periodic

orbit. We will show

Main steps

i) as ε→ 0, xε → x̄1, which in turn will imply γε → γ;

ii) for ε sufficiently small, γε is asymptotically stable so that it is the unique periodic orbit of

(3) in a neighborhood of γ.

Let x ∈ Bδ(x̄1,Σ) and let ϕt0(x) be the corresponding solution of (1). Let x̂in = ϕt̂in(x) be its

intersection point with S and let ϕt̂out(x) = x̂out ∈ Πout. At time T (x) the solution reaches Σ at a

point different from x, unless x = x̄1.

The following Lemma holds.
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Lemma 24. Let X(t, 0, x) be the fundamental matrix solution of (1) along ϕt0(x) and Xε(t, 0, x) be

the fundamental matrix solution of (3) along ϕtε(x). Then

lim
ε→0

Xε(Tε(x), 0, x) = X(T (x), 0, x),

where Tε(x) denotes the first return time of ϕtε(x) to Σ.

Proof. Below, we omit the dependence of X and Xε upon x. We will adopt the notation used in

Appendix A.

Together with S, consider the hyperplane S−ε = {x ∈ Rn|h(x) = −ε}. For ε sufficiently small,

uniform convergence of ϕtε(x) to ϕt0(x) implies that ϕtε(x) meets S−ε in two isolated points: xεin in a

neighborhood of x̂in and xεout in a neighborhood of x̂out. Let tεin be such that ϕ
tεin
ε (x) = xεin. Then

limε→0 x
ε
in = x̂in and limε→0 t

ε
in = t̂in.

Let φ∗(x̂in) be as in (5) and let τ = t
ε . For 0 < µ < ε, let τµ be such that, for τ > τµ,

|φ̃(τ)−φ∗(x̂in)| < µ
3 , where φ̃ is defined in (23). Then τµ satisfies (27) and tµ = ετµ → 0+ as ε→ 0.

Let xµ,ε1 = eT1 ϕ
tin+ετµ
ε (x), yµ,ε = ETϕ

tin+ετµ
ε (x) and denote with φµ,ε the corresponding value of φε

evaluated at the point
xµ,ε1

ε . Then |φµ,ε − φ∗((0, yµ,ε)T )| < µ < ε, see (28).

We write the fundamental matrix solutionXε(Tε(x), 0) as product of different transition matrices

(19) Xε(Tε(x), 0) = Xε(Tε(x), tεout)Xε(t
ε
out, t

ε
in + tµ)Xε(t

ε
in + tµ, t

ε
in)Xε(t

ε
in, 0).

We want to show that each transition matrix in (19) converges to the corresponding transition

matrix in X(T (x), 0, x) (see also (18)).

Lemma 18 and Proposition 21 imply limε→0 x
ε
out = x̂out and limε→0 t

ε
out = t̂out. Moreover

limε→0 φ
µ,ε = φ∗(x̂in) since φε(x(t)) converges uniformly to φ∗(x(t)) in [tin + tµ, t̂out] (see the last

steps of the proof of Lemma 18 in Appendix A).

From the reasoning above it follows that

lim
ε→0

Xε(t
ε
in, 0) = X(t̂in, 0).

For the second piece, we write

Xε(t
ε
in + tµ, t

ε
in) = I +

∫ tεin+tµ

tεin

DFε(ϕε(t))Xε(t, t
ε
in)dt =

I +
1

2

∫ tεin+tµ

tεin

((1− φε)DF−(ϕε(t)) + (1 + φε)DF+(ϕε(t)))Xε(t, t
ε
in)dt(20)

+
1

2ε

∫ tεin+tµ

tεin

φ′
(x1

ε

)
(F+ − F−)∇h(x)TXε(t, t

ε
in)dt.

In what follows we reason similarly to the proof of Lemma 11. The fundamental matrix solution

Xε must satisfy Xε(t
ε
in + tµ, t

ε
in)Fε(x

ε
in) = Fε(ϕ

tεin+tµ
ε (x)). When we take the limit as ε → 0, then

ϕ
tεin+tµ
ε (x) = x̂in, Fε(x

ε
in)→ F−(x̂in), and limε→0 Fε(ϕ

tεin+tµ
ε (x)) = FS(x̂in). In particular, we have

that limt→t̂+in
limε→0 Fε(ϕ

t
ε(x)) 6= limt→t̂−in

limε→0 Fε(ϕ
t
ε(x)) and this discontinuity is reflected also

in the limit of the fundamental matrix solution. Indeed, if L = limε→0Xε(t
ε
in + tµ, t

ε
in) exists, then

it must satisfy

(21) LF−(x̂in) = FS(x̂in).
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Now, the first integral in (20) goes to zero as ε → 0 since tµ = ετµ → 0 and the integrand is

bounded.

For the second integral, inside the interval (tεin, t
ε
in + tµ), we can write

Xε(t, t
ε
in) = I +Rε(x

ε
in, t),

F±(x) = F±(xεin) + (t− tεin)DF±(xεin)F±(xεin) + h.o.t.,

where Rε is bounded, and ‖Rε‖ → 0 as t→ tεin.

Using this in the integral above, since φ′ε > 0, we get

1

2ε

∫ tεin+tµ

tεin

φ′
(x1

ε

)
(F+ − F−)∇h(x)TXε(t, t

ε
in)dt =

1

2ε

∫ tεin+tµ

tεin

φ′(
x1

ε
)dt
[
(F+ − F−)∇hT (xεin) + Ē

]
=[

(F+ − F−)∇hT (xεin) + Ē
]
c(ε) ,

where c(ε) = 1
2ε

∫ tεin+tµ
tεin

φ′
(
x1(t)
ε

)
dt, and Ē is the error matrix whose components are each computed

at possibly different values of t̄ ∈ (tεin, t
ε
in + tµ).

Now, for ε→ 0, Ē → 0 and xεin → x̂1, and tεin → t̂in from the right. Thus, for ε→ 0, the second

integral gives [
(F+ − F−)∇hT (x̂in)

]
lim
ε→0

c(ε) ,

and so would have

lim
ε→0

Xε(t
ε
in + tµ, t

ε
in) = I +

[
(F+ − F−)∇hT (x̂in)

]
lim
ε→0

c(ε)

and since (21) holds, we must have that

lim
ε→0

c(ε)(F+ − F−)∇hTF−(x̂in) = (FS − F−)(x̂in) =
1 + φ∗(x̂in)

2
(F+ − F−)(x̂in),

and hence limε→0 c(ε) = 1+φ∗(x̂in)
2

1
∇hTF−(x̂in)

. Thus, finally we get

lim
ε→0

Xε(t
ε
in, t

ε
in + tµ) = S−S(x̂in),

where S−S is the saltation matrix from R− to S.

For the third transition matrix in (19), we have

Xε(t
ε
out, t

ε
in + tµ) = I +

∫ tεout

tεin+tµ

DFε(ϕε)X(t, tεin + tµ)dt.

Lemma 18 implies that ϕtε(x) → ϕt0(x) uniformly and toutε → t̂out. Moreover, φε(t) → φ∗(y(t))

uniformly for t ∈ [tεin + tµ, t
ε
out], with y(t) = ETϕ(t) so that Fε(ϕ

t
ε(x)) converges to FS(ϕt0(x)) for

t ∈ [tεin + tµ, t
ε
out]. Hence

lim
ε→0

DFε(ϕε(t)) = lim
ε→0

(1− ϕε(t))DF−(ϕε(t)) + ϕε(t)DF+(ϕε(t)) +
1

ε
ϕ′(

x1

ε
)((F+ − F−)(ϕε(t)) =

(1− ϕ∗(y(t))DF−(ϕ∗(y(t)) + ϕ∗(y(t))DF+(ϕ∗(y(t)) = DFS(t).

It follows that

lim
ε→0

X(toutε , tεin + tµ) = X(t̂out, t̂in).
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Finally, the convergence of the last transition matrix in (19), Xε(Tε(x), tεout), to the correspond-

ing term of X(T (x), 0) (see also (18)), follows from tεout → t̂out and xεout → x̂out. �

As in Section 3.1, Lemma 24 implies that ϕtε and Pε are Lipschitz for all ε. Then the following

result follows.

Lemma 25.

lim
ε→0

xε = x̄1.

Proof. Let us denote with xkε the k-th component of xε. Let

lim inf
ε→0

x1
ε = x1, lim sup

ε→0
x1
ε = x1

and let xεi and xεs be two sequences such that limεi→0 x
1
εi = x1 and limεs→0 x

1
εs = x1. From xεi

and xεs we can extract convergent subsequences which we sill denote as xεi and xεs . Let

(22) lim
εi→0

xεi = x, lim
εs→0

xεs = x.

As in Lemma 14, using the fact that Pε is Lipschitz for all ε, we obtain that P (x) = x and P (x) = x,

so that x = x = x̄1. This proves convergence of the first component of xε to the first component of

x̄1. The proof for the other components is done in a similar way. �

Lemma 24 and Lemma 25 together with continuity of Xε with respect to x implies that

Xε(Tε, 0, xε) has all eigenvalues less than 1 and one equal to 1 (since γε is periodic). This im-

plies that γε is asymptotically stable and hence isolated, and Theorem 16 follows.

Remark 26. In case there are multiple sliding segments, and possibly also crossing, combining

together the results of Theorems 16 and 6, then Theorem 5 holds for these scenarios. It should be

appreciated that, see [8, Theorem 2.8], for an asymptotically stable periodic orbit of (1) with multiple

sliding segments on the plane S, the multipliers are still 1,0, all other multipliers being less than 1

in absolute value and different from zero.

4. Conclusions

In this paper we have considered n dimensional DRHS systems with a discontinuous co-dimension

one plane S separating two regions R− and R+. We have further assumed that this discontinuous

system has an asymptotically stable periodic orbit γ. Our main result shows that if γ consists

of arcs on S and/or on R− and R+, but does not lie entirely on S, then a regularization of the

discontinuous system also has a unique asymptotically stable limit cycle, converging to γ as the

regularization parameter goes to 0. The case of γ lying entirely on S remains to be considered.

Finally, we stress that, our switching manifold is a codimension one plane. The case of higher

co-dimension switching manifold (say, the intersection of two planes) is considerably more complex

(e.g., see [7]), and remains to be considered as well.
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Appendix A

Proof of Lemma 18. Let x ∈ Bδ(x̄1) and denote with ϕt0(x) the solution of (1) and with ϕtε(x) the

solution of (3). Since in R−, F− = Fε, at time t = tεin, ϕt0(x) and ϕtε(x) meet S−ε transversally in a

point xεin so that ∇hTF−(xεin) = ∇hTFε(xεin) > 0. Then both ϕtε(x) and ϕt0(x) enter the boundary

layer S̃ = {x ∈ Rn s.t. − ε < h(x) < ε}. In particular, there exist x̂in ∈ S and t̂in > 0 such that

ϕt̂in0 (x) = x̂in and limε→0 x
ε
in = x̂in. For t > t̂in, ϕt0(x) starts sliding on S until it meets Πout at

time t̂out: ϕ
t̂out
0 (x) = x̂out ∈ S ∩ Πout. In order to show uniform convergence of ϕtε to ϕt0, we need

to study the limiting behavior of ϕtε inside S̃ and we do this via singular perturbation theory. Let

e1 = (1, 0, 0, . . .)T , then h(x) = eT1 x = x1. Let y = ETx with E = (e2, . . . , en) ∈ Rn×(n−1), where ei

is the i-th canonical vector of Rn. When x is inside the boundary layer the function φ = φ(x1

ε ) is

strictly monotone, so that x1 in [−ε, ε] can be expressed as a function of φ in [−1, 1]. Then we can

consider the new variables (φ, y) and split (3) into fast and slow motion as follows

εφ̇ =φ′(z)eT1 Fε(x)

ẏ =ETFε(x)
(23)

with z = x1

ε and with initial conditions φ(0) = φ0 and y(0) = y0. The transformation is done strictly

inside the boundary layer, hence the initial condition for the fast variable φ satisfies −1 < φ0 < 1,

while the initial condition for the slow variable y0 is arbitrarily close to ETxεin and it converges to

ET x̂in for ε→ 0. Since φ(z) is monotone increasing in (−1, 1), then z can be rewritten in function

of φ, so φ′(z) is a function of φ as φ′(z) = g(φ). Denote the solution of (23) as (φε(t), yε(t)). If we

set ε = 0 in (23), using the fact that x1 → 0 (while −1 < z < 1), we obtain the reduced problem

0 =g(φ)eT1 Fε((0, y)T )

ẏ =ETFε((0, y)T ),
(24)

with initial conditions φ(0) = φ0, y(0) = ET x̂in, and with g(φ) = φ′(z). The algebraic equation in

(24) has a unique solution in (−1, 1) for each y and this is given by the following smooth function of

y: φ∗(y) =
eT1 (F−+F+)

eT1 (F+−F−)
((0, y)T ). Then, (24) is just the Filippov sliding differential equation on S with

vector field (5) and we denote its solution as (φ∗(y(t)), y(t)). We claim that limε→0(φε(t), yε(t)) =

(φ∗(y(t)), y(t)) (while limε→0 x1(t) = 0) uniformly in time in [t̂in + η, t̂out] where t̂out is such that

φ∗(y(t̂out)) = φ∗(ET x̂out) = −1 and η > 0. The uniform convergence is not immediate to verify

since we cannot use continuity of solutions with respect to the parameter ε. We consider the fast

time τ = t
ε and the derivative with respect to τ . We obtain the following fast system

dφ

dτ
=g(φ)eT1 Fε(x)

dy

dτ
=εETFε(x),

(25)

with initial condition φ(0) = φ0, y(0) = y0. Notice that if (φε(t), yε(t)) solves (23), then (φε(ετ), yε(ετ))

solves (25). If we set ε = 0 we have the reduced fast system

dφ

dτ
=g(φ)eT1 Fε((0, y(0))T ),

dy

dτ
=0,

(26)

with initial condition φ(0) = φ0 and y(0) = ET x̂in and with y as parameter. We denote the solution

of the reduced fast system as (φ̃(τ, y(0)), y(0)). Notice that for φ = 1,−1, g(φ) = φ′(z) = 0.
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Lemma 27. Assume that S is attractive at the point (0, y), i.e., ∇hTF±((0, y)) ≶ 0. Then

φ∗(y) =
eT1 (F−+F+)

eT1 (F+−F−)
(y) is the unique equilibrium of system (26) in (−1, 1). Moreover φ∗(y) is

globally exponentially stable in (−1, 1).

Proof. Let y be fixed and rewrite the first of (26) as

dφ

dτ
= φ′(z(τ))(−aφ+ b), −a =

1

2
eT1 (F+ − F−)(0, y) < 0, b =

1

2
eT1 (F+ + F−)(0, y),

so that dφ
−aφ+b = φ′(z(τ))dτ . The statement follows from the mean value Theorem for integrals

upon noticing that φ′(z(τ)) is strictly positive in z ∈ (−1, 1) and it is zero only for z = 1,−1. �

The proof of Lemma 27 applies also to obtain the following Corollary.

Corollary 28. Let (0, yout) = xout. Then φ∗(yout) = −1 is the unique equilibrium of (26) in

[−1, 1). Moreover all solutions in (−1, 1) converge exponentially fast to −1. �

Definition 29. Let δ > 0. The δ-cube is the set of points (φ, y) such that

|φ− φ∗(y)| < δ,

with φ∗(y) as in Lemma 27.

For µ < ε, because of Lemma 27, there exists an α > 0 such that at time

(27) τµ = −α log(µ),

the solution of (26) satisfies |φ̃(τ) − φ∗(ET x̂in)| < µ
3 for τ > τµ. Moreover, since the solution of

(25) depends continuously on ε, it converges to the solution of (26) for ε→ 0:

lim
ε→0

(φε(ετ), yε(ετ)) = (φ̃(τ, ET x̂in), ET x̂in).

Since x̂in is a transversal crossing point then, for ε sufficiently small and τ > τµ, S is attractive at

the point (0, yε(ετ)) and φ∗(yε(ετ)) is in (−1, 1). Using this and the fact that φ∗ is smooth with

respect to y, we conclude that there exists an εµ > 0 such that for ε < εµ and τ > τµ, the following

is satisfied

(28) |φε(ετ)− φ∗(yε(ετ))| ≤ |φε(ετ)− φ̃(τ, ET x̂in)|+ |φ̃(τ, ET x̂in)− φ∗(ET x̂in)|+

|φ∗(ET x̂in)− φ∗(yε(ετ))| < 3
µ

3
= µ.

Then (φε(ετ), yε(ετ)) is in the µ-cube. The following Lemma is in [20].

Lemma 30. Let δ > 0 small. There exist µδ > 0 and εδ > 0 so that for ε < εδ if the solution of

(23) enters the µδ cube at t = t̄, it remains strictly inside the δ-cube as long as −1 ≤ φ∗(yε(t)) ≤ 1.

Proof. The proof of the Lemma is by contradiction and can be found in [20, Lemma 39.1]. It relies

on continuity of solutions of (25) with respect to the parameter ε and on the asymptotic convergence

of solutions of dφ
dτ = φ′(z)eT1 Fε(0, y) to φ∗(y). �

Lemma 30 together with (28) implies that, for η > 0, the solution of (23) remains inside the

η-cube, as long as −1 ≤ φ∗(yε(t)) ≤ 1. Let Tε be such that φ∗(yε(Tε)) = −1. Then, for ετµ ≤ t ≤ Tε,
we can write

(29) φε(t) = φ∗(yε(t)) + ωε(t),
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with limε→0 ωε(t) = 0 . Then yε(t) satisfies the following differential equation in [εtµ, Tε]

dyε
dt

= ETFε (φ∗(yε(t)) + ωε(t), yε(t)) ,

and using continuity of the solution of the differential equation with respect to the state variable and

the fact that limε→0 ωε(t) = 0, we can conclude that yε(εt)→ y(t) uniformly in time in [ετµ, tout(x)],

with tout such that φ∗(y(tout)) = −1. Moreover, since yε(0) → ET x̂in, for ε → 0, the convergence

is uniform also in [0, ετµ]. Hence limε→0 yε(t) = y(t) uniformly in [0, T ]. This together with (29)

implies uniform convergence of φε(t) to φ∗(y(t)) in [ετµ, T ]. Notice that the convergence is not

uniform in [0, ετµ] since φε(0) 6= φ∗(ET x̂in). However if we consider the first component of the

solution of (3) and we denote it as xε1,in(t), then xε1,in(t)→ 0 ad ε→ 0 uniformly in time in [0, T ].

Hence (x1,ε(t), yε(t))→ (0, y∗(t)) uniformly in [0, T ]. This completes the proof of Lemma 18. �

Proof of Proposition 21. We will reason by contradiction. Let x0 ∈ Bδ(x̄1,Σ) and consider the two

flows ϕtε(x0) and ϕt0(x0). Let t1 be such that ϕt10 (x0) meets S in x1 in a neighborhood of xin, starts

sliding on S and at t2 > t1 intersects Πout transversally at a point x2 in a neighborhood of xout:

ϕt20 (x0) = x2 ∈ Πout ∩ S, and ∇gTFS(x2) < 0, with g(x) = ∇hTF−(x). Similarly, ϕtε(x0) intersects

S−ε at an isolated point xε1 so that ∇hTFε(xε1) = ∇hTF−(xε1) > 0. Let tε1 be such that xε1 = ϕ
tε1
ε (x0).

Then the solution remains inside the boundary layer and for t̂ > tε1 it crosses Πout transversally at

a point x̂ such that ∇gTFε(x̂) < 0, see Proposition 20. At time t2ε > t̂, the solution crosses S−ε and

leaves the boundary layer. Assume by contradiction that there are t̂1, t̂2 ∈ (t̂, tε2), with t̂1 < t̂2, so

that x̂1,2 = ϕ
t̂1,2
ε (x0) are two other intersection point with Πout. Then it must be

(30) g(x̂1,2) = 0, ∇gTFε(x̂1) > 0, ∇gTFε(x̂2) < 0.

Because of uniform convergence of ϕtε(x0) to ϕt0(x0), we know that tε1 → t1 and t̂, t̂1, t̂2, t
ε
2 → t2.

Using same notations as in the proof of Lemma 18, if we fix µ > 0 small, there there exists εµ small

such that for every ε < εµ the following must be satisfied

|φ(yε(t̂1))− φ∗(ETx2)| ≤ |φ(yε(t̂1))− φ∗(yε(t̂1))|+ |φ∗(yε(t̂1))− φ∗(ETx2)| < µ.

Then Fε(x̂1) is arbitrarily close to FS(0, ETx2), where with FS we have denoted the sliding vector

field on S. But at the exit point (0, ETx2) it must be ∇gTFS(ETx2) < 0 and this is in contradiction

with (30). �
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